xref: /dragonfly/sys/kern/subr_prf.c (revision be09fc23)
1 /*-
2  * Copyright (c) 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)subr_prf.c	8.3 (Berkeley) 1/21/94
35  * $FreeBSD: src/sys/kern/subr_prf.c,v 1.61.2.5 2002/08/31 18:22:08 dwmalone Exp $
36  */
37 
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/msgbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/priv.h>
47 #include <sys/tty.h>
48 #include <sys/tprintf.h>
49 #include <sys/stdint.h>
50 #include <sys/syslog.h>
51 #include <sys/cons.h>
52 #include <sys/uio.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #include <sys/ctype.h>
56 #include <sys/eventhandler.h>
57 #include <sys/kthread.h>
58 #include <sys/cpu_topology.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Note that stdarg.h and the ANSI style va_start macro is used for both
69  * ANSI and traditional C compilers.  We use the __ machine version to stay
70  * within the kernel header file set.
71  */
72 #include <machine/stdarg.h>
73 
74 #define TOCONS		0x01
75 #define TOTTY		0x02
76 #define TOLOG		0x04
77 #define TOWAKEUP	0x08
78 
79 /* Max number conversion buffer length: a u_quad_t in base 2, plus NUL byte. */
80 #define MAXNBUF	(sizeof(intmax_t) * NBBY + 1)
81 
82 struct putchar_arg {
83 	int	flags;
84 	int	pri;
85 	struct	tty *tty;
86 };
87 
88 struct snprintf_arg {
89 	char	*str;
90 	size_t	remain;
91 };
92 
93 extern	int log_open;
94 
95 struct	tty *constty;			/* pointer to console "window" tty */
96 
97 static void  msglogchar(int c, int pri);
98 static void  msgaddchar(int c, void *dummy);
99 static void  kputchar (int ch, void *arg);
100 static char *ksprintn (char *nbuf, uintmax_t num, int base, int *lenp,
101 		       int upper);
102 static void  snprintf_func (int ch, void *arg);
103 
104 static int consintr = 1;		/* Ok to handle console interrupts? */
105 static int msgbufmapped;		/* Set when safe to use msgbuf */
106 static struct spinlock cons_spin = SPINLOCK_INITIALIZER(cons_spin, "cons_spin");
107 static thread_t constty_td = NULL;
108 
109 int msgbuftrigger;
110 
111 static int      log_console_output = 1;
112 TUNABLE_INT("kern.log_console_output", &log_console_output);
113 SYSCTL_INT(_kern, OID_AUTO, log_console_output, CTLFLAG_RW,
114     &log_console_output, 0, "");
115 
116 static int unprivileged_read_msgbuf = 1;
117 SYSCTL_INT(_security, OID_AUTO, unprivileged_read_msgbuf, CTLFLAG_RW,
118     &unprivileged_read_msgbuf, 0,
119     "Unprivileged processes may read the kernel message buffer");
120 
121 /*
122  * Warn that a system table is full.
123  */
124 void
125 tablefull(const char *tab)
126 {
127 
128 	log(LOG_ERR, "%s: table is full\n", tab);
129 }
130 
131 /*
132  * Uprintf prints to the controlling terminal for the current process.
133  */
134 int
135 uprintf(const char *fmt, ...)
136 {
137 	struct proc *p = curproc;
138 	__va_list ap;
139 	struct putchar_arg pca;
140 	int retval = 0;
141 
142 	if (p && (p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
143 		__va_start(ap, fmt);
144 		pca.tty = p->p_session->s_ttyp;
145 		pca.flags = TOTTY;
146 
147 		retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
148 		__va_end(ap);
149 	}
150 	return (retval);
151 }
152 
153 tpr_t
154 tprintf_open(struct proc *p)
155 {
156 	if ((p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
157 		sess_hold(p->p_session);
158 		return ((tpr_t) p->p_session);
159 	}
160 	return (NULL);
161 }
162 
163 void
164 tprintf_close(tpr_t sess)
165 {
166 	if (sess)
167 		sess_rele((struct session *) sess);
168 }
169 
170 /*
171  * tprintf prints on the controlling terminal associated
172  * with the given session.
173  */
174 int
175 tprintf(tpr_t tpr, const char *fmt, ...)
176 {
177 	struct session *sess = (struct session *)tpr;
178 	struct tty *tp = NULL;
179 	int flags = TOLOG;
180 	__va_list ap;
181 	struct putchar_arg pca;
182 	int retval;
183 
184 	if (sess && sess->s_ttyvp && ttycheckoutq(sess->s_ttyp, 0)) {
185 		flags |= TOTTY;
186 		tp = sess->s_ttyp;
187 	}
188 	__va_start(ap, fmt);
189 	pca.tty = tp;
190 	pca.flags = flags;
191 	pca.pri = LOG_INFO;
192 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
193 	__va_end(ap);
194 	msgbuftrigger = 1;
195 	return (retval);
196 }
197 
198 /*
199  * Ttyprintf displays a message on a tty; it should be used only by
200  * the tty driver, or anything that knows the underlying tty will not
201  * be revoke(2)'d away.  Other callers should use tprintf.
202  */
203 int
204 ttyprintf(struct tty *tp, const char *fmt, ...)
