xref: /dragonfly/sys/kern/subr_rman.c (revision 8e9b4bd4)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
30  * $DragonFly: src/sys/kern/subr_rman.c,v 1.13 2007/09/21 02:28:00 y0netan1 Exp $
31  */
32 
33 /*
34  * The kernel resource manager.  This code is responsible for keeping track
35  * of hardware resources which are apportioned out to various drivers.
36  * It does not actually assign those resources, and it is not expected
37  * that end-device drivers will call into this code directly.  Rather,
38  * the code which implements the buses that those devices are attached to,
39  * and the code which manages CPU resources, will call this code, and the
40  * end-device drivers will make upcalls to that code to actually perform
41  * the allocation.
42  *
43  * There are two sorts of resources managed by this code.  The first is
44  * the more familiar array (RMAN_ARRAY) type; resources in this class
45  * consist of a sequence of individually-allocatable objects which have
46  * been numbered in some well-defined order.  Most of the resources
47  * are of this type, as it is the most familiar.  The second type is
48  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
49  * resources in which each instance is indistinguishable from every
50  * other instance).  The principal anticipated application of gauges
51  * is in the context of power consumption, where a bus may have a specific
52  * power budget which all attached devices share.  RMAN_GAUGE is not
53  * implemented yet.
54  *
55  * For array resources, we make one simplifying assumption: two clients
56  * sharing the same resource must use the same range of indices.  That
57  * is to say, sharing of overlapping-but-not-identical regions is not
58  * permitted.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/bus.h>		/* XXX debugging */
67 #include <sys/rman.h>
68 #include <sys/sysctl.h>
69 
70 int	rman_debug = 0;
71 TUNABLE_INT("debug.rman_debug", &rman_debug);
72 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
73     &rman_debug, 0, "rman debug");
74 
75 #define DPRINTF(params) if (rman_debug) kprintf params
76 
77 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
78 
79 struct	rman_head rman_head;
80 static	struct lwkt_token rman_tok; /* mutex to protect rman_head */
81 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
82 				       struct resource **whohas);
83 static	int int_rman_deactivate_resource(struct resource *r);
84 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
85 
86 #define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
87 
88 int
89 rman_init(struct rman *rm)
90 {
91 	static int once;
92 	lwkt_tokref ilock;
93 
94 	if (once == 0) {
95 		once = 1;
96 		TAILQ_INIT(&rman_head);
97 		lwkt_token_init(&rman_tok);
98 	}
99 
100 	if (rm->rm_type == RMAN_UNINIT)
101 		panic("rman_init");
102 	if (rm->rm_type == RMAN_GAUGE)
103 		panic("implement RMAN_GAUGE");
104 
105 	CIRCLEQ_INIT(&rm->rm_list);
106 	rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
107 	if (rm->rm_slock == NULL)
108 		return ENOMEM;
109 	lwkt_token_init(rm->rm_slock);
110 
111 	lwkt_gettoken(&ilock, &rman_tok);
112 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
113 	lwkt_reltoken(&ilock);
114 	return 0;
115 }
116 
117 /*
118  * NB: this interface is not robust against programming errors which
119  * add multiple copies of the same region.
120  */
121 int
122 rman_manage_region(struct rman *rm, u_long start, u_long end)
123 {
124 	struct resource *r, *s;
125 	lwkt_tokref ilock;
126 
127 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
128 	    rm->rm_descr, start, end));
129 	r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT);
130 	if (r == 0)
131 		return ENOMEM;
132 	bzero(r, sizeof *r);
133 	r->r_sharehead = 0;
134 	r->r_start = start;
135 	r->r_end = end;
136 	r->r_flags = 0;
137 	r->r_dev = 0;
138 	r->r_rm = rm;
139 
140 	lwkt_gettoken(&ilock, rm->rm_slock);
141 	for (s = CIRCLEQ_FIRST(&rm->rm_list);
142 	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
143 	     s = CIRCLEQ_NEXT(s, r_link))
144 		;
145 
146 	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
147 		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
148 	} else {
149 		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
150 	}
151 
152 	lwkt_reltoken(&ilock);
153 	return 0;
154 }
155 
156 int
157 rman_fini(struct rman *rm)
158 {
159 	struct resource *r;
160 	lwkt_tokref ilock;
161 
162 	lwkt_gettoken(&ilock, rm->rm_slock);
163 	CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) {
164 		if (r->r_flags & RF_ALLOCATED) {
165 			lwkt_reltoken(&ilock);
166 			return EBUSY;
167 		}
168 	}
169 
170 	/*
171 	 * There really should only be one of these if we are in this
172 	 * state and the code is working properly, but it can't hurt.
