xref: /dragonfly/sys/kern/subr_disk.c (revision 60e242c5)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * and Alex Hornung <ahornung@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * ----------------------------------------------------------------------------
36  * "THE BEER-WARE LICENSE" (Revision 42):
37  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
38  * can do whatever you want with this stuff. If we meet some day, and you think
39  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
40  * ----------------------------------------------------------------------------
41  *
42  * Copyright (c) 1982, 1986, 1988, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
75  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
76  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/sysctl.h>
84 #include <sys/buf.h>
85 #include <sys/caps.h>
86 #include <sys/conf.h>
87 #include <sys/disklabel.h>
88 #include <sys/disklabel32.h>
89 #include <sys/disklabel64.h>
90 #include <sys/diskslice.h>
91 #include <sys/diskmbr.h>
92 #include <sys/disk.h>
93 #include <sys/kerneldump.h>
94 #include <sys/malloc.h>
95 #include <machine/md_var.h>
96 #include <sys/ctype.h>
97 #include <sys/syslog.h>
98 #include <sys/device.h>
99 #include <sys/msgport.h>
100 #include <sys/devfs.h>
101 #include <sys/thread.h>
102 #include <sys/dsched.h>
103 #include <sys/queue.h>
104 #include <sys/lock.h>
105 #include <sys/udev.h>
106 #include <sys/uuid.h>
107 
108 #include <sys/buf2.h>
109 #include <sys/msgport2.h>
110 
111 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
112 static int disk_debug_enable = 0;
113 
114 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
115 static void disk_msg_core(void *);
116 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
117 static void disk_probe(struct disk *dp, int reprobe);
118 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
119 static void bioqwritereorder(struct bio_queue_head *bioq);
120 static void disk_cleanserial(char *serno);
121 static int disk_debug(int, char *, ...) __printflike(2, 3);
122 static cdev_t _disk_create_named(const char *name, int unit, struct disk *dp,
123     struct dev_ops *raw_ops, int clone);
124 
125 static d_open_t diskopen;
126 static d_close_t diskclose;
127 static d_ioctl_t diskioctl;
128 static d_strategy_t diskstrategy;
129 static d_psize_t diskpsize;
130 static d_dump_t diskdump;
131 
132 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
133 static struct lwkt_token disklist_token;
134 static struct lwkt_token ds_token;
135 
136 static struct dev_ops disk1_ops = {
137 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE | D_KVABIO },
138 	.d_open = diskopen,
139 	.d_close = diskclose,
140 	.d_read = physread,
141 	.d_write = physwrite,
142 	.d_ioctl = diskioctl,
143 	.d_strategy = diskstrategy,
144 	.d_dump = diskdump,
145 	.d_psize = diskpsize,
146 };
147 
148 static struct dev_ops disk2_ops = {
149 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE | D_KVABIO |
150 		     D_NOEMERGPGR },
151 	.d_open = diskopen,
152 	.d_close = diskclose,
153 	.d_read = physread,
154 	.d_write = physwrite,
155 	.d_ioctl = diskioctl,
156 	.d_strategy = diskstrategy,
157 	.d_dump = diskdump,
158 	.d_psize = diskpsize,
159 };
160 
161 static struct objcache 	*disk_msg_cache;
162 
163 static struct objcache_malloc_args disk_msg_malloc_args = {
164 	sizeof(struct disk_msg),
165 	M_DISK
166 };
167 
168 static struct lwkt_port disk_dispose_port;
169 static struct lwkt_port disk_msg_port;
170 
171 static int
172 disk_debug(int level, char *fmt, ...)
173 {
174 	__va_list ap;
175 
176 	__va_start(ap, fmt);
177 	if (level <= disk_debug_enable)
178 		kvprintf(fmt, ap);
179 	__va_end(ap);
180 
181 	return 0;
182 }
183 
184 static int
185 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
186 {
187 	struct disk_info *info = &dp->d_info;
188 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
189 	disklabel_ops_t ops;
190 	struct dev_ops *dops;
191 	struct partinfo part;
192 	const char *msg;
193 	char uuid_buf[128];
194 	cdev_t ndev;
195 	int sno;
196 	u_int i;
197 
198 	disk_debug(2, "disk_probe_slice (begin): %s (%s)\n",
199 		   dev->si_name, dp->d_cdev->si_name);
200 
201 	sno = slice ? slice - 1 : 0;
202 	dops = (dp->d_rawdev->si_ops->head.flags & D_NOEMERGPGR) ?
203 		&disk2_ops : &disk1_ops;
204 
205 	ops = &disklabel32_ops;
206 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
207 	if (msg && !strcmp(msg, "no disk label")) {
208 		ops = &disklabel64_ops;
209 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
210 	}
211 
212 	if (msg == NULL) {
213 		char packname[DISKLABEL_MAXPACKNAME];
214 
215 		if (slice != WHOLE_DISK_SLICE)
216 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
217 		else
218 			sp->ds_reserved = 0;
219 
220 		ops->op_getpackname(sp->ds_label, packname, sizeof(packname));
221 
222 		destroy_dev_alias(dev, "by-label/*");
223 		if (packname[0])
224 			make_dev_alias(dev, "by-label/%s", packname);
225 
226 		sp->ds_ops = ops;
227 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
228 			ops->op_loadpartinfo(sp->ds_label, i, &part);
229 
230 			if (part.fstype) {
231 				if (reprobe &&
232 				    (ndev = devfs_find_device_by_name("%s%c",
233 						dev->si_name, 'a' + i))
234 				) {
235 					/*
236 					 * Device already exists and
237 					 * is still valid.
