xref: /dragonfly/sys/kern/subr_disk.c (revision e96fb831)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * and Alex Hornung <ahornung@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * ----------------------------------------------------------------------------
36  * "THE BEER-WARE LICENSE" (Revision 42):
37  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
38  * can do whatever you want with this stuff. If we meet some day, and you think
39  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
40  * ----------------------------------------------------------------------------
41  *
42  * Copyright (c) 1982, 1986, 1988, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. All advertising materials mentioning features or use of this software
59  *    must display the following acknowledgement:
60  *	This product includes software developed by the University of
61  *	California, Berkeley and its contributors.
62  * 4. Neither the name of the University nor the names of its contributors
63  *    may be used to endorse or promote products derived from this software
64  *    without specific prior written permission.
65  *
66  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
70  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76  * SUCH DAMAGE.
77  *
78  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
79  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
80  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
95 #include <sys/disk.h>
96 #include <sys/kerneldump.h>
97 #include <sys/malloc.h>
98 #include <machine/md_var.h>
99 #include <sys/ctype.h>
100 #include <sys/syslog.h>
101 #include <sys/device.h>
102 #include <sys/msgport.h>
103 #include <sys/devfs.h>
104 #include <sys/thread.h>
105 #include <sys/dsched.h>
106 #include <sys/queue.h>
107 #include <sys/lock.h>
108 #include <sys/udev.h>
109 #include <sys/uuid.h>
110 
111 #include <sys/buf2.h>
112 #include <sys/mplock2.h>
113 #include <sys/msgport2.h>
114 #include <sys/thread2.h>
115 
116 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
117 static int disk_debug_enable = 0;
118 
119 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
120 static void disk_msg_core(void *);
121 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
122 static void disk_probe(struct disk *dp, int reprobe);
123 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
124 static void bioqwritereorder(struct bio_queue_head *bioq);
125 static void disk_cleanserial(char *serno);
126 static int disk_debug(int, char *, ...) __printflike(2, 3);
127 static cdev_t _disk_create_named(const char *name, int unit, struct disk *dp,
128     struct dev_ops *raw_ops, int clone);
129 
130 static d_open_t diskopen;
131 static d_close_t diskclose;
132 static d_ioctl_t diskioctl;
133 static d_strategy_t diskstrategy;
134 static d_psize_t diskpsize;
135 static d_dump_t diskdump;
136 
137 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
138 static struct lwkt_token disklist_token;
139 
140 static struct dev_ops disk_ops = {
141 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE },
142 	.d_open = diskopen,
143 	.d_close = diskclose,
144 	.d_read = physread,
145 	.d_write = physwrite,
146 	.d_ioctl = diskioctl,
147 	.d_strategy = diskstrategy,
148 	.d_dump = diskdump,
149 	.d_psize = diskpsize,
150 };
151 
152 static struct objcache 	*disk_msg_cache;
153 
154 struct objcache_malloc_args disk_msg_malloc_args = {
155 	sizeof(struct disk_msg), M_DISK };
156 
157 static struct lwkt_port disk_dispose_port;
158 static struct lwkt_port disk_msg_port;
159 
160 static int
161 disk_debug(int level, char *fmt, ...)
162 {
163 	__va_list ap;
164 
165 	__va_start(ap, fmt);
166 	if (level <= disk_debug_enable)
167 		kvprintf(fmt, ap);
168 	__va_end(ap);
169 
170 	return 0;
171 }
172 
173 static int
174 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
175 {
176 	struct disk_info *info = &dp->d_info;
177 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
178 	disklabel_ops_t ops;
179 	struct partinfo part;
180 	const char *msg;
181 	char uuid_buf[128];
182 	cdev_t ndev;
183 	int sno;
184 	u_int i;
185 
186 	disk_debug(2,
187 		    "disk_probe_slice (begin): %s (%s)\n",
188 			dev->si_name, dp->d_cdev->si_name);
189 
190 	sno = slice ? slice - 1 : 0;
191 
192 	ops = &disklabel32_ops;
193 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
194 	if (msg && !strcmp(msg, "no disk label")) {
195 		ops = &disklabel64_ops;
196 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
197 	}
198 	if (msg == NULL) {
199 		if (slice != WHOLE_DISK_SLICE)
200 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
201 		else
202 			sp->ds_reserved = 0;
203 
204 		sp->ds_ops = ops;
205 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
206 			ops->op_loadpartinfo(sp->ds_label, i, &part);
207 			if (part.fstype) {
208 				if (reprobe &&
209 				    (ndev = devfs_find_device_by_name("%s%c",
210 						dev->si_name, 'a' + i))
211 				) {
212 					/*
213 					 * Device already exists and
214 					 * is still valid.
