xref: /dragonfly/sys/kern/subr_rman.c (revision 9b5a9965)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
30  * $DragonFly: src/sys/kern/subr_rman.c,v 1.12 2007/05/20 07:43:24 y0netan1 Exp $
31  */
32 
33 /*
34  * The kernel resource manager.  This code is responsible for keeping track
35  * of hardware resources which are apportioned out to various drivers.
36  * It does not actually assign those resources, and it is not expected
37  * that end-device drivers will call into this code directly.  Rather,
38  * the code which implements the buses that those devices are attached to,
39  * and the code which manages CPU resources, will call this code, and the
40  * end-device drivers will make upcalls to that code to actually perform
41  * the allocation.
42  *
43  * There are two sorts of resources managed by this code.  The first is
44  * the more familiar array (RMAN_ARRAY) type; resources in this class
45  * consist of a sequence of individually-allocatable objects which have
46  * been numbered in some well-defined order.  Most of the resources
47  * are of this type, as it is the most familiar.  The second type is
48  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
49  * resources in which each instance is indistinguishable from every
50  * other instance).  The principal anticipated application of gauges
51  * is in the context of power consumption, where a bus may have a specific
52  * power budget which all attached devices share.  RMAN_GAUGE is not
53  * implemented yet.
54  *
55  * For array resources, we make one simplifying assumption: two clients
56  * sharing the same resource must use the same range of indices.  That
57  * is to say, sharing of overlapping-but-not-identical regions is not
58  * permitted.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/bus.h>		/* XXX debugging */
67 #include <sys/rman.h>
68 
69 #ifdef RMAN_DEBUG
70 #define DPRINTF(params) kprintf params
71 #else
72 #define DPRINTF(params)
73 #endif
74 
75 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
76 
77 struct	rman_head rman_head;
78 static	struct lwkt_token rman_tok; /* mutex to protect rman_head */
79 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
80 				       struct resource **whohas);
81 static	int int_rman_deactivate_resource(struct resource *r);
82 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
83 
84 #define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
85 
86 int
87 rman_init(struct rman *rm)
88 {
89 	static int once;
90 	lwkt_tokref ilock;
91 
92 	if (once == 0) {
93 		once = 1;
94 		TAILQ_INIT(&rman_head);
95 		lwkt_token_init(&rman_tok);
96 	}
97 
98 	if (rm->rm_type == RMAN_UNINIT)
99 		panic("rman_init");
100 	if (rm->rm_type == RMAN_GAUGE)
101 		panic("implement RMAN_GAUGE");
102 
103 	CIRCLEQ_INIT(&rm->rm_list);
104 	rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
105 	if (rm->rm_slock == NULL)
106 		return ENOMEM;
107 	lwkt_token_init(rm->rm_slock);
108 
109 	lwkt_gettoken(&ilock, &rman_tok);
110 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
111 	lwkt_reltoken(&ilock);
112 	return 0;
113 }
114 
115 /*
116  * NB: this interface is not robust against programming errors which
117  * add multiple copies of the same region.
118  */
119 int
120 rman_manage_region(struct rman *rm, u_long start, u_long end)
121 {
122 	struct resource *r, *s;
123 	lwkt_tokref ilock;
124 
125 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
126 	    rm->rm_descr, start, end));
127 	r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT);
128 	if (r == 0)
129 		return ENOMEM;
130 	bzero(r, sizeof *r);
131 	r->r_sharehead = 0;
132 	r->r_start = start;
133 	r->r_end = end;
134 	r->r_flags = 0;
135 	r->r_dev = 0;
136 	r->r_rm = rm;
137 
138 	lwkt_gettoken(&ilock, rm->rm_slock);
139 	for (s = CIRCLEQ_FIRST(&rm->rm_list);
140 	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
141 	     s = CIRCLEQ_NEXT(s, r_link))
142 		;
143 
144 	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
145 		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
146 	} else {
147 		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
148 	}
149 
150 	lwkt_reltoken(&ilock);
151 	return 0;
152 }
153 
154 int
155 rman_fini(struct rman *rm)
156 {
157 	struct resource *r;
158 	lwkt_tokref ilock;
159 
160 	lwkt_gettoken(&ilock, rm->rm_slock);
161 	CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) {
162 		if (r->r_flags & RF_ALLOCATED) {
163 			lwkt_reltoken(&ilock);
164 			return EBUSY;
165 		}
166 	}
167 
168 	/*
169 	 * There really should only be one of these if we are in this
170 	 * state and the code is working properly, but it can't hurt.