238 					 */
239 					ndev->si_flags |= SI_REPROBE_TEST;
240 
241 					/*
242 					 * Destroy old UUID alias
243 					 */
244 					destroy_dev_alias(ndev,
245 							  "part-by-uuid/*");
246 					destroy_dev_alias(ndev,
247 							  "part-by-label/*");
248 
249 					/* Create UUID alias */
250 					if (!kuuid_is_nil(&part.storage_uuid)) {
251 						snprintf_uuid(uuid_buf,
252 						    sizeof(uuid_buf),
253 						    &part.storage_uuid);
254 						make_dev_alias(ndev,
255 						    "part-by-uuid/%s",
256 						    uuid_buf);
257 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
258 					}
259 					if (packname[0]) {
260 						make_dev_alias(ndev,
261 						    "part-by-label/%s.%c",
262 						    packname, 'a' + i);
263 					}
264 				} else {
265 					ndev = make_dev_covering(dops,
266 						dp->d_rawdev->si_ops,
267 						dkmakeminor(dkunit(dp->d_cdev),
268 							    slice, i),
269 						UID_ROOT, GID_OPERATOR, 0640,
270 						"%s%c", dev->si_name, 'a'+ i);
271 					ndev->si_parent = dev;
272 					ndev->si_iosize_max = dev->si_iosize_max;
273 					ndev->si_disk = dp;
274 					udev_dict_set_cstr(ndev, "subsystem", "disk");
275 					/* Inherit parent's disk type */
276 					if (dp->d_disktype) {
277 						udev_dict_set_cstr(ndev, "disk-type",
278 						    __DECONST(char *, dp->d_disktype));
279 					}
280 
281 					/* Create serno alias */
282 					if (dp->d_info.d_serialno) {
283 						make_dev_alias(ndev,
284 						    "serno/%s.s%d%c",
285 						    dp->d_info.d_serialno,
286 						    sno, 'a' + i);
287 					}
288 
289 					/* Create UUID alias */
290 					if (!kuuid_is_nil(&part.storage_uuid)) {
291 						snprintf_uuid(uuid_buf,
292 						    sizeof(uuid_buf),
293 						    &part.storage_uuid);
294 						make_dev_alias(ndev,
295 						    "part-by-uuid/%s",
296 						    uuid_buf);
297 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
298 					}
299 					if (packname[0]) {
300 						make_dev_alias(ndev,
301 						    "part-by-label/%s.%c",
302 						    packname, 'a' + i);
303 					}
304 					ndev->si_flags |= SI_REPROBE_TEST;
305 				}
306 			}
307 		}
308 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
309 		msg = NULL;
310 		if (sp->ds_size >= 0x100000000ULL)
311 			ops = &disklabel64_ops;
312 		else
313 			ops = &disklabel32_ops;
314 		sp->ds_label = ops->op_clone_label(info, sp);
315 	} else {
316 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
317 		    sp->ds_type == DOSPTYP_NETBSD ||
318 		    sp->ds_type == DOSPTYP_OPENBSD ||
319 		    sp->ds_type == DOSPTYP_DFLYBSD) {
320 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
321 			    dev->si_name, msg);
322 		}
323 
324 		if (sp->ds_label.opaque != NULL && sp->ds_ops != NULL) {
325 			/* Clear out old label - it's not around anymore */
326 			disk_debug(2,
327 			    "disk_probe_slice: clear out old diskabel on %s\n",
328 			    dev->si_name);
329 
330 			sp->ds_ops->op_freedisklabel(&sp->ds_label);
331 			sp->ds_ops = NULL;
332 		}
333 	}
334 
335 	if (msg == NULL) {
336 		sp->ds_wlabel = FALSE;
337 	}
338 
339 	return (msg ? EINVAL : 0);
340 }
341 
342 /*
343  * This routine is only called for newly minted drives or to reprobe
344  * a drive with no open slices.  disk_probe_slice() is called directly
345  * when reprobing partition changes within slices.
346  */
347 static void
348 disk_probe(struct disk *dp, int reprobe)
349 {
350 	struct disk_info *info = &dp->d_info;
351 	cdev_t dev = dp->d_cdev;
352 	cdev_t ndev;
353 	int error, i, sno;
354 	struct diskslices *osp;
355 	struct diskslice *sp;
356 	struct dev_ops *dops;
357 	char uuid_buf[128];
358 
359 	/*
360 	 * d_media_blksize can be 0 for non-disk storage devices such
361 	 * as audio CDs.
362 	 */
363 	if (info->d_media_blksize == 0)
364 		return;
365 
366 	osp = dp->d_slice;
367 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
368 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
369 
370 	error = mbrinit(dev, info, &(dp->d_slice));
371 	if (error) {
372 		dsgone(&osp);
373 		return;
374 	}
375 
376 	dops = (dp->d_rawdev->si_ops->head.flags & D_NOEMERGPGR) ?
377 		&disk2_ops : &disk1_ops;
378 
379 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
380 		/*
381 		 * Ignore the whole-disk slice, it has already been created.
382 		 */
383 		if (i == WHOLE_DISK_SLICE)
384 			continue;
385 
386 #if 1
387 		/*
388 		 * Ignore the compatibility slice s0 if it's a device mapper
389 		 * volume.
390 		 */
391 		if ((i == COMPATIBILITY_SLICE) &&
392 		    (info->d_dsflags & DSO_DEVICEMAPPER))
393 			continue;
394 #endif
395 
396 		sp = &dp->d_slice->dss_slices[i];
397 
398 		/*
399 		 * Handle s0.  s0 is a compatibility slice if there are no
400 		 * other slices and it has not otherwise been set up, else
401 		 * we ignore it.
402 		 */
403 		if (i == COMPATIBILITY_SLICE) {
404 			sno = 0;
405 			if (sp->ds_type == 0 &&
406 			    dp->d_slice->dss_nslices == BASE_SLICE) {
407 				sp->ds_size = info->d_media_blocks;
408 				sp->ds_reserved = 0;
409 			}
410 		} else {
411 			sno = i - 1;
412 			sp->ds_reserved = 0;
413 		}
414 
415 		/*
416 		 * Ignore 0-length slices
417 		 */
418 		if (sp->ds_size == 0)
419 			continue;
420 
421 		if (reprobe &&
422 		    (ndev = devfs_find_device_by_name("%ss%d",
423 						      dev->si_name, sno))) {
424 			/*
425 			 * Device already exists and is still valid
426 			 */
427 			ndev->si_flags |= SI_REPROBE_TEST;
428 
429 			/*
430 			 * Destroy old UUID alias
431 			 */
432 			destroy_dev_alias(ndev, "slice-by-uuid/*");
433 
434 			/* Create UUID alias */
435 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
436 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
437 				    &sp->ds_stor_uuid);
438 				make_dev_alias(ndev, "slice-by-uuid/%s",
439 				    uuid_buf);
440 			}
441 		} else {
442 			/*
443 			 * Else create new device
444 			 */
445 			ndev = make_dev_covering(dops, dp->d_rawdev->si_ops,
446 					dkmakewholeslice(dkunit(dev), i),
447 					UID_ROOT, GID_OPERATOR, 0640,
448 					(info->d_dsflags & DSO_DEVICEMAPPER)?
