xref: /dragonfly/sys/kern/subr_disk.c (revision 666e46d7)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * and Alex Hornung <ahornung@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * ----------------------------------------------------------------------------
36  * "THE BEER-WARE LICENSE" (Revision 42):
37  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
38  * can do whatever you want with this stuff. If we meet some day, and you think
39  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
40  * ----------------------------------------------------------------------------
41  *
42  * Copyright (c) 1982, 1986, 1988, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. All advertising materials mentioning features or use of this software
59  *    must display the following acknowledgement:
60  *	This product includes software developed by the University of
61  *	California, Berkeley and its contributors.
62  * 4. Neither the name of the University nor the names of its contributors
63  *    may be used to endorse or promote products derived from this software
64  *    without specific prior written permission.
65  *
66  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
70  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76  * SUCH DAMAGE.
77  *
78  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
79  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
80  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
95 #include <sys/disk.h>
96 #include <sys/kerneldump.h>
97 #include <sys/malloc.h>
98 #include <machine/md_var.h>
99 #include <sys/ctype.h>
100 #include <sys/syslog.h>
101 #include <sys/device.h>
102 #include <sys/msgport.h>
103 #include <sys/devfs.h>
104 #include <sys/thread.h>
105 #include <sys/dsched.h>
106 #include <sys/queue.h>
107 #include <sys/lock.h>
108 #include <sys/udev.h>
109 #include <sys/uuid.h>
110 
111 #include <sys/buf2.h>
112 #include <sys/mplock2.h>
113 #include <sys/msgport2.h>
114 #include <sys/thread2.h>
115 
116 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
117 static int disk_debug_enable = 0;
118 
119 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
120 static void disk_msg_core(void *);
121 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
122 static void disk_probe(struct disk *dp, int reprobe);
123 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
124 static void bioqwritereorder(struct bio_queue_head *bioq);
125 static void disk_cleanserial(char *serno);
126 static int disk_debug(int, char *, ...) __printflike(2, 3);
127 static cdev_t _disk_create_named(const char *name, int unit, struct disk *dp,
128     struct dev_ops *raw_ops, int clone);
129 
130 static d_open_t diskopen;
131 static d_close_t diskclose;
132 static d_ioctl_t diskioctl;
133 static d_strategy_t diskstrategy;
134 static d_psize_t diskpsize;
135 static d_dump_t diskdump;
136 
137 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
138 static struct lwkt_token disklist_token;
139 
140 static struct dev_ops disk_ops = {
141 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE },
142 	.d_open = diskopen,
143 	.d_close = diskclose,
144 	.d_read = physread,
145 	.d_write = physwrite,
146 	.d_ioctl = diskioctl,
147 	.d_strategy = diskstrategy,
148 	.d_dump = diskdump,
149 	.d_psize = diskpsize,
150 };
151 
152 static struct objcache 	*disk_msg_cache;
153 
154 struct objcache_malloc_args disk_msg_malloc_args = {
155 	sizeof(struct disk_msg), M_DISK };
156 
157 static struct lwkt_port disk_dispose_port;
158 static struct lwkt_port disk_msg_port;
159 
160 static int
161 disk_debug(int level, char *fmt, ...)
162 {
163 	__va_list ap;
164 
165 	__va_start(ap, fmt);
166 	if (level <= disk_debug_enable)
167 		kvprintf(fmt, ap);
168 	__va_end(ap);
169 
170 	return 0;
171 }
172 
173 static int
174 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
175 {
176 	struct disk_info *info = &dp->d_info;
177 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
178 	disklabel_ops_t ops;
179 	struct partinfo part;
180 	const char *msg;
181 	char uuid_buf[128];
182 	cdev_t ndev;
183 	int sno;
184 	u_int i;
185 
186 	disk_debug(2, "disk_probe_slice (begin): %s (%s)\n",
187 		   dev->si_name, dp->d_cdev->si_name);
188 
189 	sno = slice ? slice - 1 : 0;
190 
191 	ops = &disklabel32_ops;
192 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
193 	if (msg && !strcmp(msg, "no disk label")) {
194 		ops = &disklabel64_ops;
195 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
196 	}
197 
198 	if (msg == NULL) {
199 		if (slice != WHOLE_DISK_SLICE)
200 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
201 		else
202 			sp->ds_reserved = 0;
203 
204 		sp->ds_ops = ops;
205 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
206 			ops->op_loadpartinfo(sp->ds_label, i, &part);
207 			if (part.fstype) {
208 				if (reprobe &&
209 				    (ndev = devfs_find_device_by_name("%s%c",
210 						dev->si_name, 'a' + i))
211 				) {
212 					/*
213 					 * Device already exists and
214 					 * is still valid.