215 					 */
216 					ndev->si_flags |= SI_REPROBE_TEST;
217 
218 					/*
219 					 * Destroy old UUID alias
220 					 */
221 					destroy_dev_alias(ndev, "part-by-uuid/*");
222 
223 					/* Create UUID alias */
224 					if (!kuuid_is_nil(&part.storage_uuid)) {
225 						snprintf_uuid(uuid_buf,
226 						    sizeof(uuid_buf),
227 						    &part.storage_uuid);
228 						make_dev_alias(ndev,
229 						    "part-by-uuid/%s",
230 						    uuid_buf);
231 					}
232 				} else {
233 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
234 						dkmakeminor(dkunit(dp->d_cdev),
235 							    slice, i),
236 						UID_ROOT, GID_OPERATOR, 0640,
237 						"%s%c", dev->si_name, 'a'+ i);
238 					ndev->si_parent = dev;
239 					ndev->si_disk = dp;
240 					udev_dict_set_cstr(ndev, "subsystem", "disk");
241 					/* Inherit parent's disk type */
242 					if (dp->d_disktype) {
243 						udev_dict_set_cstr(ndev, "disk-type",
244 						    __DECONST(char *, dp->d_disktype));
245 					}
246 
247 					/* Create serno alias */
248 					if (dp->d_info.d_serialno) {
249 						make_dev_alias(ndev,
250 						    "serno/%s.s%d%c",
251 						    dp->d_info.d_serialno,
252 						    sno, 'a' + i);
253 					}
254 
255 					/* Create UUID alias */
256 					if (!kuuid_is_nil(&part.storage_uuid)) {
257 						snprintf_uuid(uuid_buf,
258 						    sizeof(uuid_buf),
259 						    &part.storage_uuid);
260 						make_dev_alias(ndev,
261 						    "part-by-uuid/%s",
262 						    uuid_buf);
263 					}
264 					ndev->si_flags |= SI_REPROBE_TEST;
265 				}
266 			}
267 		}
268 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
269 		msg = NULL;
270 		if (sp->ds_size >= 0x100000000ULL)
271 			ops = &disklabel64_ops;
272 		else
273 			ops = &disklabel32_ops;
274 		sp->ds_label = ops->op_clone_label(info, sp);
275 	} else {
276 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
277 		    sp->ds_type == DOSPTYP_NETBSD ||
278 		    sp->ds_type == DOSPTYP_OPENBSD) {
279 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
280 			    dev->si_name, msg);
281 		}
282 	}
283 
284 	if (msg == NULL) {
285 		sp->ds_wlabel = FALSE;
286 	}
287 
288 	return (msg ? EINVAL : 0);
289 }
290 
291 /*
292  * This routine is only called for newly minted drives or to reprobe
293  * a drive with no open slices.  disk_probe_slice() is called directly
294  * when reprobing partition changes within slices.
295  */
296 static void
297 disk_probe(struct disk *dp, int reprobe)
298 {
299 	struct disk_info *info = &dp->d_info;
300 	cdev_t dev = dp->d_cdev;
301 	cdev_t ndev;
302 	int error, i, sno;
303 	struct diskslices *osp;
304 	struct diskslice *sp;
305 	char uuid_buf[128];
306 
307 	KKASSERT (info->d_media_blksize != 0);
308 
309 	osp = dp->d_slice;
310 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
311 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
312 
313 	error = mbrinit(dev, info, &(dp->d_slice));
314 	if (error) {
315 		dsgone(&osp);
316 		return;
317 	}
318 
319 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
320 		/*
321 		 * Ignore the whole-disk slice, it has already been created.
322 		 */
323 		if (i == WHOLE_DISK_SLICE)
324 			continue;
325 
326 #if 1
327 		/*
328 		 * Ignore the compatibility slice s0 if it's a device mapper
329 		 * volume.
330 		 */
331 		if ((i == COMPATIBILITY_SLICE) &&
332 		    (info->d_dsflags & DSO_DEVICEMAPPER))
333 			continue;
334 #endif
335 
336 		sp = &dp->d_slice->dss_slices[i];
337 
338 		/*
339 		 * Handle s0.  s0 is a compatibility slice if there are no
340 		 * other slices and it has not otherwise been set up, else
341 		 * we ignore it.
342 		 */
343 		if (i == COMPATIBILITY_SLICE) {
344 			sno = 0;
345 			if (sp->ds_type == 0 &&
346 			    dp->d_slice->dss_nslices == BASE_SLICE) {
347 				sp->ds_size = info->d_media_blocks;
348 				sp->ds_reserved = 0;
349 			}
350 		} else {
351 			sno = i - 1;
352 			sp->ds_reserved = 0;
353 		}
354 
355 		/*
356 		 * Ignore 0-length slices
357 		 */
358 		if (sp->ds_size == 0)
359 			continue;
360 
361 		if (reprobe &&
362 		    (ndev = devfs_find_device_by_name("%ss%d",
363 						      dev->si_name, sno))) {
364 			/*
365 			 * Device already exists and is still valid
366 			 */
367 			ndev->si_flags |= SI_REPROBE_TEST;
368 
369 			/*
370 			 * Destroy old UUID alias
371 			 */
372 			destroy_dev_alias(ndev, "slice-by-uuid/*");
373 
374 			/* Create UUID alias */
375 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
376 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
377 				    &sp->ds_stor_uuid);
378 				make_dev_alias(ndev, "slice-by-uuid/%s",
379 				    uuid_buf);
380 			}
381 		} else {
382 			/*
383 			 * Else create new device
384 			 */
385 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
386 					dkmakewholeslice(dkunit(dev), i),
387 					UID_ROOT, GID_OPERATOR, 0640,
388 					(info->d_dsflags & DSO_DEVICEMAPPER)?