449 					"%s.s%d" : "%ss%d", dev->si_name, sno);
450 			ndev->si_parent = dev;
451 			ndev->si_iosize_max = dev->si_iosize_max;
452 			udev_dict_set_cstr(ndev, "subsystem", "disk");
453 			/* Inherit parent's disk type */
454 			if (dp->d_disktype) {
455 				udev_dict_set_cstr(ndev, "disk-type",
456 				    __DECONST(char *, dp->d_disktype));
457 			}
458 
459 			/* Create serno alias */
460 			if (dp->d_info.d_serialno) {
461 				make_dev_alias(ndev, "serno/%s.s%d",
462 					       dp->d_info.d_serialno, sno);
463 			}
464 
465 			/* Create UUID alias */
466 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
467 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
468 				    &sp->ds_stor_uuid);
469 				make_dev_alias(ndev, "slice-by-uuid/%s",
470 				    uuid_buf);
471 			}
472 
473 			ndev->si_disk = dp;
474 			ndev->si_flags |= SI_REPROBE_TEST;
475 		}
476 		sp->ds_dev = ndev;
477 
478 		/*
479 		 * Probe appropriate slices for a disklabel
480 		 *
481 		 * XXX slice type 1 used by our gpt probe code.
482 		 * XXX slice type 0 used by mbr compat slice.
483 		 */
484 		if (sp->ds_type == DOSPTYP_386BSD ||
485 		    sp->ds_type == DOSPTYP_NETBSD ||
486 		    sp->ds_type == DOSPTYP_OPENBSD ||
487 		    sp->ds_type == DOSPTYP_DFLYBSD ||
488 		    sp->ds_type == 0 ||
489 		    sp->ds_type == 1) {
490 			if (dp->d_slice->dss_first_bsd_slice == 0)
491 				dp->d_slice->dss_first_bsd_slice = i;
492 			disk_probe_slice(dp, ndev, i, reprobe);
493 		}
494 	}
495 	dsgone(&osp);
496 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
497 }
498 
499 
500 static void
501 disk_msg_core(void *arg)
502 {
503 	struct disk	*dp;
504 	struct diskslice *sp;
505 	disk_msg_t msg;
506 	int run;
507 
508 	lwkt_gettoken(&disklist_token);
509 	lwkt_initport_thread(&disk_msg_port, curthread);
510 	wakeup(curthread);	/* synchronous startup */
511 	lwkt_reltoken(&disklist_token);
512 
513 	lwkt_gettoken(&ds_token);
514 	run = 1;
515 
516 	while (run) {
517 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
518 
519 		switch (msg->hdr.u.ms_result) {
520 		case DISK_DISK_PROBE:
521 			dp = (struct disk *)msg->load;
522 			disk_debug(1,
523 				    "DISK_DISK_PROBE: %s\n",
524 					dp->d_cdev->si_name);
525 			disk_iocom_update(dp);
526 			disk_probe(dp, 0);
527 			break;
528 		case DISK_DISK_DESTROY:
529 			dp = (struct disk *)msg->load;
530 			disk_debug(1,
531 				    "DISK_DISK_DESTROY: %s\n",
532 					dp->d_cdev->si_name);
533 			disk_iocom_uninit(dp);
534 
535 			/*
536 			 * Interlock against struct disk enumerations.
537 			 * Wait for enumerations to complete then remove
538 			 * the dp from the list before tearing it down.
539 			 * This avoids numerous races.
540 			 */
541 			lwkt_gettoken(&disklist_token);
542 			while (dp->d_refs)
543 				tsleep(&dp->d_refs, 0, "diskdel", hz / 10);
544 			LIST_REMOVE(dp, d_list);
545 
546 			dsched_disk_destroy(dp);
547 			devfs_destroy_related(dp->d_cdev);
548 			destroy_dev(dp->d_cdev);
549 			destroy_only_dev(dp->d_rawdev);
550 
551 			lwkt_reltoken(&disklist_token);
552 
553 			if (dp->d_info.d_serialno) {
554 				kfree(dp->d_info.d_serialno, M_TEMP);
555 				dp->d_info.d_serialno = NULL;
556 			}
557 			break;
558 		case DISK_UNPROBE:
559 			dp = (struct disk *)msg->load;
560 			disk_debug(1,
561 				    "DISK_DISK_UNPROBE: %s\n",
562 					dp->d_cdev->si_name);
563 			devfs_destroy_related(dp->d_cdev);
564 			break;
565 		case DISK_SLICE_REPROBE:
566 			dp = (struct disk *)msg->load;
567 			sp = (struct diskslice *)msg->load2;
568 			devfs_clr_related_flag(sp->ds_dev,
569 						SI_REPROBE_TEST);
570 			disk_debug(1,
571 				    "DISK_SLICE_REPROBE: %s\n",
572 				    sp->ds_dev->si_name);
573 			disk_probe_slice(dp, sp->ds_dev,
574 					 dkslice(sp->ds_dev), 1);
575 			devfs_destroy_related_without_flag(
576 					sp->ds_dev, SI_REPROBE_TEST);
577 			break;
578 		case DISK_DISK_REPROBE:
579 			dp = (struct disk *)msg->load;
580 			devfs_clr_related_flag(dp->d_cdev, SI_REPROBE_TEST);
581 			disk_debug(1,
582 				    "DISK_DISK_REPROBE: %s\n",
583 				    dp->d_cdev->si_name);
584 			disk_probe(dp, 1);
585 			devfs_destroy_related_without_flag(
586 					dp->d_cdev, SI_REPROBE_TEST);
587 			break;
588 		case DISK_SYNC:
589 			disk_debug(1, "DISK_SYNC\n");
590 			break;
591 		default:
592 			devfs_debug(DEVFS_DEBUG_WARNING,
593 				    "disk_msg_core: unknown message "
594 				    "received at core\n");
595 			break;
596 		}
597 		lwkt_replymsg(&msg->hdr, 0);
598 	}
599 	lwkt_reltoken(&ds_token);
600 	lwkt_exit();
601 }
602 
603 
604 /*
605  * Acts as a message drain. Any message that is replied to here gets
606  * destroyed and the memory freed.
