xref: /dragonfly/sys/kern/subr_prf.c (revision 267c04fd)
1 /*-
2  * Copyright (c) 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)subr_prf.c	8.3 (Berkeley) 1/21/94
35  * $FreeBSD: src/sys/kern/subr_prf.c,v 1.61.2.5 2002/08/31 18:22:08 dwmalone Exp $
36  */
37 
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/msgbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/priv.h>
47 #include <sys/tty.h>
48 #include <sys/tprintf.h>
49 #include <sys/stdint.h>
50 #include <sys/syslog.h>
51 #include <sys/cons.h>
52 #include <sys/uio.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #include <sys/ctype.h>
56 #include <sys/eventhandler.h>
57 #include <sys/kthread.h>
58 #include <sys/cpu_topology.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Note that stdarg.h and the ANSI style va_start macro is used for both
69  * ANSI and traditional C compilers.  We use the __ machine version to stay
70  * within the kernel header file set.
71  */
72 #include <machine/stdarg.h>
73 
74 #define TOCONS		0x01
75 #define TOTTY		0x02
76 #define TOLOG		0x04
77 #define TOWAKEUP	0x08
78 
79 /* Max number conversion buffer length: a u_quad_t in base 2, plus NUL byte. */
80 #define MAXNBUF	(sizeof(intmax_t) * NBBY + 1)
81 
82 struct putchar_arg {
83 	int	flags;
84 	int	pri;
85 	struct	tty *tty;
86 };
87 
88 struct snprintf_arg {
89 	char	*str;
90 	size_t	remain;
91 };
92 
93 extern	int log_open;
94 
95 struct	tty *constty;			/* pointer to console "window" tty */
96 
97 static void  msglogchar(int c, int pri);
98 static void  msgaddchar(int c, void *dummy);
99 static void  kputchar (int ch, void *arg);
100 static char *ksprintn (char *nbuf, uintmax_t num, int base, int *lenp,
101 		       int upper);
102 static void  snprintf_func (int ch, void *arg);
103 
104 static int consintr = 1;		/* Ok to handle console interrupts? */
105 static int msgbufmapped;		/* Set when safe to use msgbuf */
106 static struct spinlock cons_spin = SPINLOCK_INITIALIZER(cons_spin, "cons_spin");
107 static thread_t constty_td = NULL;
108 
109 int msgbuftrigger;
110 
111 static int      log_console_output = 1;
112 TUNABLE_INT("kern.log_console_output", &log_console_output);
113 SYSCTL_INT(_kern, OID_AUTO, log_console_output, CTLFLAG_RW,
114     &log_console_output, 0, "");
115 
116 static int unprivileged_read_msgbuf = 1;
117 SYSCTL_INT(_security, OID_AUTO, unprivileged_read_msgbuf, CTLFLAG_RW,
118     &unprivileged_read_msgbuf, 0,
119     "Unprivileged processes may read the kernel message buffer");
120 
121 /*
122  * Warn that a system table is full.
123  */
124 void
125 tablefull(const char *tab)
126 {
127 
128 	log(LOG_ERR, "%s: table is full\n", tab);
129 }
130 
131 /*
132  * Uprintf prints to the controlling terminal for the current process.
133  */
134 int
135 uprintf(const char *fmt, ...)
136 {
137 	struct proc *p = curproc;
138 	__va_list ap;
139 	struct putchar_arg pca;
140 	int retval = 0;
141 
142 	if (p && (p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
143 		__va_start(ap, fmt);
144 		pca.tty = p->p_session->s_ttyp;
145 		pca.flags = TOTTY;
146 
147 		retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
148 		__va_end(ap);
149 	}
150 	return (retval);
151 }
152 
153 tpr_t
154 tprintf_open(struct proc *p)
155 {
156 	if ((p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
157 		sess_hold(p->p_session);
158 		return ((tpr_t) p->p_session);
159 	}
160 	return (NULL);
161 }
162 
163 void
164 tprintf_close(tpr_t sess)
165 {
166 	if (sess)
167 		sess_rele((struct session *) sess);
168 }
169 
170 /*
171  * tprintf prints on the controlling terminal associated
172  * with the given session.
173  */
174 int
175 tprintf(tpr_t tpr, const char *fmt, ...)
176 {
177 	struct session *sess = (struct session *)tpr;
178 	struct tty *tp = NULL;
179 	int flags = TOLOG;
180 	__va_list ap;
181 	struct putchar_arg pca;
182 	int retval;
183 
184 	if (sess && sess->s_ttyvp && ttycheckoutq(sess->s_ttyp, 0)) {
185 		flags |= TOTTY;
186 		tp = sess->s_ttyp;
187 	}
188 	__va_start(ap, fmt);
189 	pca.tty = tp;
190 	pca.flags = flags;
191 	pca.pri = LOG_INFO;
192 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
193 	__va_end(ap);
194 	msgbuftrigger = 1;
195 	return (retval);
196 }
197 
198 /*
199  * Ttyprintf displays a message on a tty; it should be used only by
200  * the tty driver, or anything that knows the underlying tty will not
201  * be revoke(2)'d away.  Other callers should use tprintf.
202  */
203 int
204 ttyprintf(struct tty *tp, const char *fmt, ...)