205 {
206 	__va_list ap;
207 	struct putchar_arg pca;
208 	int retval;
209 
210 	__va_start(ap, fmt);
211 	pca.tty = tp;
212 	pca.flags = TOTTY;
213 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
214 	__va_end(ap);
215 	return (retval);
216 }
217 
218 /*
219  * Log writes to the log buffer, and guarantees not to sleep (so can be
220  * called by interrupt routines).  If there is no process reading the
221  * log yet, it writes to the console also.
222  */
223 int
224 log(int level, const char *fmt, ...)
225 {
226 	__va_list ap;
227 	int retval;
228 	struct putchar_arg pca;
229 
230 	pca.tty = NULL;
231 	pca.pri = level;
232 	pca.flags = log_open ? TOLOG : TOCONS;
233 
234 	__va_start(ap, fmt);
235 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
236 	__va_end(ap);
237 
238 	msgbuftrigger = 1;
239 	return (retval);
240 }
241 
242 #define CONSCHUNK 128
243 
244 void
245 log_console(struct uio *uio)
246 {
247 	int c, i, error, iovlen, nl;
248 	struct uio muio;
249 	struct iovec *miov = NULL;
250 	char *consbuffer;
251 	int pri;
252 
253 	if (!log_console_output)
254 		return;
255 
256 	pri = LOG_INFO | LOG_CONSOLE;
257 	muio = *uio;
258 	iovlen = uio->uio_iovcnt * sizeof (struct iovec);
259 	miov = kmalloc(iovlen, M_TEMP, M_WAITOK);
260 	consbuffer = kmalloc(CONSCHUNK, M_TEMP, M_WAITOK);
261 	bcopy((caddr_t)muio.uio_iov, (caddr_t)miov, iovlen);
262 	muio.uio_iov = miov;
263 	uio = &muio;
264 
265 	nl = 0;
266 	while (uio->uio_resid > 0) {
267 		c = (int)szmin(uio->uio_resid, CONSCHUNK);
268 		error = uiomove(consbuffer, (size_t)c, uio);
269 		if (error != 0)
270 			break;
271 		for (i = 0; i < c; i++) {
272 			msglogchar(consbuffer[i], pri);
273 			if (consbuffer[i] == '\n')
274 				nl = 1;
275 			else
276 				nl = 0;
277 		}
278 	}
279 	if (!nl)
280 		msglogchar('\n', pri);
281 	msgbuftrigger = 1;
282 	kfree(miov, M_TEMP);
283 	kfree(consbuffer, M_TEMP);
284 	return;
285 }
286 
287 /*
288  * Output to the console.
289  */
290 int
291 kprintf(const char *fmt, ...)
292 {
293 	__va_list ap;
294 	int savintr;
295 	struct putchar_arg pca;
296 	int retval;
297 
298 	savintr = consintr;		/* disable interrupts */
299 	consintr = 0;
300 	__va_start(ap, fmt);
301 	pca.tty = NULL;
302 	pca.flags = TOCONS | TOLOG;
303 	pca.pri = -1;
304 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
305 	__va_end(ap);
306 	if (!panicstr)
307 		msgbuftrigger = 1;
308 	consintr = savintr;		/* reenable interrupts */
309 	return (retval);
310 }
311 
312 int
313 kvprintf(const char *fmt, __va_list ap)
314 {
315 	int savintr;
316 	struct putchar_arg pca;
317 	int retval;
318 
319 	savintr = consintr;		/* disable interrupts */
320 	consintr = 0;
321 	pca.tty = NULL;
322 	pca.flags = TOCONS | TOLOG;
323 	pca.pri = -1;
324 	retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
325 	if (!panicstr)
326 		msgbuftrigger = 1;
327 	consintr = savintr;		/* reenable interrupts */
328 	return (retval);
329 }
330 
331 /*
332  * Limited rate kprintf.  The passed rate structure must be initialized
333  * with the desired reporting frequency.  A frequency of 0 will result in
334  * no output.
335  *
336  * count may be initialized to a negative number to allow an initial
337  * burst.
338  */
339 void
340 krateprintf(struct krate *rate, const char *fmt, ...)
341 {
342 	__va_list ap;
343 
344 	if (rate->ticks != (int)time_uptime) {
345 		rate->ticks = (int)time_uptime;
346 		if (rate->count > 0)
347 			rate->count = 0;
348 	}
349 	if (rate->count < rate->freq) {
350 		++rate->count;
351 		__va_start(ap, fmt);
352 		kvprintf(fmt, ap);
353 		__va_end(ap);
354 	}
355 }
356 
357 /*
358  * Print a character to the dmesg log, the console, and/or the user's
359  * terminal.
360  *
361  * NOTE: TOTTY does not require nonblocking operation, but TOCONS
362  * 	 and TOLOG do.  When we have a constty we still output to
363  *	 the real console but we have a monitoring thread which
364  *	 we wakeup which tracks the log.
365  */
366 static void
367 kputchar(int c, void *arg)
368 {
369 	struct putchar_arg *ap = (struct putchar_arg*) arg;
370 	int flags = ap->flags;
371 	struct tty *tp = ap->tty;
372 
373 	if (panicstr)
374 		constty = NULL;
375 	if ((flags & TOCONS) && tp == NULL && constty)
376 		flags |= TOLOG | TOWAKEUP;
377 	if ((flags & TOTTY) && tputchar(c, tp) < 0)
378 		ap->flags &= ~TOTTY;
379 	if ((flags & TOLOG))
380 		msglogchar(c, ap->pri);
381 	if ((flags & TOCONS) && c)
382 		cnputc(c);
383 	if (flags & TOWAKEUP)
384 		wakeup(constty_td);
385 }
386 
387 /*
388  * Scaled down version of sprintf(3).