389 					"%s.s%d" : "%ss%d", dev->si_name, sno);
390 			ndev->si_parent = dev;
391 			udev_dict_set_cstr(ndev, "subsystem", "disk");
392 			/* Inherit parent's disk type */
393 			if (dp->d_disktype) {
394 				udev_dict_set_cstr(ndev, "disk-type",
395 				    __DECONST(char *, dp->d_disktype));
396 			}
397 
398 			/* Create serno alias */
399 			if (dp->d_info.d_serialno) {
400 				make_dev_alias(ndev, "serno/%s.s%d",
401 					       dp->d_info.d_serialno, sno);
402 			}
403 
404 			/* Create UUID alias */
405 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
406 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
407 				    &sp->ds_stor_uuid);
408 				make_dev_alias(ndev, "slice-by-uuid/%s",
409 				    uuid_buf);
410 			}
411 
412 			ndev->si_disk = dp;
413 			ndev->si_flags |= SI_REPROBE_TEST;
414 		}
415 		sp->ds_dev = ndev;
416 
417 		/*
418 		 * Probe appropriate slices for a disklabel
419 		 *
420 		 * XXX slice type 1 used by our gpt probe code.
421 		 * XXX slice type 0 used by mbr compat slice.
422 		 */
423 		if (sp->ds_type == DOSPTYP_386BSD ||
424 		    sp->ds_type == DOSPTYP_NETBSD ||
425 		    sp->ds_type == DOSPTYP_OPENBSD ||
426 		    sp->ds_type == 0 ||
427 		    sp->ds_type == 1) {
428 			if (dp->d_slice->dss_first_bsd_slice == 0)
429 				dp->d_slice->dss_first_bsd_slice = i;
430 			disk_probe_slice(dp, ndev, i, reprobe);
431 		}
432 	}
433 	dsgone(&osp);
434 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
435 }
436 
437 
438 static void
439 disk_msg_core(void *arg)
440 {
441 	struct disk	*dp;
442 	struct diskslice *sp;
443 	disk_msg_t msg;
444 	int run;
445 
446 	lwkt_gettoken(&disklist_token);
447 	lwkt_initport_thread(&disk_msg_port, curthread);
448 	wakeup(curthread);	/* synchronous startup */
449 	lwkt_reltoken(&disklist_token);
450 
451 	get_mplock();	/* not mpsafe yet? */
452 	run = 1;
453 
454 	while (run) {
455 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
456 
457 		switch (msg->hdr.u.ms_result) {
458 		case DISK_DISK_PROBE:
459 			dp = (struct disk *)msg->load;
460 			disk_debug(1,
461 				    "DISK_DISK_PROBE: %s\n",
462 					dp->d_cdev->si_name);
463 			disk_probe(dp, 0);
464 			break;
465 		case DISK_DISK_DESTROY:
466 			dp = (struct disk *)msg->load;
467 			disk_debug(1,
468 				    "DISK_DISK_DESTROY: %s\n",
469 					dp->d_cdev->si_name);
470 			devfs_destroy_related(dp->d_cdev);
471 			destroy_dev(dp->d_cdev);
472 			destroy_only_dev(dp->d_rawdev);
473 			lwkt_gettoken(&disklist_token);
474 			LIST_REMOVE(dp, d_list);
475 			lwkt_reltoken(&disklist_token);
476 			if (dp->d_info.d_serialno) {
477 				kfree(dp->d_info.d_serialno, M_TEMP);
478 				dp->d_info.d_serialno = NULL;
479 			}
480 			break;
481 		case DISK_UNPROBE:
482 			dp = (struct disk *)msg->load;
483 			disk_debug(1,
484 				    "DISK_DISK_UNPROBE: %s\n",
485 					dp->d_cdev->si_name);
486 			devfs_destroy_related(dp->d_cdev);
487 			break;
488 		case DISK_SLICE_REPROBE:
489 			dp = (struct disk *)msg->load;
490 			sp = (struct diskslice *)msg->load2;
491 			devfs_clr_related_flag(sp->ds_dev,
492 						SI_REPROBE_TEST);
493 			disk_debug(1,
494 				    "DISK_SLICE_REPROBE: %s\n",
495 				    sp->ds_dev->si_name);
496 			disk_probe_slice(dp, sp->ds_dev,
497 					 dkslice(sp->ds_dev), 1);
498 			devfs_destroy_related_without_flag(
499 					sp->ds_dev, SI_REPROBE_TEST);
500 			break;
501 		case DISK_DISK_REPROBE:
502 			dp = (struct disk *)msg->load;
503 			devfs_clr_related_flag(dp->d_cdev, SI_REPROBE_TEST);
504 			disk_debug(1,
505 				    "DISK_DISK_REPROBE: %s\n",
506 				    dp->d_cdev->si_name);
507 			disk_probe(dp, 1);
508 			devfs_destroy_related_without_flag(
509 					dp->d_cdev, SI_REPROBE_TEST);
510 			break;
511 		case DISK_SYNC:
512 			disk_debug(1, "DISK_SYNC\n");
513 			break;
514 		default:
515 			devfs_debug(DEVFS_DEBUG_WARNING,
516 				    "disk_msg_core: unknown message "
517 				    "received at core\n");
518 			break;
519 		}
520 		lwkt_replymsg(&msg->hdr, 0);
521 	}
522 	lwkt_exit();
523 }
524 
525 
526 /*
527  * Acts as a message drain. Any message that is replied to here gets
528  * destroyed and the memory freed.