215 					 */
216 					ndev->si_flags |= SI_REPROBE_TEST;
217 
218 					/*
219 					 * Destroy old UUID alias
220 					 */
221 					destroy_dev_alias(ndev, "part-by-uuid/*");
222 
223 					/* Create UUID alias */
224 					if (!kuuid_is_nil(&part.storage_uuid)) {
225 						snprintf_uuid(uuid_buf,
226 						    sizeof(uuid_buf),
227 						    &part.storage_uuid);
228 						make_dev_alias(ndev,
229 						    "part-by-uuid/%s",
230 						    uuid_buf);
231 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
232 					}
233 				} else {
234 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
235 						dkmakeminor(dkunit(dp->d_cdev),
236 							    slice, i),
237 						UID_ROOT, GID_OPERATOR, 0640,
238 						"%s%c", dev->si_name, 'a'+ i);
239 					ndev->si_parent = dev;
240 					ndev->si_iosize_max = dev->si_iosize_max;
241 					ndev->si_disk = dp;
242 					udev_dict_set_cstr(ndev, "subsystem", "disk");
243 					/* Inherit parent's disk type */
244 					if (dp->d_disktype) {
245 						udev_dict_set_cstr(ndev, "disk-type",
246 						    __DECONST(char *, dp->d_disktype));
247 					}
248 
249 					/* Create serno alias */
250 					if (dp->d_info.d_serialno) {
251 						make_dev_alias(ndev,
252 						    "serno/%s.s%d%c",
253 						    dp->d_info.d_serialno,
254 						    sno, 'a' + i);
255 					}
256 
257 					/* Create UUID alias */
258 					if (!kuuid_is_nil(&part.storage_uuid)) {
259 						snprintf_uuid(uuid_buf,
260 						    sizeof(uuid_buf),
261 						    &part.storage_uuid);
262 						make_dev_alias(ndev,
263 						    "part-by-uuid/%s",
264 						    uuid_buf);
265 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
266 					}
267 					ndev->si_flags |= SI_REPROBE_TEST;
268 				}
269 			}
270 		}
271 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
272 		msg = NULL;
273 		if (sp->ds_size >= 0x100000000ULL)
274 			ops = &disklabel64_ops;
275 		else
276 			ops = &disklabel32_ops;
277 		sp->ds_label = ops->op_clone_label(info, sp);
278 	} else {
279 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
280 		    sp->ds_type == DOSPTYP_NETBSD ||
281 		    sp->ds_type == DOSPTYP_OPENBSD) {
282 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
283 			    dev->si_name, msg);
284 		}
285 
286 		if (sp->ds_label.opaque != NULL && sp->ds_ops != NULL) {
287 			/* Clear out old label - it's not around anymore */
288 			disk_debug(2,
289 			    "disk_probe_slice: clear out old diskabel on %s\n",
290 			    dev->si_name);
291 
292 			sp->ds_ops->op_freedisklabel(&sp->ds_label);
293 			sp->ds_ops = NULL;
294 		}
295 	}
296 
297 	if (msg == NULL) {
298 		sp->ds_wlabel = FALSE;
299 	}
300 
301 	return (msg ? EINVAL : 0);
302 }
303 
304 /*
305  * This routine is only called for newly minted drives or to reprobe
306  * a drive with no open slices.  disk_probe_slice() is called directly
307  * when reprobing partition changes within slices.
308  */
309 static void
310 disk_probe(struct disk *dp, int reprobe)
311 {
312 	struct disk_info *info = &dp->d_info;
313 	cdev_t dev = dp->d_cdev;
314 	cdev_t ndev;
315 	int error, i, sno;
316 	struct diskslices *osp;
317 	struct diskslice *sp;
318 	char uuid_buf[128];
319 
320 	KKASSERT (info->d_media_blksize != 0);
321 
322 	osp = dp->d_slice;
323 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
324 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
325 
326 	error = mbrinit(dev, info, &(dp->d_slice));
327 	if (error) {
328 		dsgone(&osp);
329 		return;
330 	}
331 
332 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
333 		/*
334 		 * Ignore the whole-disk slice, it has already been created.
335 		 */
336 		if (i == WHOLE_DISK_SLICE)
337 			continue;
338 
339 #if 1
340 		/*
341 		 * Ignore the compatibility slice s0 if it's a device mapper
342 		 * volume.
343 		 */
344 		if ((i == COMPATIBILITY_SLICE) &&
345 		    (info->d_dsflags & DSO_DEVICEMAPPER))
346 			continue;
347 #endif
348 
349 		sp = &dp->d_slice->dss_slices[i];
350 
351 		/*
352 		 * Handle s0.  s0 is a compatibility slice if there are no
353 		 * other slices and it has not otherwise been set up, else
354 		 * we ignore it.
355 		 */
356 		if (i == COMPATIBILITY_SLICE) {
357 			sno = 0;
358 			if (sp->ds_type == 0 &&
359 			    dp->d_slice->dss_nslices == BASE_SLICE) {
360 				sp->ds_size = info->d_media_blocks;
361 				sp->ds_reserved = 0;
362 			}
363 		} else {
364 			sno = i - 1;
365 			sp->ds_reserved = 0;
366 		}
367 
368 		/*
369 		 * Ignore 0-length slices
370 		 */
371 		if (sp->ds_size == 0)
372 			continue;
373 
374 		if (reprobe &&
375 		    (ndev = devfs_find_device_by_name("%ss%d",
376 						      dev->si_name, sno))) {
377 			/*
378 			 * Device already exists and is still valid
379 			 */
380 			ndev->si_flags |= SI_REPROBE_TEST;
381 
382 			/*
383 			 * Destroy old UUID alias
384 			 */
385 			destroy_dev_alias(ndev, "slice-by-uuid/*");
386 
387 			/* Create UUID alias */
388 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
389 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
390 				    &sp->ds_stor_uuid);
391 				make_dev_alias(ndev, "slice-by-uuid/%s",
392 				    uuid_buf);
393 			}
394 		} else {
395 			/*
396 			 * Else create new device
397 			 */
398 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
399 					dkmakewholeslice(dkunit(dev), i),
400 					UID_ROOT, GID_OPERATOR, 0640,
401 					(info->d_dsflags & DSO_DEVICEMAPPER)?
