xref: /dragonfly/sys/kern/subr_disk.c (revision 956939d5)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ----------------------------------------------------------------------------
35  * "THE BEER-WARE LICENSE" (Revision 42):
36  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
37  * can do whatever you want with this stuff. If we meet some day, and you think
38  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
39  * ----------------------------------------------------------------------------
40  *
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80  * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
95 #include <sys/disk.h>
96 #include <sys/malloc.h>
97 #include <sys/sysctl.h>
98 #include <machine/md_var.h>
99 #include <sys/ctype.h>
100 #include <sys/syslog.h>
101 #include <sys/device.h>
102 #include <sys/msgport.h>
103 #include <sys/msgport2.h>
104 #include <sys/buf2.h>
105 #include <sys/devfs.h>
106 #include <sys/thread.h>
107 #include <sys/thread2.h>
108 
109 #include <sys/queue.h>
110 #include <sys/lock.h>
111 
112 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
113 static int disk_debug_enable = 0;
114 
115 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
116 static void disk_msg_core(void *);
117 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
118 static void disk_probe(struct disk *dp, int reprobe);
119 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
120 static void bioqwritereorder(struct bio_queue_head *bioq);
121 static void disk_cleanserial(char *serno);
122 
123 static d_open_t diskopen;
124 static d_close_t diskclose;
125 static d_ioctl_t diskioctl;
126 static d_strategy_t diskstrategy;
127 static d_psize_t diskpsize;
128 static d_clone_t diskclone;
129 static d_dump_t diskdump;
130 
131 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
132 static struct lwkt_token disklist_token;
133 
134 static struct dev_ops disk_ops = {
135 	{ "disk", 0, D_DISK },
136 	.d_open = diskopen,
137 	.d_close = diskclose,
138 	.d_read = physread,
139 	.d_write = physwrite,
140 	.d_ioctl = diskioctl,
141 	.d_strategy = diskstrategy,
142 	.d_dump = diskdump,
143 	.d_psize = diskpsize,
144 	.d_clone = diskclone
145 };
146 
147 static struct objcache 	*disk_msg_cache;
148 
149 struct objcache_malloc_args disk_msg_malloc_args = {
150 	sizeof(struct disk_msg), M_DISK };
151 
152 static struct lwkt_port disk_dispose_port;
153 static struct lwkt_port disk_msg_port;
154 
155 static int
156 disk_debug(int level, char *fmt, ...)
157 {
158 	__va_list ap;
159 
160 	__va_start(ap, fmt);
161 	if (level <= disk_debug_enable)
162 		kvprintf(fmt, ap);
163 	__va_end(ap);
164 
165 	return 0;
166 }
167 
168 static int
169 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
170 {
171 	struct disk_info *info = &dp->d_info;
172 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
173 	disklabel_ops_t ops;
174 	struct partinfo part;
175 	const char *msg;
176 	cdev_t ndev;
177 	int sno;
178 	u_int i;
179 
180 	disk_debug(2,
181 		    "disk_probe_slice (begin): %s (%s)\n",
182 			dev->si_name, dp->d_cdev->si_name);
183 
184 	sno = slice ? slice - 1 : 0;
185 
186 	ops = &disklabel32_ops;
187 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
188 	if (msg && !strcmp(msg, "no disk label")) {
189 		ops = &disklabel64_ops;
190 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
191 	}
192 	if (msg == NULL) {
193 		if (slice != WHOLE_DISK_SLICE)
194 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
195 		else
196 			sp->ds_reserved = 0;
197 
198 		sp->ds_ops = ops;
199 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
200 			ops->op_loadpartinfo(sp->ds_label, i, &part);
201 			if (part.fstype) {
202 				if (reprobe &&
203 				    (ndev = devfs_find_device_by_name("%s%c",
204 						dev->si_name, 'a' + i))
205 				) {
206 					/*
207 					 * Device already exists and
208 					 * is still valid.