389  */
390 int
391 ksprintf(char *buf, const char *cfmt, ...)
392 {
393 	int retval;
394 	__va_list ap;
395 
396 	__va_start(ap, cfmt);
397 	retval = kvcprintf(cfmt, NULL, buf, 10, ap);
398 	buf[retval] = '\0';
399 	__va_end(ap);
400 	return (retval);
401 }
402 
403 /*
404  * Scaled down version of vsprintf(3).
405  */
406 int
407 kvsprintf(char *buf, const char *cfmt, __va_list ap)
408 {
409 	int retval;
410 
411 	retval = kvcprintf(cfmt, NULL, buf, 10, ap);
412 	buf[retval] = '\0';
413 	return (retval);
414 }
415 
416 /*
417  * Scaled down version of snprintf(3).
418  */
419 int
420 ksnprintf(char *str, size_t size, const char *format, ...)
421 {
422 	int retval;
423 	__va_list ap;
424 
425 	__va_start(ap, format);
426 	retval = kvsnprintf(str, size, format, ap);
427 	__va_end(ap);
428 	return(retval);
429 }
430 
431 /*
432  * Scaled down version of vsnprintf(3).
433  */
434 int
435 kvsnprintf(char *str, size_t size, const char *format, __va_list ap)
436 {
437 	struct snprintf_arg info;
438 	int retval;
439 
440 	info.str = str;
441 	info.remain = size;
442 	retval = kvcprintf(format, snprintf_func, &info, 10, ap);
443 	if (info.remain >= 1)
444 		*info.str++ = '\0';
445 	return (retval);
446 }
447 
448 int
449 ksnrprintf(char *str, size_t size, int radix, const char *format, ...)
450 {
451 	int retval;
452 	__va_list ap;
453 
454 	__va_start(ap, format);
455 	retval = kvsnrprintf(str, size, radix, format, ap);
456 	__va_end(ap);
457 	return(retval);
458 }
459 
460 int
461 kvsnrprintf(char *str, size_t size, int radix, const char *format, __va_list ap)
462 {
463 	struct snprintf_arg info;
464 	int retval;
465 
466 	info.str = str;
467 	info.remain = size;
468 	retval = kvcprintf(format, snprintf_func, &info, radix, ap);
469 	if (info.remain >= 1)
470 		*info.str++ = '\0';
471 	return (retval);
472 }
473 
474 int
475 kvasnrprintf(char **strp, size_t size, int radix,
476 	     const char *format, __va_list ap)
477 {
478 	struct snprintf_arg info;
479 	int retval;
480 
481 	*strp = kmalloc(size, M_TEMP, M_WAITOK);
482 	info.str = *strp;
483 	info.remain = size;
484 	retval = kvcprintf(format, snprintf_func, &info, radix, ap);
485 	if (info.remain >= 1)
486 		*info.str++ = '\0';
487 	return (retval);
488 }
489 
490 void
491 kvasfree(char **strp)
492 {
493 	if (*strp) {
494 		kfree(*strp, M_TEMP);
495 		*strp = NULL;
496 	}
497 }
498 
499 static void
500 snprintf_func(int ch, void *arg)
501 {
502 	struct snprintf_arg *const info = arg;
503 
504 	if (info->remain >= 2) {
505 		*info->str++ = ch;
506 		info->remain--;
507 	}
508 }
509 
510 /*
511  * Put a NUL-terminated ASCII number (base <= 36) in a buffer in reverse
512  * order; return an optional length and a pointer to the last character
513  * written in the buffer (i.e., the first character of the string).
514  * The buffer pointed to by `nbuf' must have length >= MAXNBUF.
515  */
516 static char *
517 ksprintn(char *nbuf, uintmax_t num, int base, int *lenp, int upper)
518 {
519 	char *p, c;
520 
521 	p = nbuf;
522 	*p = '\0';
523 	do {
524 		c = hex2ascii(num % base);
525 		*++p = upper ? toupper(c) : c;
526 	} while (num /= base);
527 	if (lenp)
528 		*lenp = p - nbuf;
529 	return (p);
530 }
531 
532 /*
533  * Scaled down version of printf(3).
534  *
535  * Two additional formats:
536  *
537  * The format %b is supported to decode error registers.
538  * Its usage is:
539  *
540  *	kprintf("reg=%b\n", regval, "<base><arg>*");
541  *
542  * where <base> is the output base expressed as a control character, e.g.