402 					"%s.s%d" : "%ss%d", dev->si_name, sno);
403 			ndev->si_parent = dev;
404 			ndev->si_iosize_max = dev->si_iosize_max;
405 			udev_dict_set_cstr(ndev, "subsystem", "disk");
406 			/* Inherit parent's disk type */
407 			if (dp->d_disktype) {
408 				udev_dict_set_cstr(ndev, "disk-type",
409 				    __DECONST(char *, dp->d_disktype));
410 			}
411 
412 			/* Create serno alias */
413 			if (dp->d_info.d_serialno) {
414 				make_dev_alias(ndev, "serno/%s.s%d",
415 					       dp->d_info.d_serialno, sno);
416 			}
417 
418 			/* Create UUID alias */
419 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
420 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
421 				    &sp->ds_stor_uuid);
422 				make_dev_alias(ndev, "slice-by-uuid/%s",
423 				    uuid_buf);
424 			}
425 
426 			ndev->si_disk = dp;
427 			ndev->si_flags |= SI_REPROBE_TEST;
428 		}
429 		sp->ds_dev = ndev;
430 
431 		/*
432 		 * Probe appropriate slices for a disklabel
433 		 *
434 		 * XXX slice type 1 used by our gpt probe code.
435 		 * XXX slice type 0 used by mbr compat slice.
436 		 */
437 		if (sp->ds_type == DOSPTYP_386BSD ||
438 		    sp->ds_type == DOSPTYP_NETBSD ||
439 		    sp->ds_type == DOSPTYP_OPENBSD ||
440 		    sp->ds_type == 0 ||
441 		    sp->ds_type == 1) {
442 			if (dp->d_slice->dss_first_bsd_slice == 0)
443 				dp->d_slice->dss_first_bsd_slice = i;
444 			disk_probe_slice(dp, ndev, i, reprobe);
445 		}
446 	}
447 	dsgone(&osp);
448 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
449 }
450 
451 
452 static void
453 disk_msg_core(void *arg)
454 {
455 	struct disk	*dp;
456 	struct diskslice *sp;
457 	disk_msg_t msg;
458 	int run;
459 
460 	lwkt_gettoken(&disklist_token);
461 	lwkt_initport_thread(&disk_msg_port, curthread);
462 	wakeup(curthread);	/* synchronous startup */
463 	lwkt_reltoken(&disklist_token);
464 
465 	get_mplock();	/* not mpsafe yet? */
466 	run = 1;
467 
468 	while (run) {
469 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
470 
471 		switch (msg->hdr.u.ms_result) {
472 		case DISK_DISK_PROBE:
473 			dp = (struct disk *)msg->load;
474 			disk_debug(1,
475 				    "DISK_DISK_PROBE: %s\n",
476 					dp->d_cdev->si_name);
477 			disk_iocom_update(dp);
478 			disk_probe(dp, 0);
479 			break;
480 		case DISK_DISK_DESTROY:
481 			dp = (struct disk *)msg->load;
482 			disk_debug(1,
483 				    "DISK_DISK_DESTROY: %s\n",
484 					dp->d_cdev->si_name);
485 			disk_iocom_uninit(dp);
486 			devfs_destroy_related(dp->d_cdev);
487 			destroy_dev(dp->d_cdev);
488 			destroy_only_dev(dp->d_rawdev);
489 			lwkt_gettoken(&disklist_token);
490 			LIST_REMOVE(dp, d_list);
491 			lwkt_reltoken(&disklist_token);
492 			if (dp->d_info.d_serialno) {
493 				kfree(dp->d_info.d_serialno, M_TEMP);
494 				dp->d_info.d_serialno = NULL;
495 			}
496 			break;
497 		case DISK_UNPROBE:
498 			dp = (struct disk *)msg->load;
499 			disk_debug(1,
500 				    "DISK_DISK_UNPROBE: %s\n",
501 					dp->d_cdev->si_name);
502 			devfs_destroy_related(dp->d_cdev);
503 			break;
504 		case DISK_SLICE_REPROBE:
505 			dp = (struct disk *)msg->load;
506 			sp = (struct diskslice *)msg->load2;
507 			devfs_clr_related_flag(sp->ds_dev,
508 						SI_REPROBE_TEST);
509 			disk_debug(1,
510 				    "DISK_SLICE_REPROBE: %s\n",
511 				    sp->ds_dev->si_name);
512 			disk_probe_slice(dp, sp->ds_dev,
513 					 dkslice(sp->ds_dev), 1);
514 			devfs_destroy_related_without_flag(
515 					sp->ds_dev, SI_REPROBE_TEST);
516 			break;
517 		case DISK_DISK_REPROBE:
518 			dp = (struct disk *)msg->load;
519 			devfs_clr_related_flag(dp->d_cdev, SI_REPROBE_TEST);
520 			disk_debug(1,
521 				    "DISK_DISK_REPROBE: %s\n",
522 				    dp->d_cdev->si_name);
523 			disk_probe(dp, 1);
524 			devfs_destroy_related_without_flag(
525 					dp->d_cdev, SI_REPROBE_TEST);
526 			break;
527 		case DISK_SYNC:
528 			disk_debug(1, "DISK_SYNC\n");
529 			break;
530 		default:
531 			devfs_debug(DEVFS_DEBUG_WARNING,
532 				    "disk_msg_core: unknown message "
533 				    "received at core\n");
534 			break;
535 		}
536 		lwkt_replymsg(&msg->hdr, 0);
537 	}
538 	lwkt_exit();
539 }
540 
541 
542 /*
543  * Acts as a message drain. Any message that is replied to here gets
544  * destroyed and the memory freed.