209 					 */
210 					ndev->si_flags |= SI_REPROBE_TEST;
211 				} else {
212 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
213 						dkmakeminor(dkunit(dp->d_cdev),
214 							    slice, i),
215 						UID_ROOT, GID_OPERATOR, 0640,
216 						"%s%c", dev->si_name, 'a'+ i);
217 					ndev->si_disk = dp;
218 					if (dp->d_info.d_serialno) {
219 						make_dev_alias(ndev,
220 						    "serno/%s.s%d%c",
221 						    dp->d_info.d_serialno,
222 						    sno, 'a' + i);
223 					}
224 					ndev->si_flags |= SI_REPROBE_TEST;
225 				}
226 			}
227 		}
228 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
229 		msg = NULL;
230 		if (sp->ds_size >= 0x100000000ULL)
231 			ops = &disklabel64_ops;
232 		else
233 			ops = &disklabel32_ops;
234 		sp->ds_label = ops->op_clone_label(info, sp);
235 	} else {
236 		if (sp->ds_type == DOSPTYP_386BSD /* XXX */) {
237 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
238 			    dev->si_name, msg);
239 		}
240 	}
241 
242 	if (msg == NULL) {
243 		sp->ds_wlabel = FALSE;
244 	}
245 
246 	return (msg ? EINVAL : 0);
247 }
248 
249 
250 static void
251 disk_probe(struct disk *dp, int reprobe)
252 {
253 	struct disk_info *info = &dp->d_info;
254 	cdev_t dev = dp->d_cdev;
255 	cdev_t ndev;
256 	int error, i, sno;
257 	struct diskslice *sp;
258 
259 	KKASSERT (info->d_media_blksize != 0);
260 
261 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
262 	disk_debug(1,
263 		    "disk_probe (begin): %s\n",
264 			dp->d_cdev->si_name);
265 
266 	error = mbrinit(dev, info, &(dp->d_slice));
267 	if (error)
268 		return;
269 
270 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
271 		/*
272 		 * Ignore the whole-disk slice, it has already been created.
273 		 */
274 		if (i == WHOLE_DISK_SLICE)
275 			continue;
276 		sp = &dp->d_slice->dss_slices[i];
277 
278 		/*
279 		 * Handle s0.  s0 is a compatibility slice if there are no
280 		 * other slices and it has not otherwise been set up, else
281 		 * we ignore it.
282 		 */
283 		if (i == COMPATIBILITY_SLICE) {
284 			sno = 0;
285 			if (sp->ds_type == 0 &&
286 			    dp->d_slice->dss_nslices == BASE_SLICE) {
287 				sp->ds_size = info->d_media_blocks;
288 				sp->ds_reserved = 0;
289 			}
290 		} else {
291 			sno = i - 1;
292 			sp->ds_reserved = 0;
293 		}
294 
295 		/*
296 		 * Ignore 0-length slices
297 		 */
298 		if (sp->ds_size == 0)
299 			continue;
300 
301 		if (reprobe &&
302 		    (ndev = devfs_find_device_by_name("%ss%d",
303 						      dev->si_name, sno))) {
304 			/*
305 			 * Device already exists and is still valid
306 			 */
307 			ndev->si_flags |= SI_REPROBE_TEST;
308 		} else {
309 			/*
310 			 * Else create new device
311 			 */
312 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
313 					dkmakewholeslice(dkunit(dev), i),
314 					UID_ROOT, GID_OPERATOR, 0640,
315 					"%ss%d", dev->si_name, sno);
316 			if (dp->d_info.d_serialno) {
317 				make_dev_alias(ndev, "serno/%s.s%d",
318 					       dp->d_info.d_serialno, sno);
319 			}
320 			ndev->si_disk = dp;
321 			ndev->si_flags |= SI_REPROBE_TEST;
322 		}
323 		sp->ds_dev = ndev;
324 
325 		/*
326 		 * Probe appropriate slices for a disklabel
327 		 *
328 		 * XXX slice type 1 used by our gpt probe code.
329 		 * XXX slice type 0 used by mbr compat slice.