173 	 */
174 	while (!CIRCLEQ_EMPTY(&rm->rm_list)) {
175 		r = CIRCLEQ_FIRST(&rm->rm_list);
176 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
177 		kfree(r, M_RMAN);
178 	}
179 	lwkt_reltoken(&ilock);
180 	/* XXX what's the point of this if we are going to free the struct? */
181 	lwkt_gettoken(&ilock, &rman_tok);
182 	TAILQ_REMOVE(&rman_head, rm, rm_link);
183 	lwkt_reltoken(&ilock);
184 	kfree(rm->rm_slock, M_RMAN);
185 
186 	return 0;
187 }
188 
189 struct resource *
190 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
191 		      u_int flags, struct device *dev)
192 {
193 	u_int	want_activate;
194 	struct	resource *r, *s, *rv;
195 	u_long	rstart, rend;
196 	lwkt_tokref ilock;
197 
198 	rv = 0;
199 
200 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
201 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end,
202 	       count, flags,
203 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
204 	want_activate = (flags & RF_ACTIVE);
205 	flags &= ~RF_ACTIVE;
206 
207 	lwkt_gettoken(&ilock, rm->rm_slock);
208 
209 	for (r = CIRCLEQ_FIRST(&rm->rm_list);
210 	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
211 	     r = CIRCLEQ_NEXT(r, r_link))
212 		;
213 
214 	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
215 		DPRINTF(("could not find a region\n"));
216 		goto out;
217 	}
218 
219 	/*
220 	 * First try to find an acceptable totally-unshared region.
221 	 */
222 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
223 	     s = CIRCLEQ_NEXT(s, r_link)) {
224 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
225 		if (s->r_start > end) {
226 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
227 			    s->r_start, end));
228 			break;
229 		}
230 		if (s->r_flags & RF_ALLOCATED) {
231 			DPRINTF(("region is allocated\n"));
232 			continue;
233 		}
234 		rstart = max(s->r_start, start);
235 		rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
236 		    ~((1ul << RF_ALIGNMENT(flags)) - 1);
237 		rend = min(s->r_end, max(start + count, end));
238 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
239 		       rstart, rend, (rend - rstart + 1), count));
240 
241 		if ((rend - rstart + 1) >= count) {
242 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
243 			       rstart, rend, (rend - rstart + 1)));
244 			if ((s->r_end - s->r_start + 1) == count) {
245 				DPRINTF(("candidate region is entire chunk\n"));
246 				rv = s;
247 				rv->r_flags |= RF_ALLOCATED | flags;
248 				rv->r_dev = dev;
249 				goto out;
250 			}
251 
252 			/*
253 			 * If s->r_start < rstart and
254 			 *    s->r_end > rstart + count - 1, then
255 			 * we need to split the region into three pieces
256 			 * (the middle one will get returned to the user).
257 			 * Otherwise, we are allocating at either the
258 			 * beginning or the end of s, so we only need to
259 			 * split it in two.  The first case requires
260 			 * two new allocations; the second requires but one.