545  */
546 static void
547 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
548 {
549 	objcache_put(disk_msg_cache, msg);
550 }
551 
552 
553 void
554 disk_msg_send(uint32_t cmd, void *load, void *load2)
555 {
556 	disk_msg_t disk_msg;
557 	lwkt_port_t port = &disk_msg_port;
558 
559 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
560 
561 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
562 
563 	disk_msg->hdr.u.ms_result = cmd;
564 	disk_msg->load = load;
565 	disk_msg->load2 = load2;
566 	KKASSERT(port);
567 	lwkt_sendmsg(port, &disk_msg->hdr);
568 }
569 
570 void
571 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
572 {
573 	struct lwkt_port rep_port;
574 	disk_msg_t disk_msg;
575 	lwkt_port_t port;
576 
577 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
578 	port = &disk_msg_port;
579 
580 	/* XXX could probably use curthread's built-in msgport */
581 	lwkt_initport_thread(&rep_port, curthread);
582 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
583 
584 	disk_msg->hdr.u.ms_result = cmd;
585 	disk_msg->load = load;
586 	disk_msg->load2 = load2;
587 
588 	lwkt_sendmsg(port, &disk_msg->hdr);
589 	lwkt_waitmsg(&disk_msg->hdr, 0);
590 	objcache_put(disk_msg_cache, disk_msg);
591 }
592 
593 /*
594  * Create a raw device for the dev_ops template (which is returned).  Also
595  * create a slice and unit managed disk and overload the user visible
596  * device space with it.
597  *
598  * NOTE: The returned raw device is NOT a slice and unit managed device.
599  * It is an actual raw device representing the raw disk as specified by
600  * the passed dev_ops.  The disk layer not only returns such a raw device,
601  * it also uses it internally when passing (modified) commands through.
602  */
603 cdev_t
604 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
605 {
606 	return _disk_create_named(NULL, unit, dp, raw_ops, 0);
607 }
608 
609 cdev_t
610 disk_create_clone(int unit, struct disk *dp,
611 		  struct dev_ops *raw_ops)
612 {
613 	return _disk_create_named(NULL, unit, dp, raw_ops, 1);
614 }
615 
616 cdev_t
617 disk_create_named(const char *name, int unit, struct disk *dp,
618 		  struct dev_ops *raw_ops)
619 {
620 	return _disk_create_named(name, unit, dp, raw_ops, 0);
621 }
622 
623 cdev_t
624 disk_create_named_clone(const char *name, int unit, struct disk *dp,
625 			struct dev_ops *raw_ops)
626 {
627 	return _disk_create_named(name, unit, dp, raw_ops, 1);
628 }
629 
630 static cdev_t
631 _disk_create_named(const char *name, int unit, struct disk *dp,
632 		   struct dev_ops *raw_ops, int clone)
633 {
634 	cdev_t rawdev;
635 
636 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
637 
638 	if (name) {
639 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
640 		    UID_ROOT, GID_OPERATOR, 0640, "%s", name);
641 	} else {
642 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
643 		    UID_ROOT, GID_OPERATOR, 0640,
644 		    "%s%d", raw_ops->head.name, unit);
645 	}
646 
647 	bzero(dp, sizeof(*dp));
648 
649 	dp->d_rawdev = rawdev;
650 	dp->d_raw_ops = raw_ops;
651 	dp->d_dev_ops = &disk_ops;
652 
653 	if (name) {
654 		if (clone) {
655 			dp->d_cdev = make_only_dev_covering(
656 					&disk_ops, dp->d_rawdev->si_ops,
657 					dkmakewholedisk(unit),
658 					UID_ROOT, GID_OPERATOR, 0640,
659 					"%s", name);
660 		} else {
661 			dp->d_cdev = make_dev_covering(
662 					&disk_ops, dp->d_rawdev->si_ops,
663 					dkmakewholedisk(unit),
664 					UID_ROOT, GID_OPERATOR, 0640,
665 					"%s", name);
666 		}
667 	} else {
668 		if (clone) {
669 			dp->d_cdev = make_only_dev_covering(
670 					&disk_ops, dp->d_rawdev->si_ops,
671 					dkmakewholedisk(unit),
672 					UID_ROOT, GID_OPERATOR, 0640,
673 					"%s%d", raw_ops->head.name, unit);
674 		} else {
675 			dp->d_cdev = make_dev_covering(
676 					&disk_ops, dp->d_rawdev->si_ops,
677 					dkmakewholedisk(unit),
678 					UID_ROOT, GID_OPERATOR, 0640,
679 					"%s%d", raw_ops->head.name, unit);
680 		}
681 	}
682 
683 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
684 	dp->d_cdev->si_disk = dp;
685 
686 	if (name)
687 		dsched_disk_create_callback(dp, name, unit);
688 	else
689 		dsched_disk_create_callback(dp, raw_ops->head.name, unit);
690 
691 	lwkt_gettoken(&disklist_token);
692 	LIST_INSERT_HEAD(&disklist, dp, d_list);
693 	lwkt_reltoken(&disklist_token);
694 
695 	disk_iocom_init(dp);
696 
697 	disk_debug(1, "disk_create (end): %s%d\n",
698 		   (name != NULL)?(name):(raw_ops->head.name), unit);
699 
700 	return (dp->d_rawdev);
701 }
702 
703 int
704 disk_setdisktype(struct disk *disk, const char *type)
705 {
706 	int error;
707 
708 	KKASSERT(disk != NULL);
709 
710 	disk->d_disktype = type;
711 	error = udev_dict_set_cstr(disk->d_cdev, "disk-type",
712 				   __DECONST(char *, type));
713 	return error;
714 }
715 
716 int
717 disk_getopencount(struct disk *disk)
718 {
719 	return disk->d_opencount;
720 }
721 
722 static void
723 _setdiskinfo(struct disk *disk, struct disk_info *info)
724 {
725 	char *oldserialno;
726 
727 	oldserialno = disk->d_info.d_serialno;
728 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
729 	info = &disk->d_info;
730 
731 	disk_debug(1, "_setdiskinfo: %s\n", disk->d_cdev->si_name);
732 
733 	/*
734 	 * The serial number is duplicated so the caller can throw
735 	 * their copy away.