607  */
608 static void
609 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
610 {
611 	objcache_put(disk_msg_cache, msg);
612 }
613 
614 
615 void
616 disk_msg_send(uint32_t cmd, void *load, void *load2)
617 {
618 	disk_msg_t disk_msg;
619 	lwkt_port_t port = &disk_msg_port;
620 
621 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
622 
623 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
624 
625 	disk_msg->hdr.u.ms_result = cmd;
626 	disk_msg->load = load;
627 	disk_msg->load2 = load2;
628 	KKASSERT(port);
629 	lwkt_sendmsg(port, &disk_msg->hdr);
630 }
631 
632 void
633 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
634 {
635 	struct lwkt_port rep_port;
636 	disk_msg_t disk_msg;
637 	lwkt_port_t port;
638 
639 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
640 	port = &disk_msg_port;
641 
642 	/* XXX could probably use curthread's built-in msgport */
643 	lwkt_initport_thread(&rep_port, curthread);
644 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
645 
646 	disk_msg->hdr.u.ms_result = cmd;
647 	disk_msg->load = load;
648 	disk_msg->load2 = load2;
649 
650 	lwkt_domsg(port, &disk_msg->hdr, 0);
651 	objcache_put(disk_msg_cache, disk_msg);
652 }
653 
654 /*
655  * Create a raw device for the dev_ops template (which is returned).  Also
656  * create a slice and unit managed disk and overload the user visible
657  * device space with it.
658  *
659  * NOTE: The returned raw device is NOT a slice and unit managed device.
660  * It is an actual raw device representing the raw disk as specified by
661  * the passed dev_ops.  The disk layer not only returns such a raw device,
662  * it also uses it internally when passing (modified) commands through.
663  */
664 cdev_t
665 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
666 {
667 	return _disk_create_named(NULL, unit, dp, raw_ops, 0);
668 }
669 
670 cdev_t
671 disk_create_clone(int unit, struct disk *dp,
672 		  struct dev_ops *raw_ops)
673 {
674 	return _disk_create_named(NULL, unit, dp, raw_ops, 1);
675 }
676 
677 cdev_t
678 disk_create_named(const char *name, int unit, struct disk *dp,
679 		  struct dev_ops *raw_ops)
680 {
681 	return _disk_create_named(name, unit, dp, raw_ops, 0);
682 }
683 
684 cdev_t
685 disk_create_named_clone(const char *name, int unit, struct disk *dp,
686 			struct dev_ops *raw_ops)
687 {
688 	return _disk_create_named(name, unit, dp, raw_ops, 1);
689 }
690 
691 static cdev_t
692 _disk_create_named(const char *name, int unit, struct disk *dp,
693 		   struct dev_ops *raw_ops, int clone)
694 {
695 	cdev_t rawdev;
696 	struct dev_ops *dops;
697 
698 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
699 
700 	if (name) {
701 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
702 		    UID_ROOT, GID_OPERATOR, 0640, "%s", name);
703 	} else {
704 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
705 		    UID_ROOT, GID_OPERATOR, 0640,
706 		    "%s%d", raw_ops->head.name, unit);
707 	}
708 
709 	bzero(dp, sizeof(*dp));
710 
711 	dops = (raw_ops->head.flags & D_NOEMERGPGR) ? &disk2_ops : &disk1_ops;
712 
713 	dp->d_rawdev = rawdev;
714 	dp->d_raw_ops = raw_ops;
715 	dp->d_dev_ops = dops;
716 
717 	if (name) {
718 		if (clone) {
719 			dp->d_cdev = make_only_dev_covering(
720 					dops, dp->d_rawdev->si_ops,
721 					dkmakewholedisk(unit),
722 					UID_ROOT, GID_OPERATOR, 0640,
723 					"%s", name);
724 		} else {
725 			dp->d_cdev = make_dev_covering(
726 					dops, dp->d_rawdev->si_ops,
727 					dkmakewholedisk(unit),
728 					UID_ROOT, GID_OPERATOR, 0640,
729 					"%s", name);
730 		}
731 	} else {
732 		if (clone) {
733 			dp->d_cdev = make_only_dev_covering(
734 					dops, dp->d_rawdev->si_ops,
735 					dkmakewholedisk(unit),
736 					UID_ROOT, GID_OPERATOR, 0640,
737 					"%s%d", raw_ops->head.name, unit);
738 		} else {
739 			dp->d_cdev = make_dev_covering(
740 					dops, dp->d_rawdev->si_ops,
741 					dkmakewholedisk(unit),
742 					UID_ROOT, GID_OPERATOR, 0640,
743 					"%s%d", raw_ops->head.name, unit);
744 		}
745 	}
746 
747 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
748 	dp->d_cdev->si_disk = dp;
749 
750 	if (name)
751 		dsched_disk_create(dp, name, unit);
752 	else
753 		dsched_disk_create(dp, raw_ops->head.name, unit);
754 
755 	lwkt_gettoken(&disklist_token);
756 	LIST_INSERT_HEAD(&disklist, dp, d_list);
757 	lwkt_reltoken(&disklist_token);
758 
759 	disk_iocom_init(dp);
760 
761 	disk_debug(1, "disk_create (end): %s%d\n",
762 		   (name != NULL)?(name):(raw_ops->head.name), unit);
763 
764 	return (dp->d_rawdev);
765 }
766 
767 int
768 disk_setdisktype(struct disk *disk, const char *type)
769 {
770 	int error;
771 
772 	KKASSERT(disk != NULL);
773 
774 	disk->d_disktype = type;
775 	error = udev_dict_set_cstr(disk->d_cdev, "disk-type",
776 				   __DECONST(char *, type));
777 	return error;
778 }
779 
780 int
781 disk_getopencount(struct disk *disk)
782 {
783 	return disk->d_opencount;
784 }
785 
786 static void
787 _setdiskinfo(struct disk *disk, struct disk_info *info)
788 {
789 	char *oldserialno;
790 
791 	oldserialno = disk->d_info.d_serialno;
792 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
793 	info = &disk->d_info;
794 
795 	disk_debug(1, "_setdiskinfo: %s\n", disk->d_cdev->si_name);
796 
797 	/*
798 	 * The serial number is duplicated so the caller can throw
799 	 * their copy away.