330 		 */
331 		if (sp->ds_type == DOSPTYP_386BSD || sp->ds_type == 0 ||
332 			sp->ds_type == 1 || sp->ds_type == DOSPTYP_NBSD) {
333 			if (dp->d_slice->dss_first_bsd_slice == 0)
334 				dp->d_slice->dss_first_bsd_slice = i;
335 			disk_probe_slice(dp, ndev, i, reprobe);
336 		}
337 	}
338 	disk_debug(1,
339 		    "disk_probe (end): %s\n",
340 			dp->d_cdev->si_name);
341 }
342 
343 
344 static void
345 disk_msg_core(void *arg)
346 {
347 	struct disk	*dp;
348 	struct diskslice *sp;
349 	lwkt_tokref ilock;
350 	disk_msg_t msg;
351 	int run;
352 
353 	lwkt_initport_thread(&disk_msg_port, curthread);
354 	wakeup(curthread);
355 	run = 1;
356 
357 	while (run) {
358 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
359 
360 		switch (msg->hdr.u.ms_result) {
361 		case DISK_DISK_PROBE:
362 			dp = (struct disk *)msg->load;
363 			disk_debug(1,
364 				    "DISK_DISK_PROBE: %s\n",
365 					dp->d_cdev->si_name);
366 			disk_probe(dp, 0);
367 			break;
368 		case DISK_DISK_DESTROY:
369 			dp = (struct disk *)msg->load;
370 			disk_debug(1,
371 				    "DISK_DISK_DESTROY: %s\n",
372 					dp->d_cdev->si_name);
373 			devfs_destroy_subnames(dp->d_cdev->si_name);
374 			devfs_destroy_dev(dp->d_cdev);
375 			lwkt_gettoken(&ilock, &disklist_token);
376 			LIST_REMOVE(dp, d_list);
377 			lwkt_reltoken(&ilock);
378 			if (dp->d_info.d_serialno) {
379 				kfree(dp->d_info.d_serialno, M_TEMP);
380 				dp->d_info.d_serialno = NULL;
381 			}
382 			break;
383 		case DISK_UNPROBE:
384 			dp = (struct disk *)msg->load;
385 			disk_debug(1,
386 				    "DISK_DISK_UNPROBE: %s\n",
387 					dp->d_cdev->si_name);
388 			devfs_destroy_subnames(dp->d_cdev->si_name);
389 			break;
390 		case DISK_SLICE_REPROBE:
391 			dp = (struct disk *)msg->load;
392 			sp = (struct diskslice *)msg->load2;
393 			devfs_clr_subnames_flag(sp->ds_dev->si_name,
394 						SI_REPROBE_TEST);
395 			disk_debug(1,
396 				    "DISK_SLICE_REPROBE: %s\n",
397 				    sp->ds_dev->si_name);
398 			disk_probe_slice(dp, sp->ds_dev,
399 					 dkslice(sp->ds_dev), 1);
400 			devfs_destroy_subnames_without_flag(
401 					sp->ds_dev->si_name, SI_REPROBE_TEST);
402 			break;
403 		case DISK_DISK_REPROBE:
404 			dp = (struct disk *)msg->load;
405 			devfs_clr_subnames_flag(dp->d_cdev->si_name, SI_REPROBE_TEST);
406 			disk_debug(1,
407 				    "DISK_DISK_REPROBE: %s\n",
408 				    dp->d_cdev->si_name);
409 			disk_probe(dp, 1);
410 			devfs_destroy_subnames_without_flag(
411 					dp->d_cdev->si_name, SI_REPROBE_TEST);
412 			break;
413 		case DISK_SYNC:
414 			disk_debug(1, "DISK_SYNC\n");
415 			break;
416 		default:
417 			devfs_debug(DEVFS_DEBUG_WARNING,
418 				    "disk_msg_core: unknown message "
419 				    "received at core\n");
420 			break;
421 		}
422 		lwkt_replymsg((lwkt_msg_t)msg, 0);
423 	}
424 	lwkt_exit();
425 }
426 
427 
428 /*
429  * Acts as a message drain. Any message that is replied to here gets
430  * destroyed and the memory freed.
431  */
432 static void
433 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
434 {
435 	objcache_put(disk_msg_cache, msg);
436 }
437 
438 
439 void
440 disk_msg_send(uint32_t cmd, void *load, void *load2)
441 {
442 	disk_msg_t disk_msg;
443 	lwkt_port_t port = &disk_msg_port;
444 
445 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
446 
447 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
448 
449 	disk_msg->hdr.u.ms_result = cmd;
450 	disk_msg->load = load;
451 	disk_msg->load2 = load2;
452 	KKASSERT(port);
453 	lwkt_sendmsg(port, (lwkt_msg_t)disk_msg);
454 }
455 
456 void
457 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
458 {
459 	struct lwkt_port rep_port;
460 	disk_msg_t disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
461 	disk_msg_t	msg_incoming;
462 	lwkt_port_t port = &disk_msg_port;
463 
464 	lwkt_initport_thread(&rep_port, curthread);
465 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
466 
467 	disk_msg->hdr.u.ms_result = cmd;
468 	disk_msg->load = load;
469 	disk_msg->load2 = load2;
470 
471 	KKASSERT(port);
472 	lwkt_sendmsg(port, (lwkt_msg_t)disk_msg);
473 	msg_incoming = lwkt_waitport(&rep_port, 0);
474 }
475 
476 /*
477  * Create a raw device for the dev_ops template (which is returned).  Also
478  * create a slice and unit managed disk and overload the user visible
479  * device space with it.