529  */
530 static void
531 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
532 {
533 	objcache_put(disk_msg_cache, msg);
534 }
535 
536 
537 void
538 disk_msg_send(uint32_t cmd, void *load, void *load2)
539 {
540 	disk_msg_t disk_msg;
541 	lwkt_port_t port = &disk_msg_port;
542 
543 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
544 
545 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
546 
547 	disk_msg->hdr.u.ms_result = cmd;
548 	disk_msg->load = load;
549 	disk_msg->load2 = load2;
550 	KKASSERT(port);
551 	lwkt_sendmsg(port, &disk_msg->hdr);
552 }
553 
554 void
555 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
556 {
557 	struct lwkt_port rep_port;
558 	disk_msg_t disk_msg;
559 	lwkt_port_t port;
560 
561 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
562 	port = &disk_msg_port;
563 
564 	/* XXX could probably use curthread's built-in msgport */
565 	lwkt_initport_thread(&rep_port, curthread);
566 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
567 
568 	disk_msg->hdr.u.ms_result = cmd;
569 	disk_msg->load = load;
570 	disk_msg->load2 = load2;
571 
572 	lwkt_sendmsg(port, &disk_msg->hdr);
573 	lwkt_waitmsg(&disk_msg->hdr, 0);
574 	objcache_put(disk_msg_cache, disk_msg);
575 }
576 
577 /*
578  * Create a raw device for the dev_ops template (which is returned).  Also
579  * create a slice and unit managed disk and overload the user visible
580  * device space with it.
581  *
582  * NOTE: The returned raw device is NOT a slice and unit managed device.
583  * It is an actual raw device representing the raw disk as specified by
584  * the passed dev_ops.  The disk layer not only returns such a raw device,
585  * it also uses it internally when passing (modified) commands through.
586  */
587 cdev_t
588 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
589 {
590 	return _disk_create_named(NULL, unit, dp, raw_ops, 0);
591 }
592 
593 cdev_t
594 disk_create_clone(int unit, struct disk *dp, struct dev_ops *raw_ops)
595 {
596 	return _disk_create_named(NULL, unit, dp, raw_ops, 1);
597 }
598 
599 cdev_t
600 disk_create_named(const char *name, int unit, struct disk *dp, struct dev_ops *raw_ops)
601 {
602 	return _disk_create_named(name, unit, dp, raw_ops, 0);
603 }
604 
605 cdev_t
606 disk_create_named_clone(const char *name, int unit, struct disk *dp, struct dev_ops *raw_ops)
607 {
608 	return _disk_create_named(name, unit, dp, raw_ops, 1);
609 }
610 
611 static cdev_t
612 _disk_create_named(const char *name, int unit, struct disk *dp, struct dev_ops *raw_ops, int clone)
613 {
614 	cdev_t rawdev;
615 
616 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
617 
618 	if (name) {
619 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
620 		    UID_ROOT, GID_OPERATOR, 0640, "%s", name);
621 	} else {
622 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
623 		    UID_ROOT, GID_OPERATOR, 0640,
624 		    "%s%d", raw_ops->head.name, unit);
625 	}
626 
627 	bzero(dp, sizeof(*dp));
628 
629 	dp->d_rawdev = rawdev;
630 	dp->d_raw_ops = raw_ops;
631 	dp->d_dev_ops = &disk_ops;
632 
633 	if (name) {
634 		if (clone) {
635 			dp->d_cdev = make_only_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
636 			    dkmakewholedisk(unit), UID_ROOT, GID_OPERATOR, 0640,
637 			    "%s", name);
638 		} else {
639 			dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
640 			    dkmakewholedisk(unit), UID_ROOT, GID_OPERATOR, 0640,
641 			    "%s", name);
642 		}
643 	} else {
644 		if (clone) {
645 			dp->d_cdev = make_only_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
646 			    dkmakewholedisk(unit),
647 			    UID_ROOT, GID_OPERATOR, 0640,
648 			    "%s%d", raw_ops->head.name, unit);
649 		} else {
650 			dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
651 			    dkmakewholedisk(unit),
652 			    UID_ROOT, GID_OPERATOR, 0640,
653 			    "%s%d", raw_ops->head.name, unit);
654 		}
655 	}
656 
657 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
658 	dp->d_cdev->si_disk = dp;
659 
660 	if (name)
661 		dsched_disk_create_callback(dp, name, unit);
662 	else
663 		dsched_disk_create_callback(dp, raw_ops->head.name, unit);
664 
665 	lwkt_gettoken(&disklist_token);
666 	LIST_INSERT_HEAD(&disklist, dp, d_list);
667 	lwkt_reltoken(&disklist_token);
668 
669 	disk_debug(1, "disk_create (end): %s%d\n",
670 	    (name != NULL)?(name):(raw_ops->head.name), unit);
671 
672 	return (dp->d_rawdev);
673 }
674 
675 int
676 disk_setdisktype(struct disk *disk, const char *type)
677 {
678 	KKASSERT(disk != NULL);
679 
680 	disk->d_disktype = type;
681 	return udev_dict_set_cstr(disk->d_cdev, "disk-type", __DECONST(char *, type));
682 }
683 
684 int
685 disk_getopencount(struct disk *disk)
686 {
687 	return disk->d_opencount;
688 }
689 
690 static void
691 _setdiskinfo(struct disk *disk, struct disk_info *info)
692 {
693 	char *oldserialno;
694 
695 	oldserialno = disk->d_info.d_serialno;
696 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
697 	info = &disk->d_info;
698 
699 	disk_debug(1,
700 		    "_setdiskinfo: %s\n",
701 			disk->d_cdev->si_name);
702 
703 	/*
704 	 * The serial number is duplicated so the caller can throw
705 	 * their copy away.