800 	 */
801 	if (info->d_serialno && info->d_serialno[0] &&
802 	    (info->d_serialno[0] != ' ' || strlen(info->d_serialno) > 1)) {
803 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
804 		disk_cleanserial(info->d_serialno);
805 		if (disk->d_cdev) {
806 			make_dev_alias(disk->d_cdev, "serno/%s",
807 				       info->d_serialno);
808 		}
809 	} else {
810 		info->d_serialno = NULL;
811 	}
812 	if (oldserialno)
813 		kfree(oldserialno, M_TEMP);
814 
815 	dsched_disk_update(disk, info);
816 
817 	/*
818 	 * The caller may set d_media_size or d_media_blocks and we
819 	 * calculate the other.
820 	 */
821 	KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0);
822 	if (info->d_media_size == 0 && info->d_media_blocks) {
823 		info->d_media_size = (u_int64_t)info->d_media_blocks *
824 				     info->d_media_blksize;
825 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
826 		   info->d_media_blksize) {
827 		info->d_media_blocks = info->d_media_size /
828 				       info->d_media_blksize;
829 	}
830 
831 	/*
832 	 * The si_* fields for rawdev are not set until after the
833 	 * disk_create() call, so someone using the cooked version
834 	 * of the raw device (i.e. da0s0) will not get the right
835 	 * si_iosize_max unless we fix it up here.
836 	 */
837 	if (disk->d_cdev && disk->d_rawdev &&
838 	    disk->d_cdev->si_iosize_max == 0) {
839 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
840 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
841 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
842 	}
843 
844 	/* Add the serial number to the udev_dictionary */
845 	if (info->d_serialno)
846 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
847 }
848 
849 /*
850  * Disk drivers must call this routine when media parameters are available
851  * or have changed.
852  */
853 void
854 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
855 {
856 	_setdiskinfo(disk, info);
857 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
858 	disk_debug(1, "disk_setdiskinfo: sent probe for %s\n",
859 		   disk->d_cdev->si_name);
860 }
861 
862 void
863 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
864 {
865 	_setdiskinfo(disk, info);
866 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
867 	disk_debug(1, "disk_setdiskinfo_sync: sent probe for %s\n",
868 		   disk->d_cdev->si_name);
869 }
870 
871 /*
872  * This routine is called when an adapter detaches.  The higher level
873  * managed disk device is destroyed while the lower level raw device is
874  * released.
875  */
876 void
877 disk_destroy(struct disk *disk)
878 {
879 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
880 	return;
881 }
882 
883 int
884 disk_dumpcheck(cdev_t dev, u_int64_t *size,
885 	       u_int64_t *blkno, u_int32_t *secsize)
886 {
887 	struct partinfo pinfo;
888 	int error;
889 
890 	if (size)
891 		*size = 0;	/* avoid gcc warnings */
892 	if (secsize)
893 		*secsize = 512;	/* avoid gcc warnings */
894 	bzero(&pinfo, sizeof(pinfo));
895 
896 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
897 			   proc0.p_ucred, NULL, NULL);
898 	if (error)
899 		return (error);
900 
901 	if (pinfo.media_blksize == 0)
902 		return (ENXIO);
903 
904 	if (blkno) /* XXX: make sure this reserved stuff is right */
905 		*blkno = pinfo.reserved_blocks +
906 			pinfo.media_offset / pinfo.media_blksize;
907 	if (secsize)
908 		*secsize = pinfo.media_blksize;
909 	if (size)
910 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
911 
912 	return (0);
913 }
914 
915 int
916 disk_dumpconf(cdev_t dev, u_int onoff)
917 {
918 	struct dumperinfo di;
919 	u_int64_t	size, blkno;
920 	u_int32_t	secsize;
921 	int error;
922 
923 	if (!onoff)
924 		return set_dumper(NULL);
925 
926 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
927 
928 	if (error)
929 		return ENXIO;
930 
931 	bzero(&di, sizeof(struct dumperinfo));
932 	di.dumper = diskdump;
933 	di.priv = dev;
934 	di.blocksize = secsize;
935 	di.maxiosize = dev->si_iosize_max;
936 	di.mediaoffset = blkno * DEV_BSIZE;
937 	di.mediasize = size * DEV_BSIZE;
938 
939 	return set_dumper(&di);
940 }
941 
942 void
943 disk_unprobe(struct disk *disk)
944 {
945 	if (disk == NULL)
946 		return;
947 
948 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
949 }
950 
951 void
952 disk_invalidate (struct disk *disk)
953 {
954 	dsgone(&disk->d_slice);
955 }
956 
957 /*
958  * Enumerate disks, pass a marker and an initial NULL dp to initialize,
959  * then loop with the previously returned dp.
960  *
961  * The returned dp will be referenced, preventing its destruction.  When
962  * you pass the returned dp back into the loop the ref is dropped.
963  *
964  * WARNING: If terminating your loop early you must call
965  *	    disk_enumerate_stop().
966  */
967 struct disk *
968 disk_enumerate(struct disk *marker, struct disk *dp)
969 {
970 	lwkt_gettoken(&disklist_token);
971 	if (dp) {
972 		--dp->d_refs;
973 		dp = LIST_NEXT(marker, d_list);
974 		LIST_REMOVE(marker, d_list);
975 	} else {
976 		bzero(marker, sizeof(*marker));
977 		marker->d_flags = DISKFLAG_MARKER;
978 		dp = LIST_FIRST(&disklist);
979 	}
980 	while (dp) {
981 		if ((dp->d_flags & DISKFLAG_MARKER) == 0)
982 			break;
983 		dp = LIST_NEXT(dp, d_list);
984 	}
985 	if (dp) {
986 		++dp->d_refs;
987 		LIST_INSERT_AFTER(dp, marker, d_list);
988 	}
989 	lwkt_reltoken(&disklist_token);
990 	return (dp);
991 }
992 
993 /*
994  * Terminate an enumeration early.  Do not call this function if the
995  * enumeration ended normally.  dp can be NULL, indicating that you
996  * wish to retain the ref count on dp.
997  *
998  * This function removes the marker.