736 	 */
737 	if (info->d_serialno && info->d_serialno[0] &&
738 	    (info->d_serialno[0] != ' ' || strlen(info->d_serialno) > 1)) {
739 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
740 		disk_cleanserial(info->d_serialno);
741 		if (disk->d_cdev) {
742 			make_dev_alias(disk->d_cdev, "serno/%s",
743 				       info->d_serialno);
744 		}
745 	} else {
746 		info->d_serialno = NULL;
747 	}
748 	if (oldserialno)
749 		kfree(oldserialno, M_TEMP);
750 
751 	dsched_disk_update_callback(disk, info);
752 
753 	/*
754 	 * The caller may set d_media_size or d_media_blocks and we
755 	 * calculate the other.
756 	 */
757 	KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0);
758 	if (info->d_media_size == 0 && info->d_media_blocks) {
759 		info->d_media_size = (u_int64_t)info->d_media_blocks *
760 				     info->d_media_blksize;
761 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
762 		   info->d_media_blksize) {
763 		info->d_media_blocks = info->d_media_size /
764 				       info->d_media_blksize;
765 	}
766 
767 	/*
768 	 * The si_* fields for rawdev are not set until after the
769 	 * disk_create() call, so someone using the cooked version
770 	 * of the raw device (i.e. da0s0) will not get the right
771 	 * si_iosize_max unless we fix it up here.
772 	 */
773 	if (disk->d_cdev && disk->d_rawdev &&
774 	    disk->d_cdev->si_iosize_max == 0) {
775 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
776 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
777 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
778 	}
779 
780 	/* Add the serial number to the udev_dictionary */
781 	if (info->d_serialno)
782 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
783 }
784 
785 /*
786  * Disk drivers must call this routine when media parameters are available
787  * or have changed.
788  */
789 void
790 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
791 {
792 	_setdiskinfo(disk, info);
793 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
794 	disk_debug(1, "disk_setdiskinfo: sent probe for %s\n",
795 		   disk->d_cdev->si_name);
796 }
797 
798 void
799 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
800 {
801 	_setdiskinfo(disk, info);
802 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
803 	disk_debug(1, "disk_setdiskinfo_sync: sent probe for %s\n",
804 		   disk->d_cdev->si_name);
805 }
806 
807 /*
808  * This routine is called when an adapter detaches.  The higher level
809  * managed disk device is destroyed while the lower level raw device is
810  * released.
811  */
812 void
813 disk_destroy(struct disk *disk)
814 {
815 	dsched_disk_destroy_callback(disk);
816 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
817 	return;
818 }
819 
820 int
821 disk_dumpcheck(cdev_t dev, u_int64_t *size,
822 	       u_int64_t *blkno, u_int32_t *secsize)
823 {
824 	struct partinfo pinfo;
825 	int error;
826 
827 	bzero(&pinfo, sizeof(pinfo));
828 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
829 			   proc0.p_ucred, NULL);
830 	if (error)
831 		return (error);
832 
833 	if (pinfo.media_blksize == 0)
834 		return (ENXIO);
835 
836 	if (blkno) /* XXX: make sure this reserved stuff is right */
837 		*blkno = pinfo.reserved_blocks +
838 			pinfo.media_offset / pinfo.media_blksize;
839 	if (secsize)
840 		*secsize = pinfo.media_blksize;
841 	if (size)
842 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
843 
844 	return (0);
845 }
846 
847 int
848 disk_dumpconf(cdev_t dev, u_int onoff)
849 {
850 	struct dumperinfo di;
851 	u_int64_t	size, blkno;
852 	u_int32_t	secsize;
853 	int error;
854 
855 	if (!onoff)
856 		return set_dumper(NULL);
857 
858 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
859 
860 	if (error)
861 		return ENXIO;
862 
863 	bzero(&di, sizeof(struct dumperinfo));
864 	di.dumper = diskdump;
865 	di.priv = dev;
866 	di.blocksize = secsize;
867 	di.maxiosize = dev->si_iosize_max;
868 	di.mediaoffset = blkno * DEV_BSIZE;
869 	di.mediasize = size * DEV_BSIZE;
870 
871 	return set_dumper(&di);
872 }
873 
874 void
875 disk_unprobe(struct disk *disk)
876 {
877 	if (disk == NULL)
878 		return;
879 
880 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
881 }
882 
883 void
884 disk_invalidate (struct disk *disk)
885 {
886 	dsgone(&disk->d_slice);
887 }
888 
889 struct disk *
890 disk_enumerate(struct disk *disk)
891 {
892 	struct disk *dp;
893 
894 	lwkt_gettoken(&disklist_token);
895 	if (!disk)
896 		dp = (LIST_FIRST(&disklist));
897 	else
898 		dp = (LIST_NEXT(disk, d_list));
899 	lwkt_reltoken(&disklist_token);
900 
901 	return dp;
902 }
903 
904 static
905 int
906 sysctl_disks(SYSCTL_HANDLER_ARGS)
907 {
908 	struct disk *disk;
909 	int error, first;
910 
911 	disk = NULL;
912 	first = 1;
913 
914 	while ((disk = disk_enumerate(disk))) {
915 		if (!first) {
916 			error = SYSCTL_OUT(req, " ", 1);
917 			if (error)
918 				return error;
919 		} else {
920 			first = 0;
921 		}
922 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
923 				   strlen(disk->d_rawdev->si_name));
924 		if (error)
925 			return error;
926 	}
927 	error = SYSCTL_OUT(req, "", 1);
928 	return error;
929 }
930 
931 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
932     sysctl_disks, "A", "names of available disks");
933 
934 /*
935  * Open a disk device or partition.