706 	 */
707 	if (info->d_serialno && info->d_serialno[0] &&
708 	    (info->d_serialno[0] != ' ' || strlen(info->d_serialno) > 1)) {
709 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
710 		disk_cleanserial(info->d_serialno);
711 		if (disk->d_cdev) {
712 			make_dev_alias(disk->d_cdev, "serno/%s",
713 					info->d_serialno);
714 		}
715 	} else {
716 		info->d_serialno = NULL;
717 	}
718 	if (oldserialno)
719 		kfree(oldserialno, M_TEMP);
720 
721 	dsched_disk_update_callback(disk, info);
722 
723 	/*
724 	 * The caller may set d_media_size or d_media_blocks and we
725 	 * calculate the other.
726 	 */
727 	KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0);
728 	if (info->d_media_size == 0 && info->d_media_blocks) {
729 		info->d_media_size = (u_int64_t)info->d_media_blocks *
730 				     info->d_media_blksize;
731 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
732 		   info->d_media_blksize) {
733 		info->d_media_blocks = info->d_media_size /
734 				       info->d_media_blksize;
735 	}
736 
737 	/*
738 	 * The si_* fields for rawdev are not set until after the
739 	 * disk_create() call, so someone using the cooked version
740 	 * of the raw device (i.e. da0s0) will not get the right
741 	 * si_iosize_max unless we fix it up here.
742 	 */
743 	if (disk->d_cdev && disk->d_rawdev &&
744 	    disk->d_cdev->si_iosize_max == 0) {
745 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
746 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
747 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
748 	}
749 
750 	/* Add the serial number to the udev_dictionary */
751 	if (info->d_serialno)
752 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
753 }
754 
755 /*
756  * Disk drivers must call this routine when media parameters are available
757  * or have changed.
758  */
759 void
760 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
761 {
762 	_setdiskinfo(disk, info);
763 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
764 	disk_debug(1,
765 		    "disk_setdiskinfo: sent probe for %s\n",
766 			disk->d_cdev->si_name);
767 }
768 
769 void
770 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
771 {
772 	_setdiskinfo(disk, info);
773 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
774 	disk_debug(1,
775 		    "disk_setdiskinfo_sync: sent probe for %s\n",
776 			disk->d_cdev->si_name);
777 }
778 
779 /*
780  * This routine is called when an adapter detaches.  The higher level
781  * managed disk device is destroyed while the lower level raw device is
782  * released.
783  */
784 void
785 disk_destroy(struct disk *disk)
786 {
787 	dsched_disk_destroy_callback(disk);
788 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
789 	return;
790 }
791 
792 int
793 disk_dumpcheck(cdev_t dev, u_int64_t *size, u_int64_t *blkno, u_int32_t *secsize)
794 {
795 	struct partinfo pinfo;
796 	int error;
797 
798 	bzero(&pinfo, sizeof(pinfo));
799 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
800 			   proc0.p_ucred, NULL);
801 	if (error)
802 		return (error);
803 
804 	if (pinfo.media_blksize == 0)
805 		return (ENXIO);
806 
807 	if (blkno) /* XXX: make sure this reserved stuff is right */
808 		*blkno = pinfo.reserved_blocks +
809 			pinfo.media_offset / pinfo.media_blksize;
810 	if (secsize)
811 		*secsize = pinfo.media_blksize;
812 	if (size)
813 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
814 
815 	return (0);
816 }
817 
818 int
819 disk_dumpconf(cdev_t dev, u_int onoff)
820 {
821 	struct dumperinfo di;
822 	u_int64_t	size, blkno;
823 	u_int32_t	secsize;
824 	int error;
825 
826 	if (!onoff)
827 		return set_dumper(NULL);
828 
829 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
830 
831 	if (error)
832 		return ENXIO;
833 
834 	bzero(&di, sizeof(struct dumperinfo));
835 	di.dumper = diskdump;
836 	di.priv = dev;
837 	di.blocksize = secsize;
838 	di.mediaoffset = blkno * DEV_BSIZE;
839 	di.mediasize = size * DEV_BSIZE;
840 
841 	return set_dumper(&di);
842 }
843 
844 void
845 disk_unprobe(struct disk *disk)
846 {
847 	if (disk == NULL)
848 		return;
849 
850 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
851 }
852 
853 void
854 disk_invalidate (struct disk *disk)
855 {
856 	dsgone(&disk->d_slice);
857 }
858 
859 struct disk *
860 disk_enumerate(struct disk *disk)
861 {
862 	struct disk *dp;
863 
864 	lwkt_gettoken(&disklist_token);
865 	if (!disk)
866 		dp = (LIST_FIRST(&disklist));
867 	else
868 		dp = (LIST_NEXT(disk, d_list));
869 	lwkt_reltoken(&disklist_token);
870 
871 	return dp;
872 }
873 
874 static
875 int
876 sysctl_disks(SYSCTL_HANDLER_ARGS)
877 {
878 	struct disk *disk;
879 	int error, first;
880 
881 	disk = NULL;
882 	first = 1;
883 
884 	while ((disk = disk_enumerate(disk))) {
885 		if (!first) {
886 			error = SYSCTL_OUT(req, " ", 1);
887 			if (error)
888 				return error;
889 		} else {
890 			first = 0;
891 		}
892 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
893 				   strlen(disk->d_rawdev->si_name));
894 		if (error)
895 			return error;
896 	}
897 	error = SYSCTL_OUT(req, "", 1);
898 	return error;
899 }
900 
901 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
902     sysctl_disks, "A", "names of available disks");
903 
904 /*
905  * Open a disk device or partition.
906  */
907 static
908 int
909 diskopen(struct dev_open_args *ap)
910 {
911 	cdev_t dev = ap->a_head.a_dev;
912 	struct disk *dp;
913 	int error;
914 
915 	/*
916 	 * dp can't be NULL here XXX.