480  *
481  * NOTE: The returned raw device is NOT a slice and unit managed device.
482  * It is an actual raw device representing the raw disk as specified by
483  * the passed dev_ops.  The disk layer not only returns such a raw device,
484  * it also uses it internally when passing (modified) commands through.
485  */
486 cdev_t
487 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
488 {
489 	lwkt_tokref ilock;
490 	cdev_t rawdev;
491 
492 	disk_debug(1,
493 		    "disk_create (begin): %s%d\n",
494 			raw_ops->head.name, unit);
495 
496 	rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
497 			    UID_ROOT, GID_OPERATOR, 0640,
498 			    "%s%d", raw_ops->head.name, unit);
499 
500 	bzero(dp, sizeof(*dp));
501 
502 	dp->d_rawdev = rawdev;
503 	dp->d_raw_ops = raw_ops;
504 	dp->d_dev_ops = &disk_ops;
505 	dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
506 			    dkmakewholedisk(unit),
507 			    UID_ROOT, GID_OPERATOR, 0640,
508 			    "%s%d", raw_ops->head.name, unit);
509 
510 	dp->d_cdev->si_disk = dp;
511 
512 	lwkt_gettoken(&ilock, &disklist_token);
513 	LIST_INSERT_HEAD(&disklist, dp, d_list);
514 	lwkt_reltoken(&ilock);
515 
516 	disk_debug(1,
517 		    "disk_create (end): %s%d\n",
518 			raw_ops->head.name, unit);
519 
520 	return (dp->d_rawdev);
521 }
522 
523 
524 static void
525 _setdiskinfo(struct disk *disk, struct disk_info *info)
526 {
527 	char *oldserialno;
528 
529 	oldserialno = disk->d_info.d_serialno;
530 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
531 	info = &disk->d_info;
532 
533 	disk_debug(1,
534 		    "_setdiskinfo: %s\n",
535 			disk->d_cdev->si_name);
536 
537 	/*
538 	 * The serial number is duplicated so the caller can throw
539 	 * their copy away.
540 	 */
541 	if (info->d_serialno && info->d_serialno[0]) {
542 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
543 		disk_cleanserial(info->d_serialno);
544 		if (disk->d_cdev) {
545 			make_dev_alias(disk->d_cdev, "serno/%s",
546 					info->d_serialno);
547 		}
548 	} else {
549 		info->d_serialno = NULL;
550 	}
551 	if (oldserialno)
552 		kfree(oldserialno, M_TEMP);
553 
554 	/*
555 	 * The caller may set d_media_size or d_media_blocks and we
556 	 * calculate the other.
557 	 */
558 	KKASSERT(info->d_media_size == 0 || info->d_media_blksize == 0);
559 	if (info->d_media_size == 0 && info->d_media_blocks) {
560 		info->d_media_size = (u_int64_t)info->d_media_blocks *
561 				     info->d_media_blksize;
562 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
563 		   info->d_media_blksize) {
564 		info->d_media_blocks = info->d_media_size /
565 				       info->d_media_blksize;
566 	}
567 
568 	/*
569 	 * The si_* fields for rawdev are not set until after the
570 	 * disk_create() call, so someone using the cooked version
571 	 * of the raw device (i.e. da0s0) will not get the right
572 	 * si_iosize_max unless we fix it up here.
573 	 */
574 	if (disk->d_cdev && disk->d_rawdev &&
575 	    disk->d_cdev->si_iosize_max == 0) {
576 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
577 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
578 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
579 	}
580 }
581 
582 /*
583  * Disk drivers must call this routine when media parameters are available
584  * or have changed.