205 {
206 	__va_list ap;
207 	struct putchar_arg pca;
208 	int retval;
209 
210 	__va_start(ap, fmt);
211 	pca.tty = tp;
212 	pca.flags = TOTTY;
213 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
214 	__va_end(ap);
215 	return (retval);
216 }
217 
218 /*
219  * Log writes to the log buffer, and guarantees not to sleep (so can be
220  * called by interrupt routines).  If there is no process reading the
221  * log yet, it writes to the console also.
222  */
223 int
224 log(int level, const char *fmt, ...)
225 {
226 	__va_list ap;
227 	int retval;
228 	struct putchar_arg pca;
229 
230 	pca.tty = NULL;
231 	pca.pri = level;
232 	pca.flags = log_open ? TOLOG : TOCONS;
233 
234 	__va_start(ap, fmt);
235 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
236 	__va_end(ap);
237 
238 	msgbuftrigger = 1;
239 	return (retval);
240 }
241 
242 #define CONSCHUNK 128
243 
244 void
245 log_console(struct uio *uio)
246 {
247 	int c, i, error, iovlen, nl;
248 	struct uio muio;
249 	struct iovec *miov = NULL;
250 	char *consbuffer;
251 	int pri;
252 
253 	if (!log_console_output)
254 		return;
255 
256 	pri = LOG_INFO | LOG_CONSOLE;
257 	muio = *uio;
258 	iovlen = uio->uio_iovcnt * sizeof (struct iovec);
259 	miov = kmalloc(iovlen, M_TEMP, M_WAITOK);
260 	consbuffer = kmalloc(CONSCHUNK, M_TEMP, M_WAITOK);
261 	bcopy((caddr_t)muio.uio_iov, (caddr_t)miov, iovlen);
262 	muio.uio_iov = miov;
263 	uio = &muio;
264 
265 	nl = 0;
266 	while (uio->uio_resid > 0) {
267 		c = (int)szmin(uio->uio_resid, CONSCHUNK);
268 		error = uiomove(consbuffer, (size_t)c, uio);
269 		if (error != 0)
270 			break;
271 		for (i = 0; i < c; i++) {
272 			msglogchar(consbuffer[i], pri);
273 			if (consbuffer[i] == '\n')
274 				nl = 1;
275 			else
276 				nl = 0;
277 		}
278 	}
279 	if (!nl)
280 		msglogchar('\n', pri);
281 	msgbuftrigger = 1;
282 	kfree(miov, M_TEMP);
283 	kfree(consbuffer, M_TEMP);
284 	return;
285 }
286 
287 /*
288  * Output to the console.
289  */
290 int
291 kprintf(const char *fmt, ...)
292 {
293 	__va_list ap;
294 	int savintr;
295 	struct putchar_arg pca;
296 	int retval;
297 
298 	savintr = consintr;		/* disable interrupts */
299 	consintr = 0;
300 	__va_start(ap, fmt);
301 	pca.tty = NULL;
302 	pca.flags = TOCONS | TOLOG;
303 	pca.pri = -1;
304 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
305 	__va_end(ap);
306 	if (!panicstr)
307 		msgbuftrigger = 1;
308 	consintr = savintr;		/* reenable interrupts */
309 	return (retval);
310 }
311 
312 int
313 kvprintf(const char *fmt, __va_list ap)
314 {
315 	int savintr;
316 	struct putchar_arg pca;
317 	int retval;
318 
319 	savintr = consintr;		/* disable interrupts */
320 	consintr = 0;
321 	pca.tty = NULL;
322 	pca.flags = TOCONS | TOLOG;
323 	pca.pri = -1;
324 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
325 	if (!panicstr)
326 		msgbuftrigger = 1;
327 	consintr = savintr;		/* reenable interrupts */
328 	return (retval);
329 }
330 
331 /*
332  * Limited rate kprintf.  The passed rate structure must be initialized
333  * with the desired reporting frequency.  A frequency of 0 will result in
334  * no output.
335  *
336  * count may be initialized to a negative number to allow an initial
337  * burst.
338  */
339 void
340 krateprintf(struct krate *rate, const char *fmt, ...)
341 {
342 	__va_list ap;
343 
344 	if (rate->ticks != (int)time_uptime) {
345 		rate->ticks = (int)time_uptime;
346 		if (rate->count > 0)
347 			rate->count = 0;
348 	}
349 	if (rate->count < rate->freq) {
350 		++rate->count;
351 		__va_start(ap, fmt);
352 		kvprintf(fmt, ap);
353 		__va_end(ap);
354 	}
355 }
356 
357 /*
358  * Print a character to the dmesg log, the console, and/or the user's
359  * terminal.
360  *
361  * NOTE: TOTTY does not require nonblocking operation, but TOCONS
362  * 	 and TOLOG do.  When we have a constty we still output to
363  *	 the real console but we have a monitoring thread which
364  *	 we wakeup which tracks the log.