917 	 *
918 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
919 	 * setdiskinfo() is typically called whether the disk is present
920 	 * or not (e.g. CD), but the base disk device is created first
921 	 * and there may be a race.
922 	 */
923 	dp = dev->si_disk;
924 	if (dp == NULL || dp->d_slice == NULL)
925 		return (ENXIO);
926 	error = 0;
927 
928 	/*
929 	 * Deal with open races
930 	 */
931 	get_mplock();
932 	while (dp->d_flags & DISKFLAG_LOCK) {
933 		dp->d_flags |= DISKFLAG_WANTED;
934 		error = tsleep(dp, PCATCH, "diskopen", hz);
935 		if (error) {
936 			rel_mplock();
937 			return (error);
938 		}
939 	}
940 	dp->d_flags |= DISKFLAG_LOCK;
941 
942 	/*
943 	 * Open the underlying raw device.
944 	 */
945 	if (!dsisopen(dp->d_slice)) {
946 #if 0
947 		if (!pdev->si_iosize_max)
948 			pdev->si_iosize_max = dev->si_iosize_max;
949 #endif
950 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
951 				  ap->a_devtype, ap->a_cred);
952 	}
953 
954 	if (error)
955 		goto out;
956 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
957 		       &dp->d_slice, &dp->d_info);
958 	if (!dsisopen(dp->d_slice)) {
959 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
960 	}
961 out:
962 	dp->d_flags &= ~DISKFLAG_LOCK;
963 	if (dp->d_flags & DISKFLAG_WANTED) {
964 		dp->d_flags &= ~DISKFLAG_WANTED;
965 		wakeup(dp);
966 	}
967 	rel_mplock();
968 
969 	KKASSERT(dp->d_opencount >= 0);
970 	/* If the open was successful, bump open count */
971 	if (error == 0)
972 		atomic_add_int(&dp->d_opencount, 1);
973 
974 	return(error);
975 }
976 
977 /*
978  * Close a disk device or partition
979  */
980 static
981 int
982 diskclose(struct dev_close_args *ap)
983 {
984 	cdev_t dev = ap->a_head.a_dev;
985 	struct disk *dp;
986 	int error;
987 	int lcount;
988 
989 	error = 0;
990 	dp = dev->si_disk;
991 
992 	/*
993 	 * The cdev_t represents the disk/slice/part.  The shared
994 	 * dp structure governs all cdevs associated with the disk.
995 	 *
996 	 * As a safety only close the underlying raw device on the last
997 	 * close the disk device if our tracking of the slices/partitions
998 	 * also indicates nothing is open.
999 	 */
1000 	KKASSERT(dp->d_opencount >= 1);
1001 	lcount = atomic_fetchadd_int(&dp->d_opencount, -1);
1002 
1003 	get_mplock();
1004 	dsclose(dev, ap->a_devtype, dp->d_slice);
1005 	if (lcount <= 1 && !dsisopen(dp->d_slice)) {
1006 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
1007 	}
1008 	rel_mplock();
1009 	return (error);
1010 }
1011 
1012 /*
1013  * First execute the ioctl on the disk device, and if it isn't supported
1014  * try running it on the backing device.
1015  */
1016 static
1017 int
1018 diskioctl(struct dev_ioctl_args *ap)
1019 {
1020 	cdev_t dev = ap->a_head.a_dev;
1021 	struct disk *dp;
1022 	int error;
1023 	u_int u;
1024 
1025 	dp = dev->si_disk;
1026 	if (dp == NULL)
1027 		return (ENXIO);
1028 
1029 	devfs_debug(DEVFS_DEBUG_DEBUG,
1030 		    "diskioctl: cmd is: %lx (name: %s)\n",
1031 		    ap->a_cmd, dev->si_name);
1032 	devfs_debug(DEVFS_DEBUG_DEBUG,
1033 		    "diskioctl: &dp->d_slice is: %p, %p\n",
1034 		    &dp->d_slice, dp->d_slice);
1035 
1036 	if (ap->a_cmd == DIOCGKERNELDUMP) {
1037 		u = *(u_int *)ap->a_data;
1038 		return disk_dumpconf(dev, u);
1039 	}
1040 
1041 	if (&dp->d_slice == NULL || dp->d_slice == NULL ||
1042 	    ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) &&
1043 	     dkslice(dev) == WHOLE_DISK_SLICE)) {
1044 		error = ENOIOCTL;
1045 	} else {
1046 		get_mplock();
1047 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
1048 				&dp->d_slice, &dp->d_info);
1049 		rel_mplock();
1050 	}
1051 
1052 	if (error == ENOIOCTL) {
1053 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
1054 				   ap->a_fflag, ap->a_cred, NULL);
1055 	}
1056 	return (error);
1057 }
1058 
1059 /*
1060  * Execute strategy routine
1061  */
1062 static
1063 int
1064 diskstrategy(struct dev_strategy_args *ap)
1065 {
1066 	cdev_t dev = ap->a_head.a_dev;
1067 	struct bio *bio = ap->a_bio;
1068 	struct bio *nbio;
1069 	struct disk *dp;
1070 
1071 	dp = dev->si_disk;
1072 
1073 	if (dp == NULL) {
1074 		bio->bio_buf->b_error = ENXIO;
1075 		bio->bio_buf->b_flags |= B_ERROR;
1076 		biodone(bio);
1077 		return(0);
1078 	}
1079 	KKASSERT(dev->si_disk == dp);
1080 
1081 	/*
1082 	 * The dscheck() function will also transform the slice relative
1083 	 * block number i.e. bio->bio_offset into a block number that can be
1084 	 * passed directly to the underlying raw device.  If dscheck()
1085 	 * returns NULL it will have handled the bio for us (e.g. EOF
1086 	 * or error due to being beyond the device size).