999  */
1000 void
1001 disk_enumerate_stop(struct disk *marker, struct disk *dp)
1002 {
1003 	lwkt_gettoken(&disklist_token);
1004 	LIST_REMOVE(marker, d_list);
1005 	if (dp)
1006 		--dp->d_refs;
1007 	lwkt_reltoken(&disklist_token);
1008 }
1009 
1010 static
1011 int
1012 sysctl_disks(SYSCTL_HANDLER_ARGS)
1013 {
1014 	struct disk marker;
1015 	struct disk *dp;
1016 	int error, first;
1017 
1018 	first = 1;
1019 	error = 0;
1020 	dp = NULL;
1021 
1022 	while ((dp = disk_enumerate(&marker, dp))) {
1023 		if (!first) {
1024 			error = SYSCTL_OUT(req, " ", 1);
1025 			if (error) {
1026 				disk_enumerate_stop(&marker, dp);
1027 				break;
1028 			}
1029 		} else {
1030 			first = 0;
1031 		}
1032 		error = SYSCTL_OUT(req, dp->d_rawdev->si_name,
1033 				   strlen(dp->d_rawdev->si_name));
1034 		if (error) {
1035 			disk_enumerate_stop(&marker, dp);
1036 			break;
1037 		}
1038 	}
1039 	if (error == 0)
1040 		error = SYSCTL_OUT(req, "", 1);
1041 	return error;
1042 }
1043 
1044 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
1045     sysctl_disks, "A", "names of available disks");
1046 
1047 /*
1048  * Open a disk device or partition.
1049  */
1050 static
1051 int
1052 diskopen(struct dev_open_args *ap)
1053 {
1054 	cdev_t dev = ap->a_head.a_dev;
1055 	struct disk *dp;
1056 	int error;
1057 
1058 	/*
1059 	 * dp can't be NULL here XXX.
1060 	 *
1061 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
1062 	 * setdiskinfo() is typically called whether the disk is present
1063 	 * or not (e.g. CD), but the base disk device is created first
1064 	 * and there may be a race.
1065 	 */
1066 	dp = dev->si_disk;
1067 	if (dp == NULL || dp->d_slice == NULL)
1068 		return (ENXIO);
1069 
1070 	/*
1071 	 * Disallow access to disk volumes if RESTRICTEDROOT
1072 	 */
1073 	if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
1074 		return (EPERM);
1075 
1076 	error = 0;
1077 
1078 	/*
1079 	 * Deal with open races
1080 	 */
1081 	lwkt_gettoken(&ds_token);
1082 	while (dp->d_flags & DISKFLAG_LOCK) {
1083 		dp->d_flags |= DISKFLAG_WANTED;
1084 		error = tsleep(dp, PCATCH, "diskopen", hz);
1085 		if (error) {
1086 			lwkt_reltoken(&ds_token);
1087 			return (error);
1088 		}
1089 	}
1090 	dp->d_flags |= DISKFLAG_LOCK;
1091 
1092 	/*
1093 	 * Open the underlying raw device.
1094 	 */
1095 	if (!dsisopen(dp->d_slice)) {
1096 #if 0
1097 		if (!pdev->si_iosize_max)
1098 			pdev->si_iosize_max = dev->si_iosize_max;
1099 #endif
1100 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
1101 				  ap->a_devtype, ap->a_cred, NULL, NULL);
1102 	}
1103 
1104 	if (error)
1105 		goto out;
1106 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
1107 		       &dp->d_slice, &dp->d_info);
1108 	if (!dsisopen(dp->d_slice)) {
1109 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype, NULL);
1110 	}
1111 out:
1112 	dp->d_flags &= ~DISKFLAG_LOCK;
1113 	if (dp->d_flags & DISKFLAG_WANTED) {
1114 		dp->d_flags &= ~DISKFLAG_WANTED;
1115 		wakeup(dp);
1116 	}
1117 	lwkt_reltoken(&ds_token);
1118 
1119 	KKASSERT(dp->d_opencount >= 0);
1120 	/* If the open was successful, bump open count */
1121 	if (error == 0)
1122 		atomic_add_int(&dp->d_opencount, 1);
1123 
1124 	return(error);
1125 }
1126 
1127 /*
1128  * Close a disk device or partition
1129  */
1130 static
1131 int
1132 diskclose(struct dev_close_args *ap)
1133 {
1134 	cdev_t dev = ap->a_head.a_dev;
1135 	struct disk *dp;
1136 	int error;
1137 	int lcount;
1138 
1139 	error = 0;
1140 	dp = dev->si_disk;
1141 
1142 	/*
1143 	 * The cdev_t represents the disk/slice/part.  The shared
1144 	 * dp structure governs all cdevs associated with the disk.
1145 	 *
1146 	 * As a safety only close the underlying raw device on the last
1147 	 * close the disk device if our tracking of the slices/partitions
1148 	 * also indicates nothing is open.
1149 	 */
1150 	KKASSERT(dp->d_opencount >= 1);
1151 	lcount = atomic_fetchadd_int(&dp->d_opencount, -1);
1152 
1153 	lwkt_gettoken(&ds_token);
1154 	dsclose(dev, ap->a_devtype, dp->d_slice);
1155 	if (lcount <= 1 && !dsisopen(dp->d_slice)) {
1156 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype, NULL);
1157 	}
1158 	lwkt_reltoken(&ds_token);
1159 
1160 	return (error);
1161 }
1162 
1163 /*
1164  * First execute the ioctl on the disk device, and if it isn't supported
1165  * try running it on the backing device.
1166  */
1167 static
1168 int
1169 diskioctl(struct dev_ioctl_args *ap)
1170 {
1171 	cdev_t dev = ap->a_head.a_dev;
1172 	struct disk *dp;
1173 	int error;
1174 	u_int u;
1175 
1176 	dp = dev->si_disk;
1177 	if (dp == NULL)
1178 		return (ENXIO);
1179 
1180 	devfs_debug(DEVFS_DEBUG_DEBUG,
1181 		    "diskioctl: cmd is: %lx (name: %s)\n",
1182 		    ap->a_cmd, dev->si_name);
1183 	devfs_debug(DEVFS_DEBUG_DEBUG,
1184 		    "diskioctl: &dp->d_slice is: %p, %p\n",
1185 		    &dp->d_slice, dp->d_slice);
1186 
1187 	if (ap->a_cmd == DIOCGKERNELDUMP) {
1188 		u = *(u_int *)ap->a_data;
1189 		return disk_dumpconf(dev, u);
1190 	}
1191 
1192 	if (ap->a_cmd == DIOCRECLUSTER && dev == dp->d_cdev) {
1193 		error = disk_iocom_ioctl(dp, ap->a_cmd, ap->a_data);
1194 		return error;
1195 	}
1196 
1197 	if (&dp->d_slice == NULL || dp->d_slice == NULL ||
1198 	    ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) &&
1199 	     dkslice(dev) == WHOLE_DISK_SLICE)) {
1200 		error = ENOIOCTL;
1201 	} else {
1202 		lwkt_gettoken(&ds_token);
1203 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
1204 				&dp->d_slice, &dp->d_info);
1205 		lwkt_reltoken(&ds_token);
1206 	}
1207 
1208 	if (error == ENOIOCTL) {
1209 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
1210 				   ap->a_fflag, ap->a_cred, NULL, NULL);
1211 	}
1212 	return (error);
1213 }
1214 
1215 /*
1216  * Execute strategy routine
1217  *
1218  * WARNING! We are using the KVABIO API and must not access memory
1219  *         through bp->b_data without first calling bkvasync(bp).