585  */
586 void
587 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
588 {
589 	_setdiskinfo(disk, info);
590 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
591 	disk_debug(1,
592 		    "disk_setdiskinfo: sent probe for %s\n",
593 			disk->d_cdev->si_name);
594 }
595 
596 void
597 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
598 {
599 	_setdiskinfo(disk, info);
600 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
601 	disk_debug(1,
602 		    "disk_setdiskinfo_sync: sent probe for %s\n",
603 			disk->d_cdev->si_name);
604 }
605 
606 /*
607  * This routine is called when an adapter detaches.  The higher level
608  * managed disk device is destroyed while the lower level raw device is
609  * released.
610  */
611 void
612 disk_destroy(struct disk *disk)
613 {
614 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
615 	return;
616 }
617 
618 int
619 disk_dumpcheck(cdev_t dev, u_int64_t *count, u_int64_t *blkno, u_int *secsize)
620 {
621 	struct partinfo pinfo;
622 	int error;
623 
624 	bzero(&pinfo, sizeof(pinfo));
625 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
626 			   proc0.p_ucred, NULL);
627 	if (error)
628 		return (error);
629 	if (pinfo.media_blksize == 0)
630 		return (ENXIO);
631 	*count = (u_int64_t)Maxmem * PAGE_SIZE / pinfo.media_blksize;
632 	if (dumplo64 < pinfo.reserved_blocks ||
633 	    dumplo64 + *count > pinfo.media_blocks) {
634 		return (ENOSPC);
635 	}
636 	*blkno = dumplo64 + pinfo.media_offset / pinfo.media_blksize;
637 	*secsize = pinfo.media_blksize;
638 	return (0);
639 }
640 
641 void
642 disk_unprobe(struct disk *disk)
643 {
644 	if (disk == NULL)
645 		return;
646 
647 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
648 }
649 
650 void
651 disk_invalidate (struct disk *disk)
652 {
653 	if (disk->d_slice)
654 		dsgone(&disk->d_slice);
655 }
656 
657 struct disk *
658 disk_enumerate(struct disk *disk)
659 {
660 	struct disk *dp;
661 	lwkt_tokref ilock;
662 
663 	lwkt_gettoken(&ilock, &disklist_token);
664 	if (!disk)
665 		dp = (LIST_FIRST(&disklist));
666 	else
667 		dp = (LIST_NEXT(disk, d_list));
668 	lwkt_reltoken(&ilock);
669 
670 	return dp;
671 }
672 
673 static
674 int
675 sysctl_disks(SYSCTL_HANDLER_ARGS)
676 {
677 	struct disk *disk;
678 	int error, first;
679 
680 	disk = NULL;
681 	first = 1;
682 
683 	while ((disk = disk_enumerate(disk))) {
684 		if (!first) {
685 			error = SYSCTL_OUT(req, " ", 1);
686 			if (error)
687 				return error;
688 		} else {
689 			first = 0;
690 		}
691 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
692 				   strlen(disk->d_rawdev->si_name));
693 		if (error)
694 			return error;
695 	}
696 	error = SYSCTL_OUT(req, "", 1);
697 	return error;
698 }
699 
700 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
701     sysctl_disks, "A", "names of available disks");
702 
703 /*
704  * Open a disk device or partition.
705  */
706 static
707 int
708 diskopen(struct dev_open_args *ap)
709 {
710 	cdev_t dev = ap->a_head.a_dev;
711 	struct disk *dp;
712 	int error;
713 
714 	/*
715 	 * dp can't be NULL here XXX.
716 	 *
717 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
718 	 * setdiskinfo() is typically called whether the disk is present
719 	 * or not (e.g. CD), but the base disk device is created first
720 	 * and there may be a race.
721 	 */
722 	dp = dev->si_disk;
723 	if (dp == NULL || dp->d_slice == NULL)
724 		return (ENXIO);
725 	error = 0;
726 
727 	/*
728 	 * Deal with open races
729 	 */
730 	while (dp->d_flags & DISKFLAG_LOCK) {
731 		dp->d_flags |= DISKFLAG_WANTED;
732 		error = tsleep(dp, PCATCH, "diskopen", hz);
733 		if (error)
734 			return (error);
735 	}
736 	dp->d_flags |= DISKFLAG_LOCK;
737 
738 	/*
739 	 * Open the underlying raw device.