543  * \10 gives octal; \20 gives hex.  Each arg is a sequence of characters,
544  * the first of which gives the bit number to be inspected (origin 1), and
545  * the next characters (up to a control character, i.e. a character <= 32),
546  * give the name of the register.  Thus:
547  *
548  *	kvcprintf("reg=%b\n", 3, "\10\2BITTWO\1BITONE\n");
549  *
550  * would produce output:
551  *
552  *	reg=3<BITTWO,BITONE>
553  */
554 
555 #define PCHAR(c) {int cc=(c); if(func) (*func)(cc,arg); else *d++=cc; retval++;}
556 
557 int
558 kvcprintf(char const *fmt, void (*func)(int, void*), void *arg,
559 	  int radix, __va_list ap)
560 {
561 	char nbuf[MAXNBUF];
562 	char *d;
563 	const char *p, *percent, *q;
564 	int ch, n;
565 	uintmax_t num;
566 	int base, tmp, width, ladjust, sharpflag, spaceflag, neg, sign, dot;
567 	int cflag, hflag, jflag, lflag, qflag, tflag, zflag;
568 	int dwidth, upper;
569 	char padc;
570 	int retval = 0, stop = 0;
571 	int usespin;
572 
573 	/*
574 	 * Make a supreme effort to avoid reentrant panics or deadlocks.
575 	 *
576 	 * NOTE!  Do nothing that would access mycpu/gd/fs unless the
577 	 *	  function is the normal kputchar(), which allows us to
578 	 *	  use this function for very early debugging with a special
579 	 *	  function.
580 	 */
581 	if (func == kputchar) {
582 		if (mycpu->gd_flags & GDF_KPRINTF)
583 			return(0);
584 		atomic_set_long(&mycpu->gd_flags, GDF_KPRINTF);
585 	}
586 
587 	num = 0;
588 	if (!func)
589 		d = (char *) arg;
590 	else
591 		d = NULL;
592 
593 	if (fmt == NULL)
594 		fmt = "(fmt null)\n";
595 
596 	if (radix < 2 || radix > 36)
597 		radix = 10;
598 
599 	usespin = (func == kputchar &&
600 		   panic_cpu_gd != mycpu &&
601 		   (((struct putchar_arg *)arg)->flags & TOTTY) == 0);
602 	if (usespin) {
603 		crit_enter_hard();
604 		spin_lock(&cons_spin);
605 	}
606 
607 	for (;;) {
608 		padc = ' ';
609 		width = 0;
610 		while ((ch = (u_char)*fmt++) != '%' || stop) {
611 			if (ch == '\0')
612 				goto done;
613 			PCHAR(ch);
614 		}
615 		percent = fmt - 1;
616 		dot = dwidth = ladjust = neg = sharpflag = sign = upper = 0;
617 		spaceflag = 0;
618 		cflag = hflag = jflag = lflag = qflag = tflag = zflag = 0;
619 
620 reswitch:
621 		switch (ch = (u_char)*fmt++) {
622 		case ' ':
623 			spaceflag = 1;
624 			goto reswitch;
625 		case '.':
626 			dot = 1;
627 			goto reswitch;
628 		case '#':
629 			sharpflag = 1;
630 			goto reswitch;
631 		case '+':
632 			sign = 1;
633 			goto reswitch;
634 		case '-':
635 			ladjust = 1;
636 			goto reswitch;
637 		case '%':
638 			PCHAR(ch);
639 			break;
640 		case '*':
641 			if (!dot) {
642 				width = __va_arg(ap, int);
643 				if (width < 0) {
644 					ladjust = !ladjust;
645 					width = -width;
646 				}
647 			} else {
648 				dwidth = __va_arg(ap, int);
649 			}
650 			goto reswitch;
651 		case '0':
652 			if (!dot) {
653 				padc = '0';
654 				goto reswitch;
655 			}
656 		case '1': case '2': case '3': case '4':
657 		case '5': case '6': case '7': case '8': case '9':
658 				for (n = 0;; ++fmt) {
659 					n = n * 10 + ch - '0';
660 					ch = *fmt;
661 					if (ch < '0' || ch > '9')
662 						break;
663 				}
664 			if (dot)
665 				dwidth = n;
666 			else
667 				width = n;
668 			goto reswitch;
669 		case 'b':
670 			num = (u_int)__va_arg(ap, int);
671 			p = __va_arg(ap, char *);
672 			for (q = ksprintn(nbuf, num, *p++, NULL, 0); *q;)
673 				PCHAR(*q--);
674 
675 			if (num == 0)
676 				break;
677 
678 			for (tmp = 0; *p;) {
679 				n = *p++;
680 				if (num & (1 << (n - 1))) {
681 					PCHAR(tmp ? ',' : '<');
682 					for (; (n = *p) > ' '; ++p)
683 						PCHAR(n);
684 					tmp = 1;
685 				} else
686 					for (; *p > ' '; ++p)
687 						continue;
688 			}
689 			if (tmp)
690 				PCHAR('>');
691 			break;
692 		case 'c':
693 			PCHAR(__va_arg(ap, int));
694 			break;
695 		case 'd':
696 		case 'i':
697 			base = 10;
698 			sign = 1;
699 			goto handle_sign;
700 		case 'h':
701 			if (hflag) {
702 				hflag = 0;
703 				cflag = 1;
704 			} else
705 				hflag = 1;
706 			goto reswitch;
707 		case 'j':
708 			jflag = 1;
709 			goto reswitch;
710 		case 'l':
711 			if (lflag) {
712 				lflag = 0;
713 				qflag = 1;
714 			} else
715 				lflag = 1;
716 			goto reswitch;
717 		case 'n':
718 			if (cflag)