1220  */
1221 static
1222 int
1223 diskstrategy(struct dev_strategy_args *ap)
1224 {
1225 	cdev_t dev = ap->a_head.a_dev;
1226 	struct bio *bio = ap->a_bio;
1227 	struct bio *nbio;
1228 	struct disk *dp;
1229 
1230 	dp = dev->si_disk;
1231 
1232 	if (dp == NULL) {
1233 		bio->bio_buf->b_error = ENXIO;
1234 		bio->bio_buf->b_flags |= B_ERROR;
1235 		biodone(bio);
1236 		return(0);
1237 	}
1238 	KKASSERT(dev->si_disk == dp);
1239 
1240 	/*
1241 	 * The dscheck() function will also transform the slice relative
1242 	 * block number i.e. bio->bio_offset into a block number that can be
1243 	 * passed directly to the underlying raw device.  If dscheck()
1244 	 * returns NULL it will have handled the bio for us (e.g. EOF
1245 	 * or error due to being beyond the device size).
1246 	 */
1247 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
1248 		dev_dstrategy(dp->d_rawdev, nbio);
1249 	} else {
1250 		biodone(bio);
1251 	}
1252 	return(0);
1253 }
1254 
1255 /*
1256  * Return the partition size in ?blocks?
1257  */
1258 static
1259 int
1260 diskpsize(struct dev_psize_args *ap)
1261 {
1262 	cdev_t dev = ap->a_head.a_dev;
1263 	struct disk *dp;
1264 
1265 	dp = dev->si_disk;
1266 	if (dp == NULL)
1267 		return(ENODEV);
1268 
1269 	ap->a_result = dssize(dev, &dp->d_slice);
1270 
1271 	if ((ap->a_result == -1) &&
1272 	   (dp->d_info.d_dsflags & DSO_RAWPSIZE)) {
1273 		ap->a_head.a_dev = dp->d_rawdev;
1274 		return dev_doperate(&ap->a_head);
1275 	}
1276 	return(0);
1277 }
1278 
1279 static int
1280 diskdump(struct dev_dump_args *ap)
1281 {
1282 	cdev_t dev = ap->a_head.a_dev;
1283 	struct disk *dp = dev->si_disk;
1284 	u_int64_t size, offset;
1285 	int error;
1286 
1287 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1288 	/* XXX: this should probably go in disk_dumpcheck somehow */
1289 	if (ap->a_length != 0) {
1290 		size *= DEV_BSIZE;
1291 		offset = ap->a_blkno * DEV_BSIZE;
1292 		if ((ap->a_offset < offset) ||
1293 		    (ap->a_offset + ap->a_length - offset > size)) {
1294 			kprintf("Attempt to write outside dump "
1295 				"device boundaries.\n");
1296 			error = ENOSPC;
1297 		}
1298 	}
1299 
1300 	if (error == 0) {
1301 		ap->a_head.a_dev = dp->d_rawdev;
1302 		error = dev_doperate(&ap->a_head);
1303 	}
1304 
1305 	return(error);
1306 }
1307 
1308 
1309 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1310 	   0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1311 
1312 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1313 	   0, sizeof(struct disk), "sizeof(struct disk)");
1314 
1315 /*
1316  * Reorder interval for burst write allowance and minor write
1317  * allowance.
1318  *
1319  * We always want to trickle some writes in to make use of the
1320  * disk's zone cache.  Bursting occurs on a longer interval and only
1321  * runningbufspace is well over the hirunningspace limit.
1322  */
1323 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1324 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1325 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1326 int bioq_reorder_minor_interval = 5;
1327 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1328 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1329 
1330 int bioq_reorder_burst_bytes = 3000000;
1331 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1332 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1333 int bioq_reorder_minor_bytes = 262144;
1334 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1335 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1336 
1337 
1338 /*
1339  * Order I/Os.  Generally speaking this code is designed to make better
1340  * use of drive zone caches.  A drive zone cache can typically track linear
1341  * reads or writes for around 16 zones simultaniously.
1342  *
1343  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1344  * of writes to be queued asynchronously.  This creates a huge bottleneck
1345  * for reads which reduce read bandwidth to a trickle.
1346  *
1347  * To solve this problem we generally reorder reads before writes.
1348  *
1349  * However, a large number of random reads can also starve writes and
1350  * make poor use of the drive zone cache so we allow writes to trickle
1351  * in every N reads.
1352  */
1353 void
1354 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1355 {
1356 #if 0
1357 	/*
1358 	 * The BIO wants to be ordered.  Adding to the tail also
1359 	 * causes transition to be set to NULL, forcing the ordering
1360 	 * of all prior I/O's.
1361 	 */
1362 	if (bio->bio_buf->b_flags & B_ORDERED) {
1363 		bioq_insert_tail(bioq, bio);
1364 		return;
1365 	}
1366 #endif
1367 
1368 	switch(bio->bio_buf->b_cmd) {
1369 	case BUF_CMD_READ:
1370 		if (bioq->transition) {
1371 			/*
1372 			 * Insert before the first write.  Bleedover writes
1373 			 * based on reorder intervals to prevent starvation.
1374 			 */
1375 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1376 			++bioq->reorder;
1377 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1378 				bioqwritereorder(bioq);
1379 				if (bioq->reorder >=
1380 				    bioq_reorder_burst_interval) {
1381 					bioq->reorder = 0;
1382 				}
1383 			}
1384 		} else {
1385 			/*
1386 			 * No writes queued (or ordering was forced),
1387 			 * insert at tail.