365  */
366 static void
367 kputchar(int c, void *arg)
368 {
369 	struct putchar_arg *ap = (struct putchar_arg*) arg;
370 	int flags = ap->flags;
371 	struct tty *tp = ap->tty;
372 
373 	if (panicstr)
374 		constty = NULL;
375 	if ((flags & TOCONS) && tp == NULL && constty)
376 		flags |= TOLOG | TOWAKEUP;
377 	if ((flags & TOTTY) && tputchar(c, tp) < 0)
378 		ap->flags &= ~TOTTY;
379 	if ((flags & TOLOG))
380 		msglogchar(c, ap->pri);
381 	if ((flags & TOCONS) && c)
382 		cnputc(c);
383 	if (flags & TOWAKEUP)
384 		wakeup(constty_td);
385 }
386 
387 /*
388  * Scaled down version of sprintf(3).
389  */
390 int
391 ksprintf(char *buf, const char *cfmt, ...)
392 {
393 	int retval;
394 	__va_list ap;
395 
396 	__va_start(ap, cfmt);
397 	retval = kvcprintf(cfmt, NULL, buf, 10, ap);
398 	buf[retval] = '\0';
399 	__va_end(ap);
400 	return (retval);
401 }
402 
403 /*
404  * Scaled down version of vsprintf(3).
405  */
406 int
407 kvsprintf(char *buf, const char *cfmt, __va_list ap)
408 {
409 	int retval;
410 
411 	retval = kvcprintf(cfmt, NULL, buf, 10, ap);
412 	buf[retval] = '\0';
413 	return (retval);
414 }
415 
416 /*
417  * Scaled down version of snprintf(3).
418  */
419 int
420 ksnprintf(char *str, size_t size, const char *format, ...)
421 {
422 	int retval;
423 	__va_list ap;
424 
425 	__va_start(ap, format);
426 	retval = kvsnprintf(str, size, format, ap);
427 	__va_end(ap);
428 	return(retval);
429 }
430 
431 /*
432  * Scaled down version of vsnprintf(3).
433  */
434 int
435 kvsnprintf(char *str, size_t size, const char *format, __va_list ap)
436 {
437 	struct snprintf_arg info;
438 	int retval;
439 
440 	info.str = str;
441 	info.remain = size;
442 	retval = kvcprintf(format, snprintf_func, &info, 10, ap);
443 	if (info.remain >= 1)
444 		*info.str++ = '\0';
445 	return (retval);
446 }
447 
448 int
449 ksnrprintf(char *str, size_t size, int radix, const char *format, ...)
450 {
451 	int retval;
452 	__va_list ap;
453 
454 	__va_start(ap, format);
455 	retval = kvsnrprintf(str, size, radix, format, ap);
456 	__va_end(ap);
457 	return(retval);
458 }
459 
460 int
461 kvsnrprintf(char *str, size_t size, int radix, const char *format, __va_list ap)
462 {
463 	struct snprintf_arg info;
464 	int retval;
465 
466 	info.str = str;
467 	info.remain = size;
468 	retval = kvcprintf(format, snprintf_func, &info, radix, ap);
469 	if (info.remain >= 1)
470 		*info.str++ = '\0';
471 	return (retval);
472 }
473 
474 int
475 kvasnrprintf(char **strp, size_t size, int radix,
476 	     const char *format, __va_list ap)
477 {
478 	struct snprintf_arg info;
479 	int retval;
480 
481 	*strp = kmalloc(size, M_TEMP, M_WAITOK);
482 	info.str = *strp;
483 	info.remain = size;
484 	retval = kvcprintf(format, snprintf_func, &info, radix, ap);
485 	if (info.remain >= 1)
486 		*info.str++ = '\0';
487 	return (retval);
488 }
489 
490 void
491 kvasfree(char **strp)
492 {
493 	if (*strp) {
494 		kfree(*strp, M_TEMP);
495 		*strp = NULL;
496 	}
497 }
498 
499 static void
500 snprintf_func(int ch, void *arg)
501 {
502 	struct snprintf_arg *const info = arg;
503 
504 	if (info->remain >= 2) {
505 		*info->str++ = ch;
506 		info->remain--;
507 	}
508 }
509 
510 /*
511  * Put a NUL-terminated ASCII number (base <= 36) in a buffer in reverse
512  * order; return an optional length and a pointer to the last character
513  * written in the buffer (i.e., the first character of the string).
514  * The buffer pointed to by `nbuf' must have length >= MAXNBUF.
515  */
516 static char *
517 ksprintn(char *nbuf, uintmax_t num, int base, int *lenp, int upper)
518 {
519 	char *p, c;
520 
521 	p = nbuf;
522 	*p = '\0';
523 	do {
524 		c = hex2ascii(num % base);
525 		*++p = upper ? toupper(c) : c;
526 	} while (num /= base);
527 	if (lenp)
528 		*lenp = p - nbuf;
529 	return (p);
530 }
531 
532 /*
533  * Scaled down version of printf(3).
534  *
535  * Two additional formats:
536  *
537  * The format %b is supported to decode error registers.
538  * Its usage is:
539  *
540  *	kprintf("reg=%b\n", regval, "<base><arg>*");
541  *
542  * where <base> is the output base expressed as a control character, e.g.