1087 	 */
1088 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
1089 		dsched_queue(dp, nbio);
1090 	} else {
1091 		biodone(bio);
1092 	}
1093 	return(0);
1094 }
1095 
1096 /*
1097  * Return the partition size in ?blocks?
1098  */
1099 static
1100 int
1101 diskpsize(struct dev_psize_args *ap)
1102 {
1103 	cdev_t dev = ap->a_head.a_dev;
1104 	struct disk *dp;
1105 
1106 	dp = dev->si_disk;
1107 	if (dp == NULL)
1108 		return(ENODEV);
1109 
1110 	ap->a_result = dssize(dev, &dp->d_slice);
1111 
1112 	if ((ap->a_result == -1) &&
1113 	   (dp->d_info.d_dsflags & DSO_DEVICEMAPPER)) {
1114 		ap->a_head.a_dev = dp->d_rawdev;
1115 		return dev_doperate(&ap->a_head);
1116 	}
1117 	return(0);
1118 }
1119 
1120 int
1121 diskdump(struct dev_dump_args *ap)
1122 {
1123 	cdev_t dev = ap->a_head.a_dev;
1124 	struct disk *dp = dev->si_disk;
1125 	u_int64_t size, offset;
1126 	int error;
1127 
1128 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1129 	/* XXX: this should probably go in disk_dumpcheck somehow */
1130 	if (ap->a_length != 0) {
1131 		size *= DEV_BSIZE;
1132 		offset = ap->a_blkno * DEV_BSIZE;
1133 		if ((ap->a_offset < offset) ||
1134 		    (ap->a_offset + ap->a_length - offset > size)) {
1135 			kprintf("Attempt to write outside dump device boundaries.\n");
1136 			error = ENOSPC;
1137 		}
1138 	}
1139 
1140 	if (error == 0) {
1141 		ap->a_head.a_dev = dp->d_rawdev;
1142 		error = dev_doperate(&ap->a_head);
1143 	}
1144 
1145 	return(error);
1146 }
1147 
1148 
1149 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1150     0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1151 
1152 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1153     0, sizeof(struct disk), "sizeof(struct disk)");
1154 
1155 /*
1156  * Reorder interval for burst write allowance and minor write
1157  * allowance.
1158  *
1159  * We always want to trickle some writes in to make use of the
1160  * disk's zone cache.  Bursting occurs on a longer interval and only
1161  * runningbufspace is well over the hirunningspace limit.
1162  */
1163 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1164 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1165 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1166 int bioq_reorder_minor_interval = 5;
1167 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1168 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1169 
1170 int bioq_reorder_burst_bytes = 3000000;
1171 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1172 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1173 int bioq_reorder_minor_bytes = 262144;
1174 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1175 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1176 
1177 
1178 /*
1179  * Order I/Os.  Generally speaking this code is designed to make better
1180  * use of drive zone caches.  A drive zone cache can typically track linear
1181  * reads or writes for around 16 zones simultaniously.
1182  *
1183  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1184  * of writes to be queued asynchronously.  This creates a huge bottleneck
1185  * for reads which reduce read bandwidth to a trickle.
1186  *
1187  * To solve this problem we generally reorder reads before writes.
1188  *
1189  * However, a large number of random reads can also starve writes and
1190  * make poor use of the drive zone cache so we allow writes to trickle
1191  * in every N reads.
1192  */
1193 void
1194 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1195 {
1196 	/*
1197 	 * The BIO wants to be ordered.  Adding to the tail also
1198 	 * causes transition to be set to NULL, forcing the ordering
1199 	 * of all prior I/O's.
1200 	 */
1201 	if (bio->bio_buf->b_flags & B_ORDERED) {
1202 		bioq_insert_tail(bioq, bio);
1203 		return;
1204 	}
1205 
1206 	switch(bio->bio_buf->b_cmd) {
1207 	case BUF_CMD_READ:
1208 		if (bioq->transition) {
1209 			/*
1210 			 * Insert before the first write.  Bleedover writes
1211 			 * based on reorder intervals to prevent starvation.
1212 			 */
1213 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1214 			++bioq->reorder;
1215 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1216 				bioqwritereorder(bioq);
1217 				if (bioq->reorder >=
1218 				    bioq_reorder_burst_interval) {
1219 					bioq->reorder = 0;
1220 				}
1221 			}
1222 		} else {
1223 			/*
1224 			 * No writes queued (or ordering was forced),
1225 			 * insert at tail.
1226 			 */
1227 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1228 		}
1229 		break;
1230 	case BUF_CMD_WRITE:
1231 		/*
1232 		 * Writes are always appended.  If no writes were previously
1233 		 * queued or an ordered tail insertion occured the transition
1234 		 * field will be NULL.
1235 		 */
1236 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1237 		if (bioq->transition == NULL)
1238 			bioq->transition = bio;
1239 		break;
1240 	default:
1241 		/*
1242 		 * All other request types are forced to be ordered.
1243 		 */
1244 		bioq_insert_tail(bioq, bio);
1245 		break;
1246 	}
1247 }
1248 
1249 /*
1250  * Move the read-write transition point to prevent reads from
1251  * completely starving our writes.  This brings a number of writes into
1252  * the fold every N reads.