1388 			 */
1389 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1390 		}
1391 		break;
1392 	case BUF_CMD_WRITE:
1393 		/*
1394 		 * Writes are always appended.  If no writes were previously
1395 		 * queued or an ordered tail insertion occured the transition
1396 		 * field will be NULL.
1397 		 */
1398 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1399 		if (bioq->transition == NULL)
1400 			bioq->transition = bio;
1401 		break;
1402 	default:
1403 		/*
1404 		 * All other request types are forced to be ordered.
1405 		 */
1406 		bioq_insert_tail(bioq, bio);
1407 		break;
1408 	}
1409 }
1410 
1411 /*
1412  * Move the read-write transition point to prevent reads from
1413  * completely starving our writes.  This brings a number of writes into
1414  * the fold every N reads.
1415  *
1416  * We bring a few linear writes into the fold on a minor interval
1417  * and we bring a non-linear burst of writes into the fold on a major
1418  * interval.  Bursting only occurs if runningbufspace is really high
1419  * (typically from syncs, fsyncs, or HAMMER flushes).
1420  */
1421 static
1422 void
1423 bioqwritereorder(struct bio_queue_head *bioq)
1424 {
1425 	struct bio *bio;
1426 	off_t next_offset;
1427 	size_t left;
1428 	size_t n;
1429 	int check_off;
1430 
1431 	if (bioq->reorder < bioq_reorder_burst_interval ||
1432 	    !buf_runningbufspace_severe()) {
1433 		left = (size_t)bioq_reorder_minor_bytes;
1434 		check_off = 1;
1435 	} else {
1436 		left = (size_t)bioq_reorder_burst_bytes;
1437 		check_off = 0;
1438 	}
1439 
1440 	next_offset = bioq->transition->bio_offset;
1441 	while ((bio = bioq->transition) != NULL &&
1442 	       (check_off == 0 || next_offset == bio->bio_offset)
1443 	) {
1444 		n = bio->bio_buf->b_bcount;
1445 		next_offset = bio->bio_offset + n;
1446 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1447 		if (left < n)
1448 			break;
1449 		left -= n;
1450 	}
1451 }
1452 
1453 /*
1454  * Bounds checking against the media size, used for the raw partition.
1455  * secsize, mediasize and b_blkno must all be the same units.
1456  * Possibly this has to be DEV_BSIZE (512).
1457  */
1458 int
1459 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1460 {
1461 	struct buf *bp = bio->bio_buf;
1462 	int64_t sz;
1463 
1464 	sz = howmany(bp->b_bcount, secsize);
1465 
1466 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1467 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1468 		if (sz == 0) {
1469 			/* If exactly at end of disk, return EOF. */
1470 			bp->b_resid = bp->b_bcount;
1471 			return 0;
1472 		}
1473 		if (sz < 0) {
1474 			/* If past end of disk, return EINVAL. */
1475 			bp->b_error = EINVAL;
1476 			return 0;
1477 		}
1478 		/* Otherwise, truncate request. */
1479 		bp->b_bcount = sz * secsize;
1480 	}
1481 
1482 	return 1;
1483 }
1484 
1485 /*
1486  * Disk error is the preface to plaintive error messages
1487  * about failing disk transfers.  It prints messages of the form
1488 
1489 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1490 
1491  * if the offset of the error in the transfer and a disk label
1492  * are both available.  blkdone should be -1 if the position of the error
1493  * is unknown; the disklabel pointer may be null from drivers that have not
1494  * been converted to use them.  The message is printed with kprintf
1495  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1496  * The message should be completed (with at least a newline) with kprintf
1497  * or log(-1, ...), respectively.  There is no trailing space.
1498  */
1499 void
1500 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1501 {
1502 	struct buf *bp = bio->bio_buf;
1503 	const char *term;
1504 
1505 	switch(bp->b_cmd) {
1506 	case BUF_CMD_READ:
1507 		term = "read";
1508 		break;
1509 	case BUF_CMD_WRITE:
1510 		term = "write";
1511 		break;
1512 	default:
1513 		term = "access";
1514 		break;
1515 	}
1516 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1517 	kprintf("offset %012llx for %d",
1518 		(long long)bio->bio_offset,
1519 		bp->b_bcount);
1520 
1521 	if (donecnt)
1522 		kprintf(" (%d bytes completed)", donecnt);
1523 }
1524 
1525 /*
1526  * Locate a disk device
1527  */
1528 cdev_t
1529 disk_locate(const char *devname)
1530 {
1531 	return devfs_find_device_by_name("%s", devname);
1532 }
1533 
1534 void
1535 disk_config(void *arg)
1536 {
1537 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1538 }
1539 
1540 static void
1541 disk_init(void)
1542 {
1543 	struct thread* td_core;
1544 
1545 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1546 					 NULL, NULL, NULL,
1547 					 objcache_malloc_alloc,
1548 					 objcache_malloc_free,
1549 					 &disk_msg_malloc_args);
1550 
1551 	lwkt_token_init(&disklist_token, "disks");
1552 	lwkt_token_init(&ds_token, "ds");
1553 
1554 	/*
1555 	 * Initialize the reply-only port which acts as a message drain
1556 	 */
1557 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1558 
1559 	lwkt_gettoken(&disklist_token);
1560 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1561 		    0, -1, "disk_msg_core");
1562 	tsleep(td_core, 0, "diskcore", 0);
1563 	lwkt_reltoken(&disklist_token);
1564 }
1565 
1566 static void
1567 disk_uninit(void)
1568 {
1569 	objcache_destroy(disk_msg_cache);
1570 }
1571 
1572 /*
1573  * Clean out illegal characters in serial numbers.
1574  */
1575 static void
1576 disk_cleanserial(char *serno)
1577 {
1578 	char c;
1579 
1580 	while ((c = *serno) != 0) {
1581 		if (c >= 'a' && c <= 'z')
1582 			;
1583 		else if (c >= 'A' && c <= 'Z')
1584 			;
1585 		else if (c >= '0' && c <= '9')
1586 			;
1587 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1588 			;
1589 		else
1590 			c = '_';
1591 		*serno++= c;
1592 	}
1593 }
1594 
1595 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1596 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1597 	   0, "Enable subr_disk debugging");
1598 
1599 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1600 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1601