543  * \10 gives octal; \20 gives hex.  Each arg is a sequence of characters,
544  * the first of which gives the bit number to be inspected (origin 1), and
545  * the next characters (up to a control character, i.e. a character <= 32),
546  * give the name of the register.  Thus:
547  *
548  *	kvcprintf("reg=%b\n", 3, "\10\2BITTWO\1BITONE\n");
549  *
550  * would produce output:
551  *
552  *	reg=3<BITTWO,BITONE>
553  */
554 
555 #define PCHAR(c) {int cc=(c); if(func) (*func)(cc,arg); else *d++=cc; retval++;}
556 
557 int
558 kvcprintf(char const *fmt, void (*func)(int, void*), void *arg,
559 	  int radix, __va_list ap)
560 {
561 	char nbuf[MAXNBUF];
562 	char *d;
563 	const char *p, *percent, *q;
564 	int ch, n;
565 	uintmax_t num;
566 	int base, tmp, width, ladjust, sharpflag, neg, sign, dot;
567 	int cflag, hflag, jflag, lflag, qflag, tflag, zflag;
568 	int dwidth, upper;
569 	char padc;
570 	int retval = 0, stop = 0;
571 	int usespin;
572 
573 	/*
574 	 * Make a supreme effort to avoid reentrant panics or deadlocks.
575 	 *
576 	 * NOTE!  Do nothing that would access mycpu/gd/fs unless the
577 	 *	  function is the normal kputchar(), which allows us to
578 	 *	  use this function for very early debugging with a special
579 	 *	  function.
580 	 */
581 	if (func == kputchar) {
582 		if (mycpu->gd_flags & GDF_KPRINTF)
583 			return(0);
584 		atomic_set_long(&mycpu->gd_flags, GDF_KPRINTF);
585 	}
586 
587 	num = 0;
588 	if (!func)
589 		d = (char *) arg;
590 	else
591 		d = NULL;
592 
593 	if (fmt == NULL)
594 		fmt = "(fmt null)\n";
595 
596 	if (radix < 2 || radix > 36)
597 		radix = 10;
598 
599 	usespin = (func == kputchar &&
600 		   panic_cpu_gd != mycpu &&
601 		   (((struct putchar_arg *)arg)->flags & TOTTY) == 0);
602 	if (usespin) {
603 		crit_enter_hard();
604 		spin_lock(&cons_spin);
605 	}
606 
607 	for (;;) {
608 		padc = ' ';
609 		width = 0;
610 		while ((ch = (u_char)*fmt++) != '%' || stop) {
611 			if (ch == '\0')
612 				goto done;
613 			PCHAR(ch);
614 		}
615 		percent = fmt - 1;
616 		dot = dwidth = ladjust = neg = sharpflag = sign = upper = 0;
617 		cflag = hflag = jflag = lflag = qflag = tflag = zflag = 0;
618 
619 reswitch:
620 		switch (ch = (u_char)*fmt++) {
621 		case '.':
622 			dot = 1;
623 			goto reswitch;
624 		case '#':
625 			sharpflag = 1;
626 			goto reswitch;
627 		case '+':
628 			sign = 1;
629 			goto reswitch;
630 		case '-':
631 			ladjust = 1;
632 			goto reswitch;
633 		case '%':
634 			PCHAR(ch);
635 			break;
636 		case '*':
637 			if (!dot) {
638 				width = __va_arg(ap, int);
639 				if (width < 0) {
640 					ladjust = !ladjust;
641 					width = -width;
642 				}
643 			} else {
644 				dwidth = __va_arg(ap, int);
645 			}
646 			goto reswitch;
647 		case '0':
648 			if (!dot) {
649 				padc = '0';
650 				goto reswitch;
651 			}
652 		case '1': case '2': case '3': case '4':
653 		case '5': case '6': case '7': case '8': case '9':
654 				for (n = 0;; ++fmt) {
655 					n = n * 10 + ch - '0';
656 					ch = *fmt;
657 					if (ch < '0' || ch > '9')
658 						break;
659 				}
660 			if (dot)
661 				dwidth = n;
662 			else
663 				width = n;
664 			goto reswitch;
665 		case 'b':
666 			num = (u_int)__va_arg(ap, int);
667 			p = __va_arg(ap, char *);
668 			for (q = ksprintn(nbuf, num, *p++, NULL, 0); *q;)
669 				PCHAR(*q--);
670 
671 			if (num == 0)
672 				break;
673 
674 			for (tmp = 0; *p;) {
675 				n = *p++;
676 				if (num & (1 << (n - 1))) {
677 					PCHAR(tmp ? ',' : '<');
678 					for (; (n = *p) > ' '; ++p)
679 						PCHAR(n);
680 					tmp = 1;
681 				} else
682 					for (; *p > ' '; ++p)
683 						continue;
684 			}
685 			if (tmp)
686 				PCHAR('>');
687 			break;
688 		case 'c':
689 			PCHAR(__va_arg(ap, int));
690 			break;
691 		case 'd':
692 		case 'i':
693 			base = 10;
694 			sign = 1;
695 			goto handle_sign;
696 		case 'h':
697 			if (hflag) {
698 				hflag = 0;
699 				cflag = 1;
700 			} else
701 				hflag = 1;
702 			goto reswitch;
703 		case 'j':
704 			jflag = 1;
705 			goto reswitch;
706 		case 'l':
707 			if (lflag) {
708 				lflag = 0;
709 				qflag = 1;
710 			} else
711 				lflag = 1;
712 			goto reswitch;
713 		case 'n':
714 			if (cflag)
