xref: /dragonfly/sys/kern/subr_fattime.c (revision 2c81fb9c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  *
30  * Convert MS-DOS FAT format timestamps to and from unix timespecs
31  *
32  * FAT filestamps originally consisted of two 16 bit integers, encoded like
33  * this:
34  *
35  *	yyyyyyymmmmddddd (year - 1980, month, day)
36  *
37  *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
38  *
39  * Subsequently even Microsoft realized that files could be accessed in less
40  * than two seconds and a byte was added containing:
41  *
42  *      sfffffff	 (second mod two, 100ths of second)
43  *
44  * FAT timestamps are in the local timezone, with no indication of which
45  * timezone much less if daylight savings time applies.
46  *
47  * Later on again, in Windows NT, timestamps were defined relative to GMT.
48  *
49  * Purists will point out that UTC replaced GMT for such uses around
50  * half a century ago, already then.  Ironically "NT" was an abbreviation of
51  * "New Technology".  Anyway...
52  *
53  * The 'utc' argument determines if the resulting FATTIME timestamp
54  * should be on the UTC or local timezone calendar.
55  *
56  * The conversion functions below cut time into four-year leap-year
57  * cycles rather than single years and uses table lookups inside those
58  * cycles to get the months and years sorted out.
59  *
60  * Obviously we cannot calculate the correct table index going from
61  * a posix seconds count to Y/M/D, but we can get pretty close by
62  * dividing the daycount by 32 (giving a too low index), and then
63  * adjusting upwards a couple of steps if necessary.
64  *
65  * FAT timestamps have 7 bits for the year and starts at 1980, so
66  * they can represent up to 2107 which means that the non-leap-year
67  * 2100 must be handled.
68  *
69  * XXX: As long as time_t is 32 bits this is not relevant or easily
70  * XXX: testable.  Revisit when time_t grows bigger.
71  * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
72  *
73  */
74 
75 #include <sys/param.h>
76 #include <sys/types.h>
77 #include <sys/time.h>
78 
79 #define DAY	(24 * 60 * 60)	/* Length of day in seconds */
80 #define YEAR	365		/* Length of normal year */
81 #define LYC	(4 * YEAR + 1)	/* Length of 4 year leap-year cycle */
82 #define T1980	(10 * 365 + 2)	/* Days from 1970 to 1980 */
83 
84 /* End of month is N days from start of (normal) year */
85 #define JAN	31
86 #define FEB	(JAN + 28)
87 #define MAR	(FEB + 31)
88 #define APR	(MAR + 30)
89 #define MAY	(APR + 31)
90 #define JUN	(MAY + 30)
91 #define JUL	(JUN + 31)
92 #define AUG	(JUL + 31)
93 #define SEP	(AUG + 30)
94 #define OCT	(SEP + 31)
95 #define NOV	(OCT + 30)
96 #define DEC	(NOV + 31)
97 
98 /* Table of months in a 4 year leap-year cycle */
99 
100 #define ENC(y,m)	(((y) << 9) | ((m) << 5))
101 
102 static const struct {
103 	uint16_t	days;	/* month start in days relative to cycle */
104 	uint16_t	coded;	/* encoded year + month information */
105 } mtab[48] = {
106 	{   0 + 0 * YEAR,     ENC(0, 1)  },
107 
108 	{ JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
109 	{ MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
110 	{ MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
111 	{ JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
112 	{ SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
113 	{ NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
114 
115 	{ JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
116 	{ MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
117 	{ MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
118 	{ JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
119 	{ SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
120 	{ NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
121 
122 	{ JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
123 	{ MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
124 	{ MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
125 	{ JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
126 	{ SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
127 	{ NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
128 
129 	{ JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
130 	{ MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
131 	{ MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
132 	{ JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
133 	{ SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
134 	{ NOV + 3 * YEAR + 1, ENC(3, 12) }
135 };
136 
137 
138 void
139 timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
140     uint16_t *dtp, uint8_t *dhp)
141 {
142 	time_t t1;
143 	unsigned t2, l, m;
144 
145 	t1 = tsp->tv_sec;
146 	if (!utc)
147 		t1 -= 0; // XXX utc_offset();
148 
149 	if (dhp != NULL)
150 		*dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
151 	if (dtp != NULL) {
152 		*dtp = (t1 / 2) % 30;
153 		*dtp |= ((t1 / 60) % 60) << 5;
154 		*dtp |= ((t1 / 3600) % 24) << 11;
155 	}
156 	if (ddp != NULL) {
157 		t2 = t1 / DAY;
158 		if (t2 < T1980) {
159 			/* Impossible date, truncate to 1980-01-01 */
160 			*ddp = 0x0021;
161 		} else {
162 			t2 -= T1980;
163 
164 			/*
165 			 * 2100 is not a leap year.