261 			 */
262 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT);
263 			if (rv == 0)
264 				goto out;
265 			bzero(rv, sizeof *rv);
266 			rv->r_start = rstart;
267 			rv->r_end = rstart + count - 1;
268 			rv->r_flags = flags | RF_ALLOCATED;
269 			rv->r_dev = dev;
270 			rv->r_sharehead = 0;
271 			rv->r_rm = rm;
272 
273 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
274 				DPRINTF(("splitting region in three parts: "
275 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
276 				       s->r_start, rv->r_start - 1,
277 				       rv->r_start, rv->r_end,
278 				       rv->r_end + 1, s->r_end));
279 				/*
280 				 * We are allocating in the middle.
281 				 */
282 				r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT);
283 				if (r == 0) {
284 					kfree(rv, M_RMAN);
285 					rv = 0;
286 					goto out;
287 				}
288 				bzero(r, sizeof *r);
289 				r->r_start = rv->r_end + 1;
290 				r->r_end = s->r_end;
291 				r->r_flags = s->r_flags;
292 				r->r_dev = 0;
293 				r->r_sharehead = 0;
294 				r->r_rm = rm;
295 				s->r_end = rv->r_start - 1;
296 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
297 						     r_link);
298 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
299 						     r_link);
300 			} else if (s->r_start == rv->r_start) {
301 				DPRINTF(("allocating from the beginning\n"));
302 				/*
303 				 * We are allocating at the beginning.
304 				 */
305 				s->r_start = rv->r_end + 1;
306 				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
307 						      r_link);
308 			} else {
309 				DPRINTF(("allocating at the end\n"));
310 				/*
311 				 * We are allocating at the end.
312 				 */
313 				s->r_end = rv->r_start - 1;
314 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
315 						     r_link);
316 			}
317 			goto out;
318 		}
319 	}
320 
321 	/*
322 	 * Now find an acceptable shared region, if the client's requirements
323 	 * allow sharing.  By our implementation restriction, a candidate
324 	 * region must match exactly by both size and sharing type in order
325 	 * to be considered compatible with the client's request.  (The
326 	 * former restriction could probably be lifted without too much
327 	 * additional work, but this does not seem warranted.)
328 	 */
329 	DPRINTF(("no unshared regions found\n"));
330 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
331 		goto out;
332 
333 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
334 	     s = CIRCLEQ_NEXT(s, r_link)) {
335 		if (s->r_start > end)
336 			break;
337 		if ((s->r_flags & flags) != flags)
338 			continue;
339 		rstart = max(s->r_start, start);
340 		rend = min(s->r_end, max(start + count, end));
341 		if (s->r_start >= start && s->r_end <= end
342 		    && (s->r_end - s->r_start + 1) == count) {
343 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT);
344 			if (rv == 0)
345 				goto out;
346 			bzero(rv, sizeof *rv);
347 			rv->r_start = s->r_start;
348 			rv->r_end = s->r_end;
349 			rv->r_flags = s->r_flags &
350 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
351 			rv->r_dev = dev;
352 			rv->r_rm = rm;
353 			if (s->r_sharehead == 0) {
354 				s->r_sharehead = kmalloc(sizeof *s->r_sharehead,
355 							M_RMAN, M_NOWAIT);
356 				if (s->r_sharehead == 0) {
357 					kfree(rv, M_RMAN);
358 					rv = 0;
359 					goto out;
360 				}
361 				bzero(s->r_sharehead, sizeof *s->r_sharehead);
362 				LIST_INIT(s->r_sharehead);
363 				LIST_INSERT_HEAD(s->r_sharehead, s,
364 						 r_sharelink);
365 				s->r_flags |= RF_FIRSTSHARE;
366 			}
367 			rv->r_sharehead = s->r_sharehead;
368 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
369 			goto out;
370 		}
371 	}
372 
373 	/*
374 	 * We couldn't find anything.
375 	 */
376 out:
377 	/*
378 	 * If the user specified RF_ACTIVE in the initial flags,
379 	 * which is reflected in `want_activate', we attempt to atomically
380 	 * activate the resource.  If this fails, we release the resource
381 	 * and indicate overall failure.  (This behavior probably doesn't
382 	 * make sense for RF_TIMESHARE-type resources.)