719 				*(__va_arg(ap, char *)) = retval;
720 			else if (hflag)
721 				*(__va_arg(ap, short *)) = retval;
722 			else if (jflag)
723 				*(__va_arg(ap, intmax_t *)) = retval;
724 			else if (lflag)
725 				*(__va_arg(ap, long *)) = retval;
726 			else if (qflag)
727 				*(__va_arg(ap, quad_t *)) = retval;
728 			else
729 				*(__va_arg(ap, int *)) = retval;
730 			break;
731 		case 'o':
732 			base = 8;
733 			goto handle_nosign;
734 		case 'p':
735 			base = 16;
736 			sharpflag = (width == 0);
737 			sign = 0;
738 			num = (uintptr_t)__va_arg(ap, void *);
739 			goto number;
740 		case 'q':
741 			qflag = 1;
742 			goto reswitch;
743 		case 'r':
744 			base = radix;
745 			if (sign)
746 				goto handle_sign;
747 			goto handle_nosign;
748 		case 's':
749 			p = __va_arg(ap, char *);
750 			if (p == NULL)
751 				p = "(null)";
752 			if (!dot)
753 				n = strlen (p);
754 			else
755 				for (n = 0; n < dwidth && p[n]; n++)
756 					continue;
757 
758 			width -= n;
759 
760 			if (!ladjust && width > 0)
761 				while (width--)
762 					PCHAR(padc);
763 			while (n--)
764 				PCHAR(*p++);
765 			if (ladjust && width > 0)
766 				while (width--)
767 					PCHAR(padc);
768 			break;
769 		case 't':
770 			tflag = 1;
771 			goto reswitch;
772 		case 'u':
773 			base = 10;
774 			goto handle_nosign;
775 		case 'X':
776 			upper = 1;
777 			/* FALLTHROUGH */
778 		case 'x':
779 			base = 16;
780 			goto handle_nosign;
781 		case 'z':
782 			zflag = 1;
783 			goto reswitch;
784 handle_nosign:
785 			sign = 0;
786 			if (cflag)
787 				num = (u_char)__va_arg(ap, int);
788 			else if (hflag)
789 				num = (u_short)__va_arg(ap, int);
790 			else if (jflag)
791 				num = __va_arg(ap, uintmax_t);
792 			else if (lflag)
793 				num = __va_arg(ap, u_long);
794 			else if (qflag)
795 				num = __va_arg(ap, u_quad_t);
796 			else if (tflag)
797 				num = __va_arg(ap, ptrdiff_t);
798 			else if (zflag)
799 				num = __va_arg(ap, size_t);
800 			else
801 				num = __va_arg(ap, u_int);
802 			goto number;
803 handle_sign:
804 			if (cflag)
805 				num = (char)__va_arg(ap, int);
806 			else if (hflag)
807 				num = (short)__va_arg(ap, int);
808 			else if (jflag)
809 				num = __va_arg(ap, intmax_t);
810 			else if (lflag)
811 				num = __va_arg(ap, long);
812 			else if (qflag)
813 				num = __va_arg(ap, quad_t);
814 			else if (tflag)
815 				num = __va_arg(ap, ptrdiff_t);
816 			else if (zflag)
817 				num = __va_arg(ap, ssize_t);
818 			else
819 				num = __va_arg(ap, int);
820 number:
821 			if (sign && (intmax_t)num < 0) {
822 				neg = 1;
823 				num = -(intmax_t)num;
824 			}
825 			p = ksprintn(nbuf, num, base, &n, upper);
826 			tmp = 0;
827 			if (sharpflag && num != 0) {
828 				if (base == 8)
829 					tmp++;
830 				else if (base == 16)
831 					tmp += 2;
832 			}
833 			if (neg || (sign && spaceflag))
834 				tmp++;
835 
836 			if (!ladjust && padc == '0')
837 				dwidth = width - tmp;
838 			width -= tmp + imax(dwidth, n);
839 			dwidth -= n;
840 			if (!ladjust)
841 				while (width-- > 0)
842 					PCHAR(' ');
843 			if (neg) {
844 				PCHAR('-');
845 			} else if (sign && spaceflag) {
846 				PCHAR(' ');
847 			}
848 			if (sharpflag && num != 0) {
849 				if (base == 8) {
850 					PCHAR('0');
851 				} else if (base == 16) {
852 					PCHAR('0');
853 					PCHAR('x');
854 				}
855 			}
856 			while (dwidth-- > 0)
857 				PCHAR('0');
858 
859 			while (*p)
860 				PCHAR(*p--);
861 
862 			if (ladjust)
863 				while (width-- > 0)
864 					PCHAR(' ');
865 
866 			break;
867 		default:
868 			while (percent < fmt)
869 				PCHAR(*percent++);
870 			/*
871 			 * Since we ignore an formatting argument it is no
872 			 * longer safe to obey the remaining formatting
873 			 * arguments as the arguments will no longer match
874 			 * the format specs.
875 			 */
876 			stop = 1;
877 			break;
878 		}
879 	}
880 done:
881 	/*
882 	 * Cleanup reentrancy issues.
883 	 */
884 	if (func == kputchar)
885 		atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
886 	if (usespin) {
887 		spin_unlock(&cons_spin);
888 		crit_exit_hard();
889 	}
890 	return (retval);
891 }
892 
893 #undef PCHAR
894 
895 /*
896  * Called from the panic code to try to get the console working
897  * again in case we paniced inside a kprintf().