166 			 * XXX: a 32 bit time_t can not get us here.
167 			 */
168 			if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
169 				t2++;
170 
171 			/* Account for full leapyear cycles */
172 			l = t2 / LYC;
173 			*ddp = (l * 4) << 9;
174 			t2 -= l * LYC;
175 
176 			/* Find approximate table entry */
177 			m = t2 / 32;
178 
179 			/* Find correct table entry */
180 			while (m < 47 && mtab[m + 1].days <= t2)
181 				m++;
182 
183 			/* Get year + month from the table */
184 			*ddp += mtab[m].coded;
185 
186 			/* And apply the day in the month */
187 			t2 -= mtab[m].days - 1;
188 			*ddp |= t2;
189 		}
190 	}
191 }
192 
193 /*
194  * Table indexed by the bottom two bits of year + four bits of the month
195  * from the FAT timestamp, returning number of days into 4 year long
196  * leap-year cycle
197  */
198 
199 #define DCOD(m, y, l)	((m) + YEAR * (y) + (l))
200 static const uint16_t daytab[64] = {
201 	0, 		 DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
202 	DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
203 	DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
204 	DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
205 	0, 		 DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
206 	DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
207 	DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
208 	DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
209 	0,		 DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
210 	DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
211 	DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
212 	DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
213 	0,		 DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
214 	DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
215 	DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
216 	DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
217 };
218 
219 void
220 fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
221     struct timespec *tsp)
222 {
223 	unsigned day;
224 
225 	/* Unpack time fields */
226 	tsp->tv_sec = (dt & 0x1f) << 1;
227 	tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
228 	tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
229 	tsp->tv_sec += dh / 100;
230 	tsp->tv_nsec = (dh % 100) * 10000000;
231 
232 	/* Day of month */
233 	day = (dd & 0x1f) - 1;
234 
235 	/* Full leap-year cycles */
236 	day += LYC * ((dd >> 11) & 0x1f);
237 
238 	/* Month offset from leap-year cycle */
239 	day += daytab[(dd >> 5) & 0x3f];
240 
241 	/*
242 	 * 2100 is not a leap year.
243 	 * XXX: a 32 bit time_t can not get us here.
244 	 */
245 	if (day >= ((2100 - 1980) / 4 * LYC + FEB))
246 		day--;
247 
248 	/* Align with time_t epoch */
249 	day += T1980;
250 
251 	tsp->tv_sec += DAY * day;
252 	if (!utc)
253 		tsp->tv_sec += 0; // XXX utc_offset();
254 }
255 
256 #ifdef TEST_DRIVER
257 
258 #include <stdio.h>
259 #include <unistd.h>
260 #include <stdlib.h>
261 
262 int
263 main(int argc __unused, char **argv __unused)
264 {
265 	int i;
266 	struct timespec ts;
267 	struct tm tm;
268 	double a;
269 	uint16_t d, t;
270 	uint8_t p;
271 	char buf[100];
272 
273 	for (i = 0; i < 10000; i++) {
274 		do {
275 			ts.tv_sec = random();
276 		} while (ts.tv_sec < T1980 * 86400);
277 		ts.tv_nsec = random() % 1000000000;
278 
279 		printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
280 
281 		gmtime_r(&ts.tv_sec, &tm);
282 		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
283 		printf("%s -- ", buf);
284 
285 		a = ts.tv_sec + ts.tv_nsec * 1e-9;
286 		d = t = p = 0;
287 		timet2fattime(&ts, &d, &t, &p);
288 		printf("%04x %04x %02x -- ", d, t, p);
289 		printf("%3d %02d %02d %02d %02d %02d -- ",
290 		    ((d >> 9)  & 0x7f) + 1980,
291 		    (d >> 5)  & 0x0f,
292 		    (d >> 0)  & 0x1f,
293 		    (t >> 11) & 0x1f,
294 		    (t >> 5)  & 0x3f,
295 		    ((t >> 0)  & 0x1f) * 2);
296 
297 		ts.tv_sec = ts.tv_nsec = 0;
298 		fattime2timet(d, t, p, &ts);
299 		printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
300 		gmtime_r(&ts.tv_sec, &tm);
301 		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
302 		printf("%s -- ", buf);
303 		a -= ts.tv_sec + ts.tv_nsec * 1e-9;
304 		printf("%.3f", a);
305 		printf("\n");
306 	}
307 	return (0);
308 }
309 
310 #endif /* TEST_DRIVER */
311