383 	 */
384 	if (rv && want_activate) {
385 		struct resource *whohas;
386 		if (int_rman_activate_resource(rm, rv, &whohas)) {
387 			int_rman_release_resource(rm, rv);
388 			rv = 0;
389 		}
390 	}
391 	lwkt_reltoken(&ilock);
392 	return (rv);
393 }
394 
395 static int
396 int_rman_activate_resource(struct rman *rm, struct resource *r,
397 			   struct resource **whohas)
398 {
399 	struct resource *s;
400 	int ok;
401 
402 	/*
403 	 * If we are not timesharing, then there is nothing much to do.
404 	 * If we already have the resource, then there is nothing at all to do.
405 	 * If we are not on a sharing list with anybody else, then there is
406 	 * little to do.
407 	 */
408 	if ((r->r_flags & RF_TIMESHARE) == 0
409 	    || (r->r_flags & RF_ACTIVE) != 0
410 	    || r->r_sharehead == 0) {
411 		r->r_flags |= RF_ACTIVE;
412 		return 0;
413 	}
414 
415 	ok = 1;
416 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
417 	     s = LIST_NEXT(s, r_sharelink)) {
418 		if ((s->r_flags & RF_ACTIVE) != 0) {
419 			ok = 0;
420 			*whohas = s;
421 		}
422 	}
423 	if (ok) {
424 		r->r_flags |= RF_ACTIVE;
425 		return 0;
426 	}
427 	return EBUSY;
428 }
429 
430 int
431 rman_activate_resource(struct resource *r)
432 {
433 	int rv;
434 	struct resource *whohas;
435 	lwkt_tokref ilock;
436 	struct rman *rm;
437 
438 	rm = r->r_rm;
439 	lwkt_gettoken(&ilock, rm->rm_slock);
440 	rv = int_rman_activate_resource(rm, r, &whohas);
441 	lwkt_reltoken(&ilock);
442 	return rv;
443 }
444 
445 #if 0
446 
447 /* XXX */
448 int
449 rman_await_resource(struct resource *r, lwkt_tokref_t ilock, int slpflags, int timo)
450 {
451 	int	rv;
452 	struct	resource *whohas;
453 	struct	rman *rm;
454 
455 	rm = r->r_rm;
456 	for (;;) {
457 		lwkt_gettoken(ilock, rm->rm_slock);
458 		rv = int_rman_activate_resource(rm, r, &whohas);
459 		if (rv != EBUSY)
460 			return (rv);	/* returns with ilock held */
461 
462 		if (r->r_sharehead == 0)
463 			panic("rman_await_resource");
464 		/*
465 		 * A critical section will hopefully will prevent a race
466 		 * between lwkt_reltoken and tsleep where a process
467 		 * could conceivably get in and release the resource
468 		 * before we have a chance to sleep on it. YYY
469 		 */
470 		crit_enter();
471 		whohas->r_flags |= RF_WANTED;
472 		rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo);
473 		if (rv) {
474 			lwkt_reltoken(ilock);
475 			crit_exit();
476 			return rv;
477 		}
478 		crit_exit();
479 	}
480 }
481 
482 #endif
483 
484 static int
485 int_rman_deactivate_resource(struct resource *r)
486 {
487 	struct	rman *rm;
488 
489 	rm = r->r_rm;
490 	r->r_flags &= ~RF_ACTIVE;
491 	if (r->r_flags & RF_WANTED) {
492 		r->r_flags &= ~RF_WANTED;
493 		wakeup(r->r_sharehead);
494 	}
495 	return 0;
496 }
497 
498 int
499 rman_deactivate_resource(struct resource *r)
500 {
501 	lwkt_tokref ilock;
502 	struct rman *rm;
503 
504 	rm = r->r_rm;
505 	lwkt_gettoken(&ilock, rm->rm_slock);
506 	int_rman_deactivate_resource(r);
507 	lwkt_reltoken(&ilock);
508 	return 0;
509 }
510 
511 static int
512 int_rman_release_resource(struct rman *rm, struct resource *r)
513 {
514 	struct	resource *s, *t;
515 
516 	if (r->r_flags & RF_ACTIVE)
517 		int_rman_deactivate_resource(r);
518 
519 	/*
520 	 * Check for a sharing list first.  If there is one, then we don't
521 	 * have to think as hard.