898  */
899 void
900 kvcreinitspin(void)
901 {
902 	spin_init(&cons_spin, "kvcre");
903 	atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
904 }
905 
906 /*
907  * Console support thread for constty intercepts.  This is needed because
908  * console tty intercepts can block.  Instead of having kputchar() attempt
909  * to directly write to the console intercept we just force it to log
910  * and wakeup this baby to track and dump the log to constty.
911  */
912 static void
913 constty_daemon(void)
914 {
915 	u_int rindex;
916 	u_int xindex;
917 	u_int n;
918         struct msgbuf *mbp;
919 	struct tty *tp;
920 
921         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
922                               constty_td, SHUTDOWN_PRI_FIRST);
923         constty_td->td_flags |= TDF_SYSTHREAD;
924 
925 	mbp = msgbufp;
926 	rindex = mbp->msg_bufr;		/* persistent loop variable */
927 	xindex = mbp->msg_bufx - 1;	/* anything different than bufx */
928 	cpu_ccfence();
929 
930         for (;;) {
931                 kproc_suspend_loop();
932 
933 		crit_enter();
934 		if (mbp != msgbufp)
935 			mbp = msgbufp;
936 		if (xindex == mbp->msg_bufx ||
937 		    mbp == NULL ||
938 		    msgbufmapped == 0) {
939 			tsleep(constty_td, 0, "waiting", hz*60);
940 			crit_exit();
941 			continue;
942 		}
943 		crit_exit();
944 
945 		/*
946 		 * Get message buf FIFO indices.  rindex is tracking.
947 		 */
948 		xindex = mbp->msg_bufx;
949 		cpu_ccfence();
950 		if ((tp = constty) == NULL) {
951 			rindex = xindex;
952 			continue;
953 		}
954 
955 		/*
956 		 * Check if the calculated bytes has rolled the whole
957 		 * message buffer.
958 		 */
959 		n = xindex - rindex;
960 		if (n > mbp->msg_size - 1024) {
961 			rindex = xindex - mbp->msg_size + 2048;
962 			n = xindex - rindex;
963 		}
964 
965 		/*
966 		 * And dump it.  If constty gets stuck will give up.
967 		 */
968 		while (rindex != xindex) {
969 			u_int ri = rindex % mbp->msg_size;
970 			if (tputchar((uint8_t)mbp->msg_ptr[ri], tp) < 0) {
971 				constty = NULL;
972 				rindex = xindex;
973 				break;
974 			}
975                         if (tp->t_outq.c_cc >= tp->t_ohiwat) {
976 				tsleep(constty_daemon, 0, "blocked", hz / 10);
977 				if (tp->t_outq.c_cc >= tp->t_ohiwat) {
978 					rindex = xindex;
979 					break;
980 				}
981 			}
982 			++rindex;
983 		}
984 	}
985 }
986 
987 static struct kproc_desc constty_kp = {
988         "consttyd",
989 	constty_daemon,
990         &constty_td
991 };
992 SYSINIT(bufdaemon, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY,
993         kproc_start, &constty_kp);
994 
995 /*
996  * Put character in log buffer with a particular priority.
997  *
998  * MPSAFE
999  */
1000 static void
1001 msglogchar(int c, int pri)
1002 {
1003 	static int lastpri = -1;
1004 	static int dangling;
1005 	char nbuf[MAXNBUF];
1006 	char *p;
1007 
1008 	if (!msgbufmapped)
1009 		return;
1010 	if (c == '\0' || c == '\r')
1011 		return;
1012 	if (pri != -1 && pri != lastpri) {
1013 		if (dangling) {
1014 			msgaddchar('\n', NULL);
1015 			dangling = 0;
1016 		}
1017 		msgaddchar('<', NULL);
1018 		for (p = ksprintn(nbuf, (uintmax_t)pri, 10, NULL, 0); *p;)
1019 			msgaddchar(*p--, NULL);
1020 		msgaddchar('>', NULL);
1021 		lastpri = pri;
1022 	}
1023 	msgaddchar(c, NULL);
1024 	if (c == '\n') {
1025 		dangling = 0;
1026 		lastpri = -1;
1027 	} else {
1028 		dangling = 1;
1029 	}
1030 }
1031 
1032 /*
1033  * Put char in log buffer.   Make sure nothing blows up beyond repair if
1034  * we have an MP race.
1035  *
1036  * MPSAFE.