936  */
937 static
938 int
939 diskopen(struct dev_open_args *ap)
940 {
941 	cdev_t dev = ap->a_head.a_dev;
942 	struct disk *dp;
943 	int error;
944 
945 	/*
946 	 * dp can't be NULL here XXX.
947 	 *
948 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
949 	 * setdiskinfo() is typically called whether the disk is present
950 	 * or not (e.g. CD), but the base disk device is created first
951 	 * and there may be a race.
952 	 */
953 	dp = dev->si_disk;
954 	if (dp == NULL || dp->d_slice == NULL)
955 		return (ENXIO);
956 	error = 0;
957 
958 	/*
959 	 * Deal with open races
960 	 */
961 	get_mplock();
962 	while (dp->d_flags & DISKFLAG_LOCK) {
963 		dp->d_flags |= DISKFLAG_WANTED;
964 		error = tsleep(dp, PCATCH, "diskopen", hz);
965 		if (error) {
966 			rel_mplock();
967 			return (error);
968 		}
969 	}
970 	dp->d_flags |= DISKFLAG_LOCK;
971 
972 	/*
973 	 * Open the underlying raw device.
974 	 */
975 	if (!dsisopen(dp->d_slice)) {
976 #if 0
977 		if (!pdev->si_iosize_max)
978 			pdev->si_iosize_max = dev->si_iosize_max;
979 #endif
980 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
981 				  ap->a_devtype, ap->a_cred);
982 	}
983 
984 	if (error)
985 		goto out;
986 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
987 		       &dp->d_slice, &dp->d_info);
988 	if (!dsisopen(dp->d_slice)) {
989 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
990 	}
991 out:
992 	dp->d_flags &= ~DISKFLAG_LOCK;
993 	if (dp->d_flags & DISKFLAG_WANTED) {
994 		dp->d_flags &= ~DISKFLAG_WANTED;
995 		wakeup(dp);
996 	}
997 	rel_mplock();
998 
999 	KKASSERT(dp->d_opencount >= 0);
1000 	/* If the open was successful, bump open count */
1001 	if (error == 0)
1002 		atomic_add_int(&dp->d_opencount, 1);
1003 
1004 	return(error);
1005 }
1006 
1007 /*
1008  * Close a disk device or partition
1009  */
1010 static
1011 int
1012 diskclose(struct dev_close_args *ap)
1013 {
1014 	cdev_t dev = ap->a_head.a_dev;
1015 	struct disk *dp;
1016 	int error;
1017 	int lcount;
1018 
1019 	error = 0;
1020 	dp = dev->si_disk;
1021 
1022 	/*
1023 	 * The cdev_t represents the disk/slice/part.  The shared
1024 	 * dp structure governs all cdevs associated with the disk.
1025 	 *
1026 	 * As a safety only close the underlying raw device on the last
1027 	 * close the disk device if our tracking of the slices/partitions
1028 	 * also indicates nothing is open.
1029 	 */
1030 	KKASSERT(dp->d_opencount >= 1);
1031 	lcount = atomic_fetchadd_int(&dp->d_opencount, -1);
1032 
1033 	get_mplock();
1034 	dsclose(dev, ap->a_devtype, dp->d_slice);
1035 	if (lcount <= 1 && !dsisopen(dp->d_slice)) {
1036 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
1037 	}
1038 	rel_mplock();
1039 	return (error);
1040 }
1041 
1042 /*
1043  * First execute the ioctl on the disk device, and if it isn't supported
1044  * try running it on the backing device.
1045  */
1046 static
1047 int
1048 diskioctl(struct dev_ioctl_args *ap)
1049 {
1050 	cdev_t dev = ap->a_head.a_dev;
1051 	struct disk *dp;
1052 	int error;
1053 	u_int u;
1054 
1055 	dp = dev->si_disk;
1056 	if (dp == NULL)
1057 		return (ENXIO);
1058 
1059 	devfs_debug(DEVFS_DEBUG_DEBUG,
1060 		    "diskioctl: cmd is: %lx (name: %s)\n",
1061 		    ap->a_cmd, dev->si_name);
1062 	devfs_debug(DEVFS_DEBUG_DEBUG,
1063 		    "diskioctl: &dp->d_slice is: %p, %p\n",
1064 		    &dp->d_slice, dp->d_slice);
1065 
1066 	if (ap->a_cmd == DIOCGKERNELDUMP) {
1067 		u = *(u_int *)ap->a_data;
1068 		return disk_dumpconf(dev, u);
1069 	}
1070 
1071 	if (ap->a_cmd == DIOCRECLUSTER && dev == dp->d_cdev) {
1072 		kprintf("RECLUSTER\n");
1073 		error = disk_iocom_ioctl(dp, ap->a_cmd, ap->a_data);
1074 		return error;
1075 	}
1076 
1077 	if (&dp->d_slice == NULL || dp->d_slice == NULL ||
1078 	    ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) &&
1079 	     dkslice(dev) == WHOLE_DISK_SLICE)) {
1080 		error = ENOIOCTL;
1081 	} else {
1082 		get_mplock();
1083 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
1084 				&dp->d_slice, &dp->d_info);
1085 		rel_mplock();
1086 	}
1087 
1088 	if (error == ENOIOCTL) {
1089 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
1090 				   ap->a_fflag, ap->a_cred, NULL);
1091 	}
1092 	return (error);
1093 }
1094 
1095 /*
1096  * Execute strategy routine
1097  */
1098 static
1099 int
1100 diskstrategy(struct dev_strategy_args *ap)
1101 {
1102 	cdev_t dev = ap->a_head.a_dev;
1103 	struct bio *bio = ap->a_bio;
1104 	struct bio *nbio;
1105 	struct disk *dp;
1106 
1107 	dp = dev->si_disk;
1108 
1109 	if (dp == NULL) {
1110 		bio->bio_buf->b_error = ENXIO;
1111 		bio->bio_buf->b_flags |= B_ERROR;
1112 		biodone(bio);
1113 		return(0);
1114 	}
1115 	KKASSERT(dev->si_disk == dp);
1116 
1117 	/*
1118 	 * The dscheck() function will also transform the slice relative
1119 	 * block number i.e. bio->bio_offset into a block number that can be
1120 	 * passed directly to the underlying raw device.  If dscheck()
1121 	 * returns NULL it will have handled the bio for us (e.g. EOF
1122 	 * or error due to being beyond the device size).