740 	 */
741 	if (!dsisopen(dp->d_slice)) {
742 #if 0
743 		if (!pdev->si_iosize_max)
744 			pdev->si_iosize_max = dev->si_iosize_max;
745 #endif
746 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
747 				  ap->a_devtype, ap->a_cred);
748 	}
749 #if 0
750 	/*
751 	 * Inherit properties from the underlying device now that it is
752 	 * open.
753 	 */
754 	dev_dclone(dev);
755 #endif
756 
757 	if (error)
758 		goto out;
759 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
760 		       &dp->d_slice, &dp->d_info);
761 	if (!dsisopen(dp->d_slice)) {
762 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
763 	}
764 out:
765 	dp->d_flags &= ~DISKFLAG_LOCK;
766 	if (dp->d_flags & DISKFLAG_WANTED) {
767 		dp->d_flags &= ~DISKFLAG_WANTED;
768 		wakeup(dp);
769 	}
770 
771 	return(error);
772 }
773 
774 /*
775  * Close a disk device or partition
776  */
777 static
778 int
779 diskclose(struct dev_close_args *ap)
780 {
781 	cdev_t dev = ap->a_head.a_dev;
782 	struct disk *dp;
783 	int error;
784 
785 	error = 0;
786 	dp = dev->si_disk;
787 
788 	dsclose(dev, ap->a_devtype, dp->d_slice);
789 	if (!dsisopen(dp->d_slice)) {
790 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
791 	}
792 	return (error);
793 }
794 
795 /*
796  * First execute the ioctl on the disk device, and if it isn't supported
797  * try running it on the backing device.
798  */
799 static
800 int
801 diskioctl(struct dev_ioctl_args *ap)
802 {
803 	cdev_t dev = ap->a_head.a_dev;
804 	struct disk *dp;
805 	int error;
806 
807 	dp = dev->si_disk;
808 	if (dp == NULL)
809 		return (ENXIO);
810 
811 	devfs_debug(DEVFS_DEBUG_DEBUG,
812 		    "diskioctl: cmd is: %x (name: %s)\n",
813 		    ap->a_cmd, dev->si_name);
814 	devfs_debug(DEVFS_DEBUG_DEBUG,
815 		    "diskioctl: &dp->d_slice is: %x, %x\n",
816 		    &dp->d_slice, dp->d_slice);
817 
818 	error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
819 			&dp->d_slice, &dp->d_info);
820 
821 	if (error == ENOIOCTL) {
822 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
823 				   ap->a_fflag, ap->a_cred, NULL);
824 	}
825 	return (error);
826 }
827 
828 /*
829  * Execute strategy routine
830  */
831 static
832 int
833 diskstrategy(struct dev_strategy_args *ap)
834 {
835 	cdev_t dev = ap->a_head.a_dev;
836 	struct bio *bio = ap->a_bio;
837 	struct bio *nbio;
838 	struct disk *dp;
839 
840 	dp = dev->si_disk;
841 
842 	if (dp == NULL) {
843 		bio->bio_buf->b_error = ENXIO;
844 		bio->bio_buf->b_flags |= B_ERROR;
845 		biodone(bio);
846 		return(0);
847 	}
848 	KKASSERT(dev->si_disk == dp);
849 
850 	/*
851 	 * The dscheck() function will also transform the slice relative
852 	 * block number i.e. bio->bio_offset into a block number that can be
853 	 * passed directly to the underlying raw device.  If dscheck()
854 	 * returns NULL it will have handled the bio for us (e.g. EOF
855 	 * or error due to being beyond the device size).
856 	 */
857 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
858 		dev_dstrategy(dp->d_rawdev, nbio);
859 	} else {
860 		biodone(bio);
861 	}
862 	return(0);
863 }
864 
865 /*
866  * Return the partition size in ?blocks?
867  */
868 static
869 int
870 diskpsize(struct dev_psize_args *ap)
871 {
872 	cdev_t dev = ap->a_head.a_dev;
873 	struct disk *dp;
874 
875 	dp = dev->si_disk;
876 	if (dp == NULL)
877 		return(ENODEV);
878 	ap->a_result = dssize(dev, &dp->d_slice);
879 	return(0);
880 }
881 
882 /*
883  * When new device entries are instantiated, make sure they inherit our
884  * si_disk structure and block and iosize limits from the raw device.
885  *
886  * This routine is always called synchronously in the context of the
887  * client.
888  *
889  * XXX The various io and block size constraints are not always initialized
890  * properly by devices.