715 				*(__va_arg(ap, char *)) = retval;
716 			else if (hflag)
717 				*(__va_arg(ap, short *)) = retval;
718 			else if (jflag)
719 				*(__va_arg(ap, intmax_t *)) = retval;
720 			else if (lflag)
721 				*(__va_arg(ap, long *)) = retval;
722 			else if (qflag)
723 				*(__va_arg(ap, quad_t *)) = retval;
724 			else
725 				*(__va_arg(ap, int *)) = retval;
726 			break;
727 		case 'o':
728 			base = 8;
729 			goto handle_nosign;
730 		case 'p':
731 			base = 16;
732 			sharpflag = (width == 0);
733 			sign = 0;
734 			num = (uintptr_t)__va_arg(ap, void *);
735 			goto number;
736 		case 'q':
737 			qflag = 1;
738 			goto reswitch;
739 		case 'r':
740 			base = radix;
741 			if (sign)
742 				goto handle_sign;
743 			goto handle_nosign;
744 		case 's':
745 			p = __va_arg(ap, char *);
746 			if (p == NULL)
747 				p = "(null)";
748 			if (!dot)
749 				n = strlen (p);
750 			else
751 				for (n = 0; n < dwidth && p[n]; n++)
752 					continue;
753 
754 			width -= n;
755 
756 			if (!ladjust && width > 0)
757 				while (width--)
758 					PCHAR(padc);
759 			while (n--)
760 				PCHAR(*p++);
761 			if (ladjust && width > 0)
762 				while (width--)
763 					PCHAR(padc);
764 			break;
765 		case 't':
766 			tflag = 1;
767 			goto reswitch;
768 		case 'u':
769 			base = 10;
770 			goto handle_nosign;
771 		case 'X':
772 			upper = 1;
773 			/* FALLTHROUGH */
774 		case 'x':
775 			base = 16;
776 			goto handle_nosign;
777 		case 'z':
778 			zflag = 1;
779 			goto reswitch;
780 handle_nosign:
781 			sign = 0;
782 			if (cflag)
783 				num = (u_char)__va_arg(ap, int);
784 			else if (hflag)
785 				num = (u_short)__va_arg(ap, int);
786 			else if (jflag)
787 				num = __va_arg(ap, uintmax_t);
788 			else if (lflag)
789 				num = __va_arg(ap, u_long);
790 			else if (qflag)
791 				num = __va_arg(ap, u_quad_t);
792 			else if (tflag)
793 				num = __va_arg(ap, ptrdiff_t);
794 			else if (zflag)
795 				num = __va_arg(ap, size_t);
796 			else
797 				num = __va_arg(ap, u_int);
798 			goto number;
799 handle_sign:
800 			if (cflag)
801 				num = (char)__va_arg(ap, int);
802 			else if (hflag)
803 				num = (short)__va_arg(ap, int);
804 			else if (jflag)
805 				num = __va_arg(ap, intmax_t);
806 			else if (lflag)
807 				num = __va_arg(ap, long);
808 			else if (qflag)
809 				num = __va_arg(ap, quad_t);
810 			else if (tflag)
811 				num = __va_arg(ap, ptrdiff_t);
812 			else if (zflag)
813 				num = __va_arg(ap, ssize_t);
814 			else
815 				num = __va_arg(ap, int);
816 number:
817 			if (sign && (intmax_t)num < 0) {
818 				neg = 1;
819 				num = -(intmax_t)num;
820 			}
821 			p = ksprintn(nbuf, num, base, &n, upper);
822 			tmp = 0;
823 			if (sharpflag && num != 0) {
824 				if (base == 8)
825 					tmp++;
826 				else if (base == 16)
827 					tmp += 2;
828 			}
829 			if (neg)
830 				tmp++;
831 
832 			if (!ladjust && padc == '0')
833 				dwidth = width - tmp;
834 			width -= tmp + imax(dwidth, n);
835 			dwidth -= n;
836 			if (!ladjust)
837 				while (width-- > 0)
838 					PCHAR(' ');
839 			if (neg)
840 				PCHAR('-');
841 			if (sharpflag && num != 0) {
842 				if (base == 8) {
843 					PCHAR('0');
844 				} else if (base == 16) {
845 					PCHAR('0');
846 					PCHAR('x');
847 				}
848 			}
849 			while (dwidth-- > 0)
850 				PCHAR('0');
851 
852 			while (*p)
853 				PCHAR(*p--);
854 
855 			if (ladjust)
856 				while (width-- > 0)
857 					PCHAR(' ');
858 
859 			break;
860 		default:
861 			while (percent < fmt)
862 				PCHAR(*percent++);
863 			/*
864 			 * Since we ignore an formatting argument it is no
865 			 * longer safe to obey the remaining formatting
866 			 * arguments as the arguments will no longer match
867 			 * the format specs.
868 			 */
869 			stop = 1;
870 			break;
871 		}
872 	}
873 done:
874 	/*
875 	 * Cleanup reentrancy issues.
876 	 */
877 	if (func == kputchar)
878 		atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
879 	if (usespin) {
880 		spin_unlock(&cons_spin);
881 		crit_exit_hard();
882 	}
883 	return (retval);
884 }
885 
886 #undef PCHAR
887 
888 /*
889  * Called from the panic code to try to get the console working
890  * again in case we paniced inside a kprintf().