1037  */
1038 static void
1039 msgaddchar(int c, void *dummy)
1040 {
1041 	struct msgbuf *mbp;
1042 	u_int lindex;
1043 	u_int rindex;
1044 	u_int xindex;
1045 	u_int n;
1046 
1047 	if (!msgbufmapped)
1048 		return;
1049 	mbp = msgbufp;
1050 	lindex = mbp->msg_bufl;
1051 	rindex = mbp->msg_bufr;
1052 	xindex = mbp->msg_bufx++;	/* Allow SMP race */
1053 	cpu_ccfence();
1054 
1055 	mbp->msg_ptr[xindex % mbp->msg_size] = c;
1056 	n = xindex - lindex;
1057 	if (n > mbp->msg_size - 1024) {
1058 		lindex = xindex - mbp->msg_size + 2048;
1059 		cpu_ccfence();
1060 		mbp->msg_bufl = lindex;
1061 	}
1062 	n = xindex - rindex;
1063 	if (n > mbp->msg_size - 1024) {
1064 		rindex = xindex - mbp->msg_size + 2048;
1065 		cpu_ccfence();
1066 		mbp->msg_bufr = rindex;
1067 	}
1068 }
1069 
1070 static void
1071 msgbufcopy(struct msgbuf *oldp)
1072 {
1073 	u_int rindex;
1074 	u_int xindex;
1075 	u_int n;
1076 
1077 	rindex = oldp->msg_bufr;
1078 	xindex = oldp->msg_bufx;
1079 	cpu_ccfence();
1080 
1081 	n = xindex - rindex;
1082 	if (n > oldp->msg_size - 1024)
1083 		rindex = xindex - oldp->msg_size + 2048;
1084 	while (rindex != xindex) {
1085 		msglogchar(oldp->msg_ptr[rindex % oldp->msg_size], -1);
1086 		++rindex;
1087 	}
1088 }
1089 
1090 void
1091 msgbufinit(void *ptr, size_t size)
1092 {
1093 	char *cp;
1094 	static struct msgbuf *oldp = NULL;
1095 
1096 	size -= sizeof(*msgbufp);
1097 	cp = (char *)ptr;
1098 	msgbufp = (struct msgbuf *) (cp + size);
1099 	if (msgbufp->msg_magic != MSG_MAGIC || msgbufp->msg_size != size) {
1100 		bzero(cp, size);
1101 		bzero(msgbufp, sizeof(*msgbufp));
1102 		msgbufp->msg_magic = MSG_MAGIC;
1103 		msgbufp->msg_size = (char *)msgbufp - cp;
1104 	}
1105 	msgbufp->msg_ptr = cp;
1106 	if (msgbufmapped && oldp != msgbufp)
1107 		msgbufcopy(oldp);
1108 	cpu_mfence();
1109 	msgbufmapped = 1;
1110 	oldp = msgbufp;
1111 }
1112 
1113 /* Sysctls for accessing/clearing the msgbuf */
1114 
1115 static int
1116 sysctl_kern_msgbuf(SYSCTL_HANDLER_ARGS)
1117 {
1118         struct msgbuf *mbp;
1119 	struct ucred *cred;
1120 	int error;
1121 	u_int rindex_modulo;
1122 	u_int xindex_modulo;
1123 	u_int rindex;
1124 	u_int xindex;
1125 	u_int n;
1126 
1127 	/*
1128 	 * Only wheel or root can access the message log.
1129 	 */
1130 	if (unprivileged_read_msgbuf == 0) {
1131 		KKASSERT(req->td->td_proc);
1132 		cred = req->td->td_proc->p_ucred;
1133 
1134 		if ((cred->cr_prison || groupmember(0, cred) == 0) &&
1135 		    priv_check(req->td, PRIV_ROOT) != 0
1136 		) {
1137 			return (EPERM);
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * Unwind the buffer, so that it's linear (possibly starting with
1143 	 * some initial nulls).
1144 	 *
1145 	 * We don't push the entire buffer like we did before because
1146 	 * bufr (and bufl) now advance in chunks when the fifo is full,
1147 	 * rather than one character.
1148 	 */
1149 	mbp = msgbufp;
1150 	rindex = mbp->msg_bufr;
1151 	xindex = mbp->msg_bufx;
1152 	n = xindex - rindex;
1153 	if (n > mbp->msg_size - 1024) {
1154 		rindex = xindex - mbp->msg_size + 2048;
1155 		n = xindex - rindex;
1156 	}
1157 	rindex_modulo = rindex % mbp->msg_size;
1158 	xindex_modulo = xindex % mbp->msg_size;
1159 
1160 	if (rindex_modulo < xindex_modulo) {
1161 		/*
1162 		 * Can handle in one linear section.
1163 		 */
1164 		error = sysctl_handle_opaque(oidp,
1165 					     mbp->msg_ptr + rindex_modulo,
1166 					     xindex_modulo - rindex_modulo,
1167 					     req);
1168 	} else if (rindex_modulo == xindex_modulo) {
1169 		/*
1170 		 * Empty buffer, just return a single newline
1171 		 */
1172 		error = sysctl_handle_opaque(oidp, "\n", 1, req);
1173 	} else if (n <= mbp->msg_size - rindex_modulo) {
1174 		/*
1175 		 * Can handle in one linear section.
1176 		 */
1177 		error = sysctl_handle_opaque(oidp,
1178 					     mbp->msg_ptr + rindex_modulo,
1179 					     n - rindex_modulo,
1180 					     req);
1181 	} else {
1182 		/*
1183 		 * Glue together two linear sections into one contiguous
1184 		 * output.