891  */
892 static
893 int
894 diskclone(struct dev_clone_args *ap)
895 {
896 	cdev_t dev = ap->a_head.a_dev;
897 	struct disk *dp;
898 	dp = dev->si_disk;
899 
900 	KKASSERT(dp != NULL);
901 	dev->si_disk = dp;
902 	dev->si_iosize_max = dp->d_rawdev->si_iosize_max;
903 	dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys;
904 	dev->si_bsize_best = dp->d_rawdev->si_bsize_best;
905 	return(0);
906 }
907 
908 int
909 diskdump(struct dev_dump_args *ap)
910 {
911 	cdev_t dev = ap->a_head.a_dev;
912 	struct disk *dp = dev->si_disk;
913 	int error;
914 
915 	error = disk_dumpcheck(dev, &ap->a_count, &ap->a_blkno, &ap->a_secsize);
916 	if (error == 0) {
917 		ap->a_head.a_dev = dp->d_rawdev;
918 		error = dev_doperate(&ap->a_head);
919 	}
920 
921 	return(error);
922 }
923 
924 
925 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
926     0, sizeof(struct diskslices), "sizeof(struct diskslices)");
927 
928 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
929     0, sizeof(struct disk), "sizeof(struct disk)");
930 
931 /*
932  * Reorder interval for burst write allowance and minor write
933  * allowance.
934  *
935  * We always want to trickle some writes in to make use of the
936  * disk's zone cache.  Bursting occurs on a longer interval and only
937  * runningbufspace is well over the hirunningspace limit.
938  */
939 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
940 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
941 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
942 int bioq_reorder_minor_interval = 5;
943 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
944 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
945 
946 int bioq_reorder_burst_bytes = 3000000;
947 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
948 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
949 int bioq_reorder_minor_bytes = 262144;
950 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
951 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
952 
953 
954 /*
955  * Order I/Os.  Generally speaking this code is designed to make better
956  * use of drive zone caches.  A drive zone cache can typically track linear
957  * reads or writes for around 16 zones simultaniously.
958  *
959  * Read prioritization issues:  It is possible for hundreds of megabytes worth
960  * of writes to be queued asynchronously.  This creates a huge bottleneck
961  * for reads which reduce read bandwidth to a trickle.
962  *
963  * To solve this problem we generally reorder reads before writes.
964  *
965  * However, a large number of random reads can also starve writes and
966  * make poor use of the drive zone cache so we allow writes to trickle
967  * in every N reads.
968  */
969 void
970 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
971 {
972 	/*
973 	 * The BIO wants to be ordered.  Adding to the tail also
974 	 * causes transition to be set to NULL, forcing the ordering
975 	 * of all prior I/O's.
976 	 */
977 	if (bio->bio_buf->b_flags & B_ORDERED) {
978 		bioq_insert_tail(bioq, bio);
979 		return;
980 	}
981 
982 	switch(bio->bio_buf->b_cmd) {
983 	case BUF_CMD_READ:
984 		if (bioq->transition) {
985 			/*
986 			 * Insert before the first write.  Bleedover writes
987 			 * based on reorder intervals to prevent starvation.
988 			 */
989 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
990 			++bioq->reorder;
991 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
992 				bioqwritereorder(bioq);
993 				if (bioq->reorder >=
994 				    bioq_reorder_burst_interval) {
995 					bioq->reorder = 0;
996 				}
997 			}
998 		} else {
999 			/*
1000 			 * No writes queued (or ordering was forced),
1001 			 * insert at tail.
1002 			 */
1003 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1004 		}
1005 		break;
1006 	case BUF_CMD_WRITE:
1007 		/*
1008 		 * Writes are always appended.  If no writes were previously
1009 		 * queued or an ordered tail insertion occured the transition
1010 		 * field will be NULL.
1011 		 */
1012 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1013 		if (bioq->transition == NULL)
1014 			bioq->transition = bio;
1015 		break;
1016 	default:
1017 		/*
1018 		 * All other request types are forced to be ordered.
1019 		 */
1020 		bioq_insert_tail(bioq, bio);
1021 		break;
1022 	}
1023 }
1024 
1025 /*
1026  * Move the read-write transition point to prevent reads from
1027  * completely starving our writes.  This brings a number of writes into
1028  * the fold every N reads.