891  */
892 void
893 kvcreinitspin(void)
894 {
895 	spin_init(&cons_spin, "kvcre");
896 	atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
897 }
898 
899 /*
900  * Console support thread for constty intercepts.  This is needed because
901  * console tty intercepts can block.  Instead of having kputchar() attempt
902  * to directly write to the console intercept we just force it to log
903  * and wakeup this baby to track and dump the log to constty.
904  */
905 static void
906 constty_daemon(void)
907 {
908 	u_int rindex;
909 	u_int xindex;
910 	u_int n;
911         struct msgbuf *mbp;
912 	struct tty *tp;
913 
914         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
915                               constty_td, SHUTDOWN_PRI_FIRST);
916         constty_td->td_flags |= TDF_SYSTHREAD;
917 
918 	mbp = msgbufp;
919 	rindex = mbp->msg_bufr;		/* persistent loop variable */
920 	xindex = mbp->msg_bufx - 1;	/* anything different than bufx */
921 	cpu_ccfence();
922 
923         for (;;) {
924                 kproc_suspend_loop();
925 
926 		crit_enter();
927 		if (mbp != msgbufp)
928 			mbp = msgbufp;
929 		if (xindex == mbp->msg_bufx ||
930 		    mbp == NULL ||
931 		    msgbufmapped == 0) {
932 			tsleep(constty_td, 0, "waiting", hz*60);
933 			crit_exit();
934 			continue;
935 		}
936 		crit_exit();
937 
938 		/*
939 		 * Get message buf FIFO indices.  rindex is tracking.
940 		 */
941 		xindex = mbp->msg_bufx;
942 		cpu_ccfence();
943 		if ((tp = constty) == NULL) {
944 			rindex = xindex;
945 			continue;
946 		}
947 
948 		/*
949 		 * Check if the calculated bytes has rolled the whole
950 		 * message buffer.
951 		 */
952 		n = xindex - rindex;
953 		if (n > mbp->msg_size - 1024) {
954 			rindex = xindex - mbp->msg_size + 2048;
955 			n = xindex - rindex;
956 		}
957 
958 		/*
959 		 * And dump it.  If constty gets stuck will give up.
960 		 */
961 		while (rindex != xindex) {
962 			u_int ri = rindex % mbp->msg_size;
963 			if (tputchar((uint8_t)mbp->msg_ptr[ri], tp) < 0) {
964 				constty = NULL;
965 				rindex = xindex;
966 				break;
967 			}
968                         if (tp->t_outq.c_cc >= tp->t_ohiwat) {
969 				tsleep(constty_daemon, 0, "blocked", hz / 10);
970 				if (tp->t_outq.c_cc >= tp->t_ohiwat) {
971 					rindex = xindex;
972 					break;
973 				}
974 			}
975 			++rindex;
976 		}
977 	}
978 }
979 
980 static struct kproc_desc constty_kp = {
981         "consttyd",
982 	constty_daemon,
983         &constty_td
984 };
985 SYSINIT(bufdaemon, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY,
986         kproc_start, &constty_kp);
987 
988 /*
989  * Put character in log buffer with a particular priority.
990  *
991  * MPSAFE
992  */
993 static void
994 msglogchar(int c, int pri)
995 {
996 	static int lastpri = -1;
997 	static int dangling;
998 	char nbuf[MAXNBUF];
999 	char *p;
1000 
1001 	if (!msgbufmapped)
1002 		return;
1003 	if (c == '\0' || c == '\r')
1004 		return;
1005 	if (pri != -1 && pri != lastpri) {
1006 		if (dangling) {
1007 			msgaddchar('\n', NULL);
1008 			dangling = 0;
1009 		}
1010 		msgaddchar('<', NULL);
1011 		for (p = ksprintn(nbuf, (uintmax_t)pri, 10, NULL, 0); *p;)
1012 			msgaddchar(*p--, NULL);
1013 		msgaddchar('>', NULL);
1014 		lastpri = pri;
1015 	}
1016 	msgaddchar(c, NULL);
1017 	if (c == '\n') {
1018 		dangling = 0;
1019 		lastpri = -1;
1020 	} else {
1021 		dangling = 1;
1022 	}
1023 }
1024 
1025 /*
1026  * Put char in log buffer.   Make sure nothing blows up beyond repair if
1027  * we have an MP race.
1028  *
1029  * MPSAFE.