1253  *
1254  * We bring a few linear writes into the fold on a minor interval
1255  * and we bring a non-linear burst of writes into the fold on a major
1256  * interval.  Bursting only occurs if runningbufspace is really high
1257  * (typically from syncs, fsyncs, or HAMMER flushes).
1258  */
1259 static
1260 void
1261 bioqwritereorder(struct bio_queue_head *bioq)
1262 {
1263 	struct bio *bio;
1264 	off_t next_offset;
1265 	size_t left;
1266 	size_t n;
1267 	int check_off;
1268 
1269 	if (bioq->reorder < bioq_reorder_burst_interval ||
1270 	    !buf_runningbufspace_severe()) {
1271 		left = (size_t)bioq_reorder_minor_bytes;
1272 		check_off = 1;
1273 	} else {
1274 		left = (size_t)bioq_reorder_burst_bytes;
1275 		check_off = 0;
1276 	}
1277 
1278 	next_offset = bioq->transition->bio_offset;
1279 	while ((bio = bioq->transition) != NULL &&
1280 	       (check_off == 0 || next_offset == bio->bio_offset)
1281 	) {
1282 		n = bio->bio_buf->b_bcount;
1283 		next_offset = bio->bio_offset + n;
1284 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1285 		if (left < n)
1286 			break;
1287 		left -= n;
1288 	}
1289 }
1290 
1291 /*
1292  * Bounds checking against the media size, used for the raw partition.
1293  * secsize, mediasize and b_blkno must all be the same units.
1294  * Possibly this has to be DEV_BSIZE (512).
1295  */
1296 int
1297 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1298 {
1299 	struct buf *bp = bio->bio_buf;
1300 	int64_t sz;
1301 
1302 	sz = howmany(bp->b_bcount, secsize);
1303 
1304 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1305 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1306 		if (sz == 0) {
1307 			/* If exactly at end of disk, return EOF. */
1308 			bp->b_resid = bp->b_bcount;
1309 			return 0;
1310 		}
1311 		if (sz < 0) {
1312 			/* If past end of disk, return EINVAL. */
1313 			bp->b_error = EINVAL;
1314 			return 0;
1315 		}
1316 		/* Otherwise, truncate request. */
1317 		bp->b_bcount = sz * secsize;
1318 	}
1319 
1320 	return 1;
1321 }
1322 
1323 /*
1324  * Disk error is the preface to plaintive error messages
1325  * about failing disk transfers.  It prints messages of the form
1326 
1327 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1328 
1329  * if the offset of the error in the transfer and a disk label
1330  * are both available.  blkdone should be -1 if the position of the error
1331  * is unknown; the disklabel pointer may be null from drivers that have not
1332  * been converted to use them.  The message is printed with kprintf
1333  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1334  * The message should be completed (with at least a newline) with kprintf
1335  * or log(-1, ...), respectively.  There is no trailing space.
1336  */
1337 void
1338 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1339 {
1340 	struct buf *bp = bio->bio_buf;
1341 	const char *term;
1342 
1343 	switch(bp->b_cmd) {
1344 	case BUF_CMD_READ:
1345 		term = "read";
1346 		break;
1347 	case BUF_CMD_WRITE:
1348 		term = "write";
1349 		break;
1350 	default:
1351 		term = "access";
1352 		break;
1353 	}
1354 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1355 	kprintf("offset %012llx for %d",
1356 		(long long)bio->bio_offset,
1357 		bp->b_bcount);
1358 
1359 	if (donecnt)
1360 		kprintf(" (%d bytes completed)", donecnt);
1361 }
1362 
1363 /*
1364  * Locate a disk device
1365  */
1366 cdev_t
1367 disk_locate(const char *devname)
1368 {
1369 	return devfs_find_device_by_name(devname);
1370 }
1371 
1372 void
1373 disk_config(void *arg)
1374 {
1375 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1376 }
1377 
1378 static void
1379 disk_init(void)
1380 {
1381 	struct thread* td_core;
1382 
1383 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1384 					 NULL, NULL, NULL,
1385 					 objcache_malloc_alloc,
1386 					 objcache_malloc_free,
1387 					 &disk_msg_malloc_args);
1388 
1389 	lwkt_token_init(&disklist_token, "disks");
1390 
1391 	/*
1392 	 * Initialize the reply-only port which acts as a message drain
1393 	 */
1394 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1395 
1396 	lwkt_gettoken(&disklist_token);
1397 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1398 		    0, -1, "disk_msg_core");
1399 	tsleep(td_core, 0, "diskcore", 0);
1400 	lwkt_reltoken(&disklist_token);
1401 }
1402 
1403 static void
1404 disk_uninit(void)
1405 {
1406 	objcache_destroy(disk_msg_cache);
1407 }
1408 
1409 /*
1410  * Clean out illegal characters in serial numbers.
1411  */
1412 static void
1413 disk_cleanserial(char *serno)
1414 {
1415 	char c;
1416 
1417 	while ((c = *serno) != 0) {
1418 		if (c >= 'a' && c <= 'z')
1419 			;
1420 		else if (c >= 'A' && c <= 'Z')
1421 			;
1422 		else if (c >= '0' && c <= '9')
1423 			;
1424 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1425 			;
1426 		else
1427 			c = '_';
1428 		*serno++= c;
1429 	}
1430 }
1431 
1432 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1433 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1434 		0, "Enable subr_disk debugging");
1435 
1436 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1437 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1438