522 	 */
523 	if (r->r_sharehead) {
524 		/*
525 		 * If a sharing list exists, then we know there are at
526 		 * least two sharers.
527 		 *
528 		 * If we are in the main circleq, appoint someone else.
529 		 */
530 		LIST_REMOVE(r, r_sharelink);
531 		s = LIST_FIRST(r->r_sharehead);
532 		if (r->r_flags & RF_FIRSTSHARE) {
533 			s->r_flags |= RF_FIRSTSHARE;
534 			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
535 			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
536 		}
537 
538 		/*
539 		 * Make sure that the sharing list goes away completely
540 		 * if the resource is no longer being shared at all.
541 		 */
542 		if (LIST_NEXT(s, r_sharelink) == 0) {
543 			kfree(s->r_sharehead, M_RMAN);
544 			s->r_sharehead = 0;
545 			s->r_flags &= ~RF_FIRSTSHARE;
546 		}
547 		goto out;
548 	}
549 
550 	/*
551 	 * Look at the adjacent resources in the list and see if our
552 	 * segment can be merged with any of them.
553 	 */
554 	s = CIRCLEQ_PREV(r, r_link);
555 	t = CIRCLEQ_NEXT(r, r_link);
556 
557 	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
558 	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
559 		/*
560 		 * Merge all three segments.
561 		 */
562 		s->r_end = t->r_end;
563 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
564 		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
565 		kfree(t, M_RMAN);
566 	} else if (s != (void *)&rm->rm_list
567 		   && (s->r_flags & RF_ALLOCATED) == 0) {
568 		/*
569 		 * Merge previous segment with ours.
570 		 */
571 		s->r_end = r->r_end;
572 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
573 	} else if (t != (void *)&rm->rm_list
574 		   && (t->r_flags & RF_ALLOCATED) == 0) {
575 		/*
576 		 * Merge next segment with ours.
577 		 */
578 		t->r_start = r->r_start;
579 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
580 	} else {
581 		/*
582 		 * At this point, we know there is nothing we
583 		 * can potentially merge with, because on each
584 		 * side, there is either nothing there or what is
585 		 * there is still allocated.  In that case, we don't
586 		 * want to remove r from the list; we simply want to
587 		 * change it to an unallocated region and return
588 		 * without freeing anything.
589 		 */
590 		r->r_flags &= ~RF_ALLOCATED;
591 		return 0;
592 	}
593 
594 out:
595 	kfree(r, M_RMAN);
596 	return 0;
597 }
598 
599 int
600 rman_release_resource(struct resource *r)
601 {
602 	struct	rman *rm = r->r_rm;
603 	lwkt_tokref ilock;
604 	int	rv;
605 
606 	lwkt_gettoken(&ilock, rm->rm_slock);
607 	rv = int_rman_release_resource(rm, r);
608 	lwkt_reltoken(&ilock);
609 	return (rv);
610 }
611 
612 uint32_t
613 rman_make_alignment_flags(uint32_t size)
614 {
615 	int	i;
616 
617 	/*
618 	 * Find the hightest bit set, and add one if more than one bit
619 	 * set.  We're effectively computing the ceil(log2(size)) here.
620 	 */
621 	for (i = 32; i > 0; i--)
622 		if ((1 << i) & size)
623 			break;
624 	if (~(1 << i) & size)
625 		i++;
626 
627 	return(RF_ALIGNMENT_LOG2(i));
628 }
629