1030  */
1031 static void
1032 msgaddchar(int c, void *dummy)
1033 {
1034 	struct msgbuf *mbp;
1035 	u_int lindex;
1036 	u_int rindex;
1037 	u_int xindex;
1038 	u_int n;
1039 
1040 	if (!msgbufmapped)
1041 		return;
1042 	mbp = msgbufp;
1043 	lindex = mbp->msg_bufl;
1044 	rindex = mbp->msg_bufr;
1045 	xindex = mbp->msg_bufx++;	/* Allow SMP race */
1046 	cpu_ccfence();
1047 
1048 	mbp->msg_ptr[xindex % mbp->msg_size] = c;
1049 	n = xindex - lindex;
1050 	if (n > mbp->msg_size - 1024) {
1051 		lindex = xindex - mbp->msg_size + 2048;
1052 		cpu_ccfence();
1053 		mbp->msg_bufl = lindex;
1054 	}
1055 	n = xindex - rindex;
1056 	if (n > mbp->msg_size - 1024) {
1057 		rindex = xindex - mbp->msg_size + 2048;
1058 		cpu_ccfence();
1059 		mbp->msg_bufr = rindex;
1060 	}
1061 }
1062 
1063 static void
1064 msgbufcopy(struct msgbuf *oldp)
1065 {
1066 	u_int rindex;
1067 	u_int xindex;
1068 	u_int n;
1069 
1070 	rindex = oldp->msg_bufr;
1071 	xindex = oldp->msg_bufx;
1072 	cpu_ccfence();
1073 
1074 	n = xindex - rindex;
1075 	if (n > oldp->msg_size - 1024)
1076 		rindex = xindex - oldp->msg_size + 2048;
1077 	while (rindex != xindex) {
1078 		msglogchar(oldp->msg_ptr[rindex % oldp->msg_size], -1);
1079 		++rindex;
1080 	}
1081 }
1082 
1083 void
1084 msgbufinit(void *ptr, size_t size)
1085 {
1086 	char *cp;
1087 	static struct msgbuf *oldp = NULL;
1088 
1089 	size -= sizeof(*msgbufp);
1090 	cp = (char *)ptr;
1091 	msgbufp = (struct msgbuf *) (cp + size);
1092 	if (msgbufp->msg_magic != MSG_MAGIC || msgbufp->msg_size != size) {
1093 		bzero(cp, size);
1094 		bzero(msgbufp, sizeof(*msgbufp));
1095 		msgbufp->msg_magic = MSG_MAGIC;
1096 		msgbufp->msg_size = (char *)msgbufp - cp;
1097 	}
1098 	msgbufp->msg_ptr = cp;
1099 	if (msgbufmapped && oldp != msgbufp)
1100 		msgbufcopy(oldp);
1101 	cpu_mfence();
1102 	msgbufmapped = 1;
1103 	oldp = msgbufp;
1104 }
1105 
1106 /* Sysctls for accessing/clearing the msgbuf */
1107 
1108 static int
1109 sysctl_kern_msgbuf(SYSCTL_HANDLER_ARGS)
1110 {
1111         struct msgbuf *mbp;
1112 	struct ucred *cred;
1113 	int error;
1114 	u_int rindex_modulo;
1115 	u_int xindex_modulo;
1116 	u_int rindex;
1117 	u_int xindex;
1118 	u_int n;
1119 
1120 	/*
1121 	 * Only wheel or root can access the message log.
1122 	 */
1123 	if (unprivileged_read_msgbuf == 0) {
1124 		KKASSERT(req->td->td_proc);
1125 		cred = req->td->td_proc->p_ucred;
1126 
1127 		if ((cred->cr_prison || groupmember(0, cred) == 0) &&
1128 		    priv_check(req->td, PRIV_ROOT) != 0
1129 		) {
1130 			return (EPERM);
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Unwind the buffer, so that it's linear (possibly starting with
1136 	 * some initial nulls).
1137 	 *
1138 	 * We don't push the entire buffer like we did before because
1139 	 * bufr (and bufl) now advance in chunks when the fifo is full,
1140 	 * rather than one character.
1141 	 */
1142 	mbp = msgbufp;
1143 	rindex = mbp->msg_bufr;
1144 	xindex = mbp->msg_bufx;
1145 	n = xindex - rindex;
1146 	if (n > mbp->msg_size - 1024) {
1147 		rindex = xindex - mbp->msg_size + 2048;
1148 		n = xindex - rindex;
1149 	}
1150 	rindex_modulo = rindex % mbp->msg_size;
1151 	xindex_modulo = xindex % mbp->msg_size;
1152 
1153 	if (rindex_modulo < xindex_modulo) {
1154 		/*
1155 		 * Can handle in one linear section.
1156 		 */
1157 		error = sysctl_handle_opaque(oidp,
1158 					     mbp->msg_ptr + rindex_modulo,
1159 					     xindex_modulo - rindex_modulo,
1160 					     req);
1161 	} else if (rindex_modulo == xindex_modulo) {
1162 		/*
1163 		 * Empty buffer, just return a single newline
1164 		 */
1165 		error = sysctl_handle_opaque(oidp, "\n", 1, req);
1166 	} else if (n <= mbp->msg_size - rindex_modulo) {
1167 		/*
1168 		 * Can handle in one linear section.
1169 		 */
1170 		error = sysctl_handle_opaque(oidp,
1171 					     mbp->msg_ptr + rindex_modulo,
1172 					     n - rindex_modulo,
1173 					     req);
1174 	} else {
1175 		/*
1176 		 * Glue together two linear sections into one contiguous
1177 		 * output.