1185 		 */
1186 		error = sysctl_handle_opaque(oidp,
1187 					     mbp->msg_ptr + rindex_modulo,
1188 					     mbp->msg_size - rindex_modulo,
1189 					     req);
1190 		n -= mbp->msg_size - rindex_modulo;
1191 		if (error == 0)
1192 			error = sysctl_handle_opaque(oidp, mbp->msg_ptr,
1193 						     n, req);
1194 	}
1195 	if (error)
1196 		return (error);
1197 	return (error);
1198 }
1199 
1200 SYSCTL_PROC(_kern, OID_AUTO, msgbuf, CTLTYPE_STRING | CTLFLAG_RD,
1201     0, 0, sysctl_kern_msgbuf, "A", "Contents of kernel message buffer");
1202 
1203 static int msgbuf_clear;
1204 
1205 static int
1206 sysctl_kern_msgbuf_clear(SYSCTL_HANDLER_ARGS)
1207 {
1208 	int error;
1209 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1210 	if (!error && req->newptr) {
1211 		/* Clear the buffer and reset write pointer */
1212 		msgbufp->msg_bufr = msgbufp->msg_bufx;
1213 		msgbufp->msg_bufl = msgbufp->msg_bufx;
1214 		bzero(msgbufp->msg_ptr, msgbufp->msg_size);
1215 		msgbuf_clear = 0;
1216 	}
1217 	return (error);
1218 }
1219 
1220 SYSCTL_PROC(_kern, OID_AUTO, msgbuf_clear,
1221     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, &msgbuf_clear, 0,
1222     sysctl_kern_msgbuf_clear, "I", "Clear kernel message buffer");
1223 
1224 #ifdef DDB
1225 
1226 DB_SHOW_COMMAND(msgbuf, db_show_msgbuf)
1227 {
1228 	u_int rindex;
1229 	u_int i;
1230 	u_int j;
1231 
1232 	if (!msgbufmapped) {
1233 		db_printf("msgbuf not mapped yet\n");
1234 		return;
1235 	}
1236 	db_printf("msgbufp = %p\n", msgbufp);
1237 	db_printf("magic = %x, size = %d, r= %d, w = %d, ptr = %p\n",
1238 		  msgbufp->msg_magic, msgbufp->msg_size,
1239 		  msgbufp->msg_bufr % msgbufp->msg_size,
1240 		  msgbufp->msg_bufx % msgbufp->msg_size,
1241 		  msgbufp->msg_ptr);
1242 
1243 	rindex = msgbufp->msg_bufr;
1244 	for (i = 0; i < msgbufp->msg_size; i++) {
1245 		j = (i + rindex) % msgbufp->msg_size;
1246 		db_printf("%c", msgbufp->msg_ptr[j]);
1247 	}
1248 	db_printf("\n");
1249 }
1250 
1251 #endif /* DDB */
1252 
1253 
1254 void
1255 hexdump(const void *ptr, int length, const char *hdr, int flags)
1256 {
1257 	int i, j, k;
1258 	int cols;
1259 	const unsigned char *cp;
1260 	char delim;
1261 
1262 	if ((flags & HD_DELIM_MASK) != 0)
1263 		delim = (flags & HD_DELIM_MASK) >> 8;
1264 	else
1265 		delim = ' ';
1266 
1267 	if ((flags & HD_COLUMN_MASK) != 0)
1268 		cols = flags & HD_COLUMN_MASK;
1269 	else
1270 		cols = 16;
1271 
1272 	cp = ptr;
1273 	for (i = 0; i < length; i+= cols) {
1274 		if (hdr != NULL)
1275 			kprintf("%s", hdr);
1276 
1277 		if ((flags & HD_OMIT_COUNT) == 0)
1278 			kprintf("%04x  ", i);
1279 
1280 		if ((flags & HD_OMIT_HEX) == 0) {
1281 			for (j = 0; j < cols; j++) {
1282 				k = i + j;
1283 				if (k < length)
1284 					kprintf("%c%02x", delim, cp[k]);
1285 				else
1286 					kprintf("   ");
1287 			}
1288 		}
1289 
1290 		if ((flags & HD_OMIT_CHARS) == 0) {
1291 			kprintf("  |");
1292 			for (j = 0; j < cols; j++) {
1293 				k = i + j;
1294 				if (k >= length)
1295 					kprintf(" ");
1296 				else if (cp[k] >= ' ' && cp[k] <= '~')
1297 					kprintf("%c", cp[k]);
1298 				else
1299 					kprintf(".");
1300 			}
1301 			kprintf("|");
1302 		}
1303 		kprintf("\n");
1304 	}
1305 }
1306 
1307 void
1308 kprint_cpuset(cpumask_t *mask)
1309 {
1310 	int i;
1311 	int b = -1;
1312 	int e = -1;
1313 	int more = 0;
1314 
1315 	kprintf("cpus(");
1316 	CPUSET_FOREACH(i, *mask) {
1317 		if (b < 0) {
1318 			b = i;
1319 			e = b + 1;
1320 			continue;
1321 		}
1322 		if (e == i) {
1323 			++e;
1324 			continue;
1325 		}
1326 		if (more)
1327 			kprintf(", ");
1328 		if (b == e - 1) {
1329 			kprintf("%d", b);
1330 		} else {
1331 			kprintf("%d-%d", b, e - 1);
1332 		}
1333 		more = 1;
1334 		b = i;
1335 		e = b + 1;
1336 	}
1337 	if (more)
1338 		kprintf(", ");
1339 	if (b >= 0) {
1340 		if (b == e - 1) {
1341 			kprintf("%d", b);
1342 		} else {
1343 			kprintf("%d-%d", b, e - 1);
1344 		}
1345 	}
1346 	kprintf(") ");
1347 }
1348