1123 	 */
1124 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
1125 		dsched_queue(dp, nbio);
1126 	} else {
1127 		biodone(bio);
1128 	}
1129 	return(0);
1130 }
1131 
1132 /*
1133  * Return the partition size in ?blocks?
1134  */
1135 static
1136 int
1137 diskpsize(struct dev_psize_args *ap)
1138 {
1139 	cdev_t dev = ap->a_head.a_dev;
1140 	struct disk *dp;
1141 
1142 	dp = dev->si_disk;
1143 	if (dp == NULL)
1144 		return(ENODEV);
1145 
1146 	ap->a_result = dssize(dev, &dp->d_slice);
1147 
1148 	if ((ap->a_result == -1) &&
1149 	   (dp->d_info.d_dsflags & DSO_RAWPSIZE)) {
1150 		ap->a_head.a_dev = dp->d_rawdev;
1151 		return dev_doperate(&ap->a_head);
1152 	}
1153 	return(0);
1154 }
1155 
1156 int
1157 diskdump(struct dev_dump_args *ap)
1158 {
1159 	cdev_t dev = ap->a_head.a_dev;
1160 	struct disk *dp = dev->si_disk;
1161 	u_int64_t size, offset;
1162 	int error;
1163 
1164 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1165 	/* XXX: this should probably go in disk_dumpcheck somehow */
1166 	if (ap->a_length != 0) {
1167 		size *= DEV_BSIZE;
1168 		offset = ap->a_blkno * DEV_BSIZE;
1169 		if ((ap->a_offset < offset) ||
1170 		    (ap->a_offset + ap->a_length - offset > size)) {
1171 			kprintf("Attempt to write outside dump "
1172 				"device boundaries.\n");
1173 			error = ENOSPC;
1174 		}
1175 	}
1176 
1177 	if (error == 0) {
1178 		ap->a_head.a_dev = dp->d_rawdev;
1179 		error = dev_doperate(&ap->a_head);
1180 	}
1181 
1182 	return(error);
1183 }
1184 
1185 
1186 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1187 	   0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1188 
1189 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1190 	   0, sizeof(struct disk), "sizeof(struct disk)");
1191 
1192 /*
1193  * Reorder interval for burst write allowance and minor write
1194  * allowance.
1195  *
1196  * We always want to trickle some writes in to make use of the
1197  * disk's zone cache.  Bursting occurs on a longer interval and only
1198  * runningbufspace is well over the hirunningspace limit.
1199  */
1200 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1201 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1202 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1203 int bioq_reorder_minor_interval = 5;
1204 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1205 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1206 
1207 int bioq_reorder_burst_bytes = 3000000;
1208 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1209 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1210 int bioq_reorder_minor_bytes = 262144;
1211 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1212 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1213 
1214 
1215 /*
1216  * Order I/Os.  Generally speaking this code is designed to make better
1217  * use of drive zone caches.  A drive zone cache can typically track linear
1218  * reads or writes for around 16 zones simultaniously.
1219  *
1220  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1221  * of writes to be queued asynchronously.  This creates a huge bottleneck
1222  * for reads which reduce read bandwidth to a trickle.
1223  *
1224  * To solve this problem we generally reorder reads before writes.
1225  *
1226  * However, a large number of random reads can also starve writes and
1227  * make poor use of the drive zone cache so we allow writes to trickle
1228  * in every N reads.
1229  */
1230 void
1231 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1232 {
1233 	/*
1234 	 * The BIO wants to be ordered.  Adding to the tail also
1235 	 * causes transition to be set to NULL, forcing the ordering
1236 	 * of all prior I/O's.
1237 	 */
1238 	if (bio->bio_buf->b_flags & B_ORDERED) {
1239 		bioq_insert_tail(bioq, bio);
1240 		return;
1241 	}
1242 
1243 	switch(bio->bio_buf->b_cmd) {
1244 	case BUF_CMD_READ:
1245 		if (bioq->transition) {
1246 			/*
1247 			 * Insert before the first write.  Bleedover writes
1248 			 * based on reorder intervals to prevent starvation.
1249 			 */
1250 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1251 			++bioq->reorder;
1252 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1253 				bioqwritereorder(bioq);
1254 				if (bioq->reorder >=
1255 				    bioq_reorder_burst_interval) {
1256 					bioq->reorder = 0;
1257 				}
1258 			}
1259 		} else {
1260 			/*
1261 			 * No writes queued (or ordering was forced),
1262 			 * insert at tail.
1263 			 */
1264 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1265 		}
1266 		break;
1267 	case BUF_CMD_WRITE:
1268 		/*
1269 		 * Writes are always appended.  If no writes were previously
1270 		 * queued or an ordered tail insertion occured the transition
1271 		 * field will be NULL.
1272 		 */
1273 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1274 		if (bioq->transition == NULL)
1275 			bioq->transition = bio;
1276 		break;
1277 	default:
1278 		/*
1279 		 * All other request types are forced to be ordered.