1178 		 */
1179 		error = sysctl_handle_opaque(oidp,
1180 					     mbp->msg_ptr + rindex_modulo,
1181 					     mbp->msg_size - rindex_modulo,
1182 					     req);
1183 		n -= mbp->msg_size - rindex_modulo;
1184 		if (error == 0)
1185 			error = sysctl_handle_opaque(oidp, mbp->msg_ptr,
1186 						     n, req);
1187 	}
1188 	if (error)
1189 		return (error);
1190 	return (error);
1191 }
1192 
1193 SYSCTL_PROC(_kern, OID_AUTO, msgbuf, CTLTYPE_STRING | CTLFLAG_RD,
1194     0, 0, sysctl_kern_msgbuf, "A", "Contents of kernel message buffer");
1195 
1196 static int msgbuf_clear;
1197 
1198 static int
1199 sysctl_kern_msgbuf_clear(SYSCTL_HANDLER_ARGS)
1200 {
1201 	int error;
1202 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1203 	if (!error && req->newptr) {
1204 		/* Clear the buffer and reset write pointer */
1205 		msgbufp->msg_bufr = msgbufp->msg_bufx;
1206 		msgbufp->msg_bufl = msgbufp->msg_bufx;
1207 		bzero(msgbufp->msg_ptr, msgbufp->msg_size);
1208 		msgbuf_clear = 0;
1209 	}
1210 	return (error);
1211 }
1212 
1213 SYSCTL_PROC(_kern, OID_AUTO, msgbuf_clear,
1214     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, &msgbuf_clear, 0,
1215     sysctl_kern_msgbuf_clear, "I", "Clear kernel message buffer");
1216 
1217 #ifdef DDB
1218 
1219 DB_SHOW_COMMAND(msgbuf, db_show_msgbuf)
1220 {
1221 	u_int rindex;
1222 	u_int i;
1223 	u_int j;
1224 
1225 	if (!msgbufmapped) {
1226 		db_printf("msgbuf not mapped yet\n");
1227 		return;
1228 	}
1229 	db_printf("msgbufp = %p\n", msgbufp);
1230 	db_printf("magic = %x, size = %d, r= %d, w = %d, ptr = %p\n",
1231 		  msgbufp->msg_magic, msgbufp->msg_size,
1232 		  msgbufp->msg_bufr % msgbufp->msg_size,
1233 		  msgbufp->msg_bufx % msgbufp->msg_size,
1234 		  msgbufp->msg_ptr);
1235 
1236 	rindex = msgbufp->msg_bufr;
1237 	for (i = 0; i < msgbufp->msg_size; i++) {
1238 		j = (i + rindex) % msgbufp->msg_size;
1239 		db_printf("%c", msgbufp->msg_ptr[j]);
1240 	}
1241 	db_printf("\n");
1242 }
1243 
1244 #endif /* DDB */
1245 
1246 
1247 void
1248 hexdump(const void *ptr, int length, const char *hdr, int flags)
1249 {
1250 	int i, j, k;
1251 	int cols;
1252 	const unsigned char *cp;
1253 	char delim;
1254 
1255 	if ((flags & HD_DELIM_MASK) != 0)
1256 		delim = (flags & HD_DELIM_MASK) >> 8;
1257 	else
1258 		delim = ' ';
1259 
1260 	if ((flags & HD_COLUMN_MASK) != 0)
1261 		cols = flags & HD_COLUMN_MASK;
1262 	else
1263 		cols = 16;
1264 
1265 	cp = ptr;
1266 	for (i = 0; i < length; i+= cols) {
1267 		if (hdr != NULL)
1268 			kprintf("%s", hdr);
1269 
1270 		if ((flags & HD_OMIT_COUNT) == 0)
1271 			kprintf("%04x  ", i);
1272 
1273 		if ((flags & HD_OMIT_HEX) == 0) {
1274 			for (j = 0; j < cols; j++) {
1275 				k = i + j;
1276 				if (k < length)
1277 					kprintf("%c%02x", delim, cp[k]);
1278 				else
1279 					kprintf("   ");
1280 			}
1281 		}
1282 
1283 		if ((flags & HD_OMIT_CHARS) == 0) {
1284 			kprintf("  |");
1285 			for (j = 0; j < cols; j++) {
1286 				k = i + j;
1287 				if (k >= length)
1288 					kprintf(" ");
1289 				else if (cp[k] >= ' ' && cp[k] <= '~')
1290 					kprintf("%c", cp[k]);
1291 				else
1292 					kprintf(".");
1293 			}
1294 			kprintf("|");
1295 		}
1296 		kprintf("\n");
1297 	}
1298 }
1299 
1300 void
1301 kprint_cpuset(cpumask_t *mask)
1302 {
1303 	int i;
1304 	int b = -1;
1305 	int e = -1;
1306 	int more = 0;
1307 
1308 	kprintf("cpus(");
1309 	CPUSET_FOREACH(i, *mask) {
1310 		if (b < 0) {
1311 			b = i;
1312 			e = b + 1;
1313 			continue;
1314 		}
1315 		if (e == i) {
1316 			++e;
1317 			continue;
1318 		}
1319 		if (more)
1320 			kprintf(", ");
1321 		if (b == e - 1) {
1322 			kprintf("%d", b);
1323 		} else {
1324 			kprintf("%d-%d", b, e - 1);
1325 		}
1326 		more = 1;
1327 		b = i;
1328 		e = b + 1;
1329 	}
1330 	if (more)
1331 		kprintf(", ");
1332 	if (b >= 0) {
1333 		if (b == e - 1) {
1334 			kprintf("%d", b);
1335 		} else {
1336 			kprintf("%d-%d", b, e - 1);
1337 		}
1338 	}
1339 	kprintf(") ");
1340 }
1341