171 	 */
172 	while (!CIRCLEQ_EMPTY(&rm->rm_list)) {
173 		r = CIRCLEQ_FIRST(&rm->rm_list);
174 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
175 		kfree(r, M_RMAN);
176 	}
177 	lwkt_reltoken(&ilock);
178 	/* XXX what's the point of this if we are going to free the struct? */
179 	lwkt_gettoken(&ilock, &rman_tok);
180 	TAILQ_REMOVE(&rman_head, rm, rm_link);
181 	lwkt_reltoken(&ilock);
182 	kfree(rm->rm_slock, M_RMAN);
183 
184 	return 0;
185 }
186 
187 struct resource *
188 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
189 		      u_int flags, struct device *dev)
190 {
191 	u_int	want_activate;
192 	struct	resource *r, *s, *rv;
193 	u_long	rstart, rend;
194 	lwkt_tokref ilock;
195 
196 	rv = 0;
197 
198 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
199 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end,
200 	       count, flags,
201 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
202 	want_activate = (flags & RF_ACTIVE);
203 	flags &= ~RF_ACTIVE;
204 
205 	lwkt_gettoken(&ilock, rm->rm_slock);
206 
207 	for (r = CIRCLEQ_FIRST(&rm->rm_list);
208 	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
209 	     r = CIRCLEQ_NEXT(r, r_link))
210 		;
211 
212 	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
213 		DPRINTF(("could not find a region\n"));
214 		goto out;
215 	}
216 
217 	/*
218 	 * First try to find an acceptable totally-unshared region.
219 	 */
220 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
221 	     s = CIRCLEQ_NEXT(s, r_link)) {
222 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
223 		if (s->r_start > end) {
224 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
225 			    s->r_start, end));
226 			break;
227 		}
228 		if (s->r_flags & RF_ALLOCATED) {
229 			DPRINTF(("region is allocated\n"));
230 			continue;
231 		}
232 		rstart = max(s->r_start, start);
233 		rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
234 		    ~((1ul << RF_ALIGNMENT(flags)) - 1);
235 		rend = min(s->r_end, max(start + count, end));
236 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
237 		       rstart, rend, (rend - rstart + 1), count));
238 
239 		if ((rend - rstart + 1) >= count) {
240 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
241 			       rstart, rend, (rend - rstart + 1)));
242 			if ((s->r_end - s->r_start + 1) == count) {
243 				DPRINTF(("candidate region is entire chunk\n"));
244 				rv = s;
245 				rv->r_flags |= RF_ALLOCATED | flags;
246 				rv->r_dev = dev;
247 				goto out;
248 			}
249 
250 			/*
251 			 * If s->r_start < rstart and
252 			 *    s->r_end > rstart + count - 1, then
253 			 * we need to split the region into three pieces
254 			 * (the middle one will get returned to the user).
255 			 * Otherwise, we are allocating at either the
256 			 * beginning or the end of s, so we only need to
257 			 * split it in two.  The first case requires
258 			 * two new allocations; the second requires but one.