1280 		 */
1281 		bioq_insert_tail(bioq, bio);
1282 		break;
1283 	}
1284 }
1285 
1286 /*
1287  * Move the read-write transition point to prevent reads from
1288  * completely starving our writes.  This brings a number of writes into
1289  * the fold every N reads.
1290  *
1291  * We bring a few linear writes into the fold on a minor interval
1292  * and we bring a non-linear burst of writes into the fold on a major
1293  * interval.  Bursting only occurs if runningbufspace is really high
1294  * (typically from syncs, fsyncs, or HAMMER flushes).
1295  */
1296 static
1297 void
1298 bioqwritereorder(struct bio_queue_head *bioq)
1299 {
1300 	struct bio *bio;
1301 	off_t next_offset;
1302 	size_t left;
1303 	size_t n;
1304 	int check_off;
1305 
1306 	if (bioq->reorder < bioq_reorder_burst_interval ||
1307 	    !buf_runningbufspace_severe()) {
1308 		left = (size_t)bioq_reorder_minor_bytes;
1309 		check_off = 1;
1310 	} else {
1311 		left = (size_t)bioq_reorder_burst_bytes;
1312 		check_off = 0;
1313 	}
1314 
1315 	next_offset = bioq->transition->bio_offset;
1316 	while ((bio = bioq->transition) != NULL &&
1317 	       (check_off == 0 || next_offset == bio->bio_offset)
1318 	) {
1319 		n = bio->bio_buf->b_bcount;
1320 		next_offset = bio->bio_offset + n;
1321 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1322 		if (left < n)
1323 			break;
1324 		left -= n;
1325 	}
1326 }
1327 
1328 /*
1329  * Bounds checking against the media size, used for the raw partition.
1330  * secsize, mediasize and b_blkno must all be the same units.
1331  * Possibly this has to be DEV_BSIZE (512).
1332  */
1333 int
1334 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1335 {
1336 	struct buf *bp = bio->bio_buf;
1337 	int64_t sz;
1338 
1339 	sz = howmany(bp->b_bcount, secsize);
1340 
1341 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1342 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1343 		if (sz == 0) {
1344 			/* If exactly at end of disk, return EOF. */
1345 			bp->b_resid = bp->b_bcount;
1346 			return 0;
1347 		}
1348 		if (sz < 0) {
1349 			/* If past end of disk, return EINVAL. */
1350 			bp->b_error = EINVAL;
1351 			return 0;
1352 		}
1353 		/* Otherwise, truncate request. */
1354 		bp->b_bcount = sz * secsize;
1355 	}
1356 
1357 	return 1;
1358 }
1359 
1360 /*
1361  * Disk error is the preface to plaintive error messages
1362  * about failing disk transfers.  It prints messages of the form
1363 
1364 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1365 
1366  * if the offset of the error in the transfer and a disk label
1367  * are both available.  blkdone should be -1 if the position of the error
1368  * is unknown; the disklabel pointer may be null from drivers that have not
1369  * been converted to use them.  The message is printed with kprintf
1370  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1371  * The message should be completed (with at least a newline) with kprintf
1372  * or log(-1, ...), respectively.  There is no trailing space.
1373  */
1374 void
1375 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1376 {
1377 	struct buf *bp = bio->bio_buf;
1378 	const char *term;
1379 
1380 	switch(bp->b_cmd) {
1381 	case BUF_CMD_READ:
1382 		term = "read";
1383 		break;
1384 	case BUF_CMD_WRITE:
1385 		term = "write";
1386 		break;
1387 	default:
1388 		term = "access";
1389 		break;
1390 	}
1391 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1392 	kprintf("offset %012llx for %d",
1393 		(long long)bio->bio_offset,
1394 		bp->b_bcount);
1395 
1396 	if (donecnt)
1397 		kprintf(" (%d bytes completed)", donecnt);
1398 }
1399 
1400 /*
1401  * Locate a disk device
1402  */
1403 cdev_t
1404 disk_locate(const char *devname)
1405 {
1406 	return devfs_find_device_by_name("%s", devname);
1407 }
1408 
1409 void
1410 disk_config(void *arg)
1411 {
1412 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1413 }
1414 
1415 static void
1416 disk_init(void)
1417 {
1418 	struct thread* td_core;
1419 
1420 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1421 					 NULL, NULL, NULL,
1422 					 objcache_malloc_alloc,
1423 					 objcache_malloc_free,
1424 					 &disk_msg_malloc_args);
1425 
1426 	lwkt_token_init(&disklist_token, "disks");
1427 
1428 	/*
1429 	 * Initialize the reply-only port which acts as a message drain
1430 	 */
1431 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1432 
1433 	lwkt_gettoken(&disklist_token);
1434 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1435 		    0, -1, "disk_msg_core");
1436 	tsleep(td_core, 0, "diskcore", 0);
1437 	lwkt_reltoken(&disklist_token);
1438 }
1439 
1440 static void
1441 disk_uninit(void)
1442 {
1443 	objcache_destroy(disk_msg_cache);
1444 }
1445 
1446 /*
1447  * Clean out illegal characters in serial numbers.
1448  */
1449 static void
1450 disk_cleanserial(char *serno)
1451 {
1452 	char c;
1453 
1454 	while ((c = *serno) != 0) {
1455 		if (c >= 'a' && c <= 'z')
1456 			;
1457 		else if (c >= 'A' && c <= 'Z')
1458 			;
1459 		else if (c >= '0' && c <= '9')
1460 			;
1461 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1462 			;
1463 		else
1464 			c = '_';
1465 		*serno++= c;
1466 	}
1467 }
1468 
1469 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1470 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1471 	   0, "Enable subr_disk debugging");
1472 
1473 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1474 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1475