1029  *
1030  * We bring a few linear writes into the fold on a minor interval
1031  * and we bring a non-linear burst of writes into the fold on a major
1032  * interval.  Bursting only occurs if runningbufspace is really high
1033  * (typically from syncs, fsyncs, or HAMMER flushes).
1034  */
1035 static
1036 void
1037 bioqwritereorder(struct bio_queue_head *bioq)
1038 {
1039 	struct bio *bio;
1040 	off_t next_offset;
1041 	size_t left;
1042 	size_t n;
1043 	int check_off;
1044 
1045 	if (bioq->reorder < bioq_reorder_burst_interval ||
1046 	    !buf_runningbufspace_severe()) {
1047 		left = (size_t)bioq_reorder_minor_bytes;
1048 		check_off = 1;
1049 	} else {
1050 		left = (size_t)bioq_reorder_burst_bytes;
1051 		check_off = 0;
1052 	}
1053 
1054 	next_offset = bioq->transition->bio_offset;
1055 	while ((bio = bioq->transition) != NULL &&
1056 	       (check_off == 0 || next_offset == bio->bio_offset)
1057 	) {
1058 		n = bio->bio_buf->b_bcount;
1059 		next_offset = bio->bio_offset + n;
1060 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1061 		if (left < n)
1062 			break;
1063 		left -= n;
1064 	}
1065 }
1066 
1067 /*
1068  * Disk error is the preface to plaintive error messages
1069  * about failing disk transfers.  It prints messages of the form
1070 
1071 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1072 
1073  * if the offset of the error in the transfer and a disk label
1074  * are both available.  blkdone should be -1 if the position of the error
1075  * is unknown; the disklabel pointer may be null from drivers that have not
1076  * been converted to use them.  The message is printed with kprintf
1077  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1078  * The message should be completed (with at least a newline) with kprintf
1079  * or log(-1, ...), respectively.  There is no trailing space.
1080  */
1081 void
1082 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1083 {
1084 	struct buf *bp = bio->bio_buf;
1085 	const char *term;
1086 
1087 	switch(bp->b_cmd) {
1088 	case BUF_CMD_READ:
1089 		term = "read";
1090 		break;
1091 	case BUF_CMD_WRITE:
1092 		term = "write";
1093 		break;
1094 	default:
1095 		term = "access";
1096 		break;
1097 	}
1098 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1099 	kprintf("offset %012llx for %d",
1100 		(long long)bio->bio_offset,
1101 		bp->b_bcount);
1102 
1103 	if (donecnt)
1104 		kprintf(" (%d bytes completed)", donecnt);
1105 }
1106 
1107 /*
1108  * Locate a disk device
1109  */
1110 cdev_t
1111 disk_locate(const char *devname)
1112 {
1113 	return devfs_find_device_by_name(devname);
1114 }
1115 
1116 void
1117 disk_config(void *arg)
1118 {
1119 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1120 }
1121 
1122 static void
1123 disk_init(void)
1124 {
1125 	struct thread* td_core;
1126 
1127 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1128 					 NULL, NULL, NULL,
1129 					 objcache_malloc_alloc,
1130 					 objcache_malloc_free,
1131 					 &disk_msg_malloc_args);
1132 
1133 	lwkt_token_init(&disklist_token);
1134 
1135 	/*
1136 	 * Initialize the reply-only port which acts as a message drain
1137 	 */
1138 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1139 
1140 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1141 		    0, 0, "disk_msg_core");
1142 
1143 	tsleep(td_core, 0, "diskcore", 0);
1144 }
1145 
1146 static void
1147 disk_uninit(void)
1148 {
1149 	objcache_destroy(disk_msg_cache);
1150 }
1151 
1152 /*
1153  * Clean out illegal characters in serial numbers.
1154  */
1155 static void
1156 disk_cleanserial(char *serno)
1157 {
1158 	char c;
1159 
1160 	while ((c = *serno) != 0) {
1161 		if (c >= 'a' && c <= 'z')
1162 			;
1163 		else if (c >= 'A' && c <= 'Z')
1164 			;
1165 		else if (c >= '0' && c <= '9')
1166 			;
1167 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1168 			;
1169 		else
1170 			c = '_';
1171 		*serno++= c;
1172 	}
1173 }
1174 
1175 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1176 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1177 		0, "Enable subr_disk debugging");
1178 
1179 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1180 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1181