259 			 */
260 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT);
261 			if (rv == 0)
262 				goto out;
263 			bzero(rv, sizeof *rv);
264 			rv->r_start = rstart;
265 			rv->r_end = rstart + count - 1;
266 			rv->r_flags = flags | RF_ALLOCATED;
267 			rv->r_dev = dev;
268 			rv->r_sharehead = 0;
269 			rv->r_rm = rm;
270 
271 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
272 				DPRINTF(("splitting region in three parts: "
273 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
274 				       s->r_start, rv->r_start - 1,
275 				       rv->r_start, rv->r_end,
276 				       rv->r_end + 1, s->r_end));
277 				/*
278 				 * We are allocating in the middle.
279 				 */
280 				r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT);
281 				if (r == 0) {
282 					kfree(rv, M_RMAN);
283 					rv = 0;
284 					goto out;
285 				}
286 				bzero(r, sizeof *r);
287 				r->r_start = rv->r_end + 1;
288 				r->r_end = s->r_end;
289 				r->r_flags = s->r_flags;
290 				r->r_dev = 0;
291 				r->r_sharehead = 0;
292 				r->r_rm = rm;
293 				s->r_end = rv->r_start - 1;
294 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
295 						     r_link);
296 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
297 						     r_link);
298 			} else if (s->r_start == rv->r_start) {
299 				DPRINTF(("allocating from the beginning\n"));
300 				/*
301 				 * We are allocating at the beginning.
302 				 */
303 				s->r_start = rv->r_end + 1;
304 				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
305 						      r_link);
306 			} else {
307 				DPRINTF(("allocating at the end\n"));
308 				/*
309 				 * We are allocating at the end.
310 				 */
311 				s->r_end = rv->r_start - 1;
312 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
313 						     r_link);
314 			}
315 			goto out;
316 		}
317 	}
318 
319 	/*
320 	 * Now find an acceptable shared region, if the client's requirements
321 	 * allow sharing.  By our implementation restriction, a candidate
322 	 * region must match exactly by both size and sharing type in order
323 	 * to be considered compatible with the client's request.  (The
324 	 * former restriction could probably be lifted without too much
325 	 * additional work, but this does not seem warranted.)
326 	 */
327 	DPRINTF(("no unshared regions found\n"));
328 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
329 		goto out;
330 
331 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
332 	     s = CIRCLEQ_NEXT(s, r_link)) {
333 		if (s->r_start > end)
334 			break;
335 		if ((s->r_flags & flags) != flags)
336 			continue;
337 		rstart = max(s->r_start, start);
338 		rend = min(s->r_end, max(start + count, end));
339 		if (s->r_start >= start && s->r_end <= end
340 		    && (s->r_end - s->r_start + 1) == count) {
341 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT);
342 			if (rv == 0)
343 				goto out;
344 			bzero(rv, sizeof *rv);
345 			rv->r_start = s->r_start;
346 			rv->r_end = s->r_end;
347 			rv->r_flags = s->r_flags &
348 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
349 			rv->r_dev = dev;
350 			rv->r_rm = rm;
351 			if (s->r_sharehead == 0) {
352 				s->r_sharehead = kmalloc(sizeof *s->r_sharehead,
353 							M_RMAN, M_NOWAIT);
354 				if (s->r_sharehead == 0) {
355 					kfree(rv, M_RMAN);
356 					rv = 0;
357 					goto out;
358 				}
359 				bzero(s->r_sharehead, sizeof *s->r_sharehead);
360 				LIST_INIT(s->r_sharehead);
361 				LIST_INSERT_HEAD(s->r_sharehead, s,
362 						 r_sharelink);
363 				s->r_flags |= RF_FIRSTSHARE;
364 			}
365 			rv->r_sharehead = s->r_sharehead;
366 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
367 			goto out;
368 		}
369 	}
370 
371 	/*
372 	 * We couldn't find anything.
373 	 */
374 out:
375 	/*
376 	 * If the user specified RF_ACTIVE in the initial flags,
377 	 * which is reflected in `want_activate', we attempt to atomically
378 	 * activate the resource.  If this fails, we release the resource
379 	 * and indicate overall failure.  (This behavior probably doesn't
380 	 * make sense for RF_TIMESHARE-type resources.)
381 	 */
382 	if (rv && want_activate) {
383 		struct resource *whohas;
384 		if (int_rman_activate_resource(rm, rv, &whohas)) {
385 			int_rman_release_resource(rm, rv);
386 			rv = 0;
387 		}
388 	}
389 	lwkt_reltoken(&ilock);
390 	return (rv);
391 }
392 
393 static int
394 int_rman_activate_resource(struct rman *rm, struct resource *r,
395 			   struct resource **whohas)
396 {
397 	struct resource *s;
398 	int ok;
399 
400 	/*
401 	 * If we are not timesharing, then there is nothing much to do.
402 	 * If we already have the resource, then there is nothing at all to do.
403 	 * If we are not on a sharing list with anybody else, then there is
404 	 * little to do.
405 	 */
406 	if ((r->r_flags & RF_TIMESHARE) == 0
407 	    || (r->r_flags & RF_ACTIVE) != 0
408 	    || r->r_sharehead == 0) {
409 		r->r_flags |= RF_ACTIVE;
410 		return 0;
411 	}
412 
413 	ok = 1;
414 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
415 	     s = LIST_NEXT(s, r_sharelink)) {
416 		if ((s->r_flags & RF_ACTIVE) != 0) {
417 			ok = 0;
418 			*whohas = s;
419 		}
420 	}
421 	if (ok) {
422 		r->r_flags |= RF_ACTIVE;
423 		return 0;
424 	}
425 	return EBUSY;
426 }
427 
428 int
429 rman_activate_resource(struct resource *r)
430 {
431 	int rv;
432 	struct resource *whohas;
433 	lwkt_tokref ilock;
434 	struct rman *rm;
435 
436 	rm = r->r_rm;
437 	lwkt_gettoken(&ilock, rm->rm_slock);
438 	rv = int_rman_activate_resource(rm, r, &whohas);
439 	lwkt_reltoken(&ilock);
440 	return rv;
441 }
442 
443 #if 0
444 
445 /* XXX */
446 int
447 rman_await_resource(struct resource *r, lwkt_tokref_t ilock, int slpflags, int timo)
448 {
449 	int	rv;
450 	struct	resource *whohas;
451 	struct	rman *rm;
452 
453 	rm = r->r_rm;
454 	for (;;) {
455 		lwkt_gettoken(ilock, rm->rm_slock);
456 		rv = int_rman_activate_resource(rm, r, &whohas);
457 		if (rv != EBUSY)
458 			return (rv);	/* returns with ilock held */
459 
460 		if (r->r_sharehead == 0)
461 			panic("rman_await_resource");
462 		/*
463 		 * A critical section will hopefully will prevent a race
464 		 * between lwkt_reltoken and tsleep where a process
465 		 * could conceivably get in and release the resource
466 		 * before we have a chance to sleep on it. YYY
467 		 */
468 		crit_enter();
469 		whohas->r_flags |= RF_WANTED;
470 		rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo);
471 		if (rv) {
472 			lwkt_reltoken(ilock);
473 			crit_exit();
474 			return rv;
475 		}
476 		crit_exit();
477 	}
478 }
479 
480 #endif
481 
482 static int
483 int_rman_deactivate_resource(struct resource *r)
484 {
485 	struct	rman *rm;
486 
487 	rm = r->r_rm;
488 	r->r_flags &= ~RF_ACTIVE;
489 	if (r->r_flags & RF_WANTED) {
490 		r->r_flags &= ~RF_WANTED;
491 		wakeup(r->r_sharehead);
492 	}
493 	return 0;
494 }
495 
496 int
497 rman_deactivate_resource(struct resource *r)
498 {
499 	lwkt_tokref ilock;
500 	struct rman *rm;
501 
502 	rm = r->r_rm;
503 	lwkt_gettoken(&ilock, rm->rm_slock);
504 	int_rman_deactivate_resource(r);
505 	lwkt_reltoken(&ilock);
506 	return 0;
507 }
508 
509 static int
510 int_rman_release_resource(struct rman *rm, struct resource *r)
511 {
512 	struct	resource *s, *t;
513 
514 	if (r->r_flags & RF_ACTIVE)
515 		int_rman_deactivate_resource(r);
516 
517 	/*
518 	 * Check for a sharing list first.  If there is one, then we don't
519 	 * have to think as hard.
520 	 */
521 	if (r->r_sharehead) {
522 		/*
523 		 * If a sharing list exists, then we know there are at
524 		 * least two sharers.
525 		 *
526 		 * If we are in the main circleq, appoint someone else.
527 		 */
528 		LIST_REMOVE(r, r_sharelink);
529 		s = LIST_FIRST(r->r_sharehead);
530 		if (r->r_flags & RF_FIRSTSHARE) {
531 			s->r_flags |= RF_FIRSTSHARE;
532 			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
533 			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
534 		}
535 
536 		/*
537 		 * Make sure that the sharing list goes away completely
538 		 * if the resource is no longer being shared at all.
539 		 */
540 		if (LIST_NEXT(s, r_sharelink) == 0) {
541 			kfree(s->r_sharehead, M_RMAN);
542 			s->r_sharehead = 0;
543 			s->r_flags &= ~RF_FIRSTSHARE;
544 		}
545 		goto out;
546 	}
547 
548 	/*
549 	 * Look at the adjacent resources in the list and see if our
550 	 * segment can be merged with any of them.
551 	 */
552 	s = CIRCLEQ_PREV(r, r_link);
553 	t = CIRCLEQ_NEXT(r, r_link);
554 
555 	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
556 	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
557 		/*
558 		 * Merge all three segments.
559 		 */
560 		s->r_end = t->r_end;
561 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
562 		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
563 		kfree(t, M_RMAN);
564 	} else if (s != (void *)&rm->rm_list
565 		   && (s->r_flags & RF_ALLOCATED) == 0) {
566 		/*
567 		 * Merge previous segment with ours.
568 		 */
569 		s->r_end = r->r_end;
570 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
571 	} else if (t != (void *)&rm->rm_list
572 		   && (t->r_flags & RF_ALLOCATED) == 0) {
573 		/*
574 		 * Merge next segment with ours.
575 		 */
576 		t->r_start = r->r_start;
577 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
578 	} else {
579 		/*
580 		 * At this point, we know there is nothing we
581 		 * can potentially merge with, because on each
582 		 * side, there is either nothing there or what is
583 		 * there is still allocated.  In that case, we don't
584 		 * want to remove r from the list; we simply want to
585 		 * change it to an unallocated region and return
586 		 * without freeing anything.
587 		 */
588 		r->r_flags &= ~RF_ALLOCATED;
589 		return 0;
590 	}
591 
592 out:
593 	kfree(r, M_RMAN);
594 	return 0;
595 }
596 
597 int
598 rman_release_resource(struct resource *r)
599 {
600 	struct	rman *rm = r->r_rm;
601 	lwkt_tokref ilock;
602 	int	rv;
603 
604 	lwkt_gettoken(&ilock, rm->rm_slock);
605 	rv = int_rman_release_resource(rm, r);
606 	lwkt_reltoken(&ilock);
607 	return (rv);
608 }
609 
610 uint32_t
611 rman_make_alignment_flags(uint32_t size)
612 {
613 	int	i;
614 
615 	/*
616 	 * Find the hightest bit set, and add one if more than one bit
617 	 * set.  We're effectively computing the ceil(log2(size)) here.
618 	 */
619 	for (i = 32; i > 0; i--)
620 		if ((1 << i) & size)
621 			break;
622 	if (~(1 << i) & size)
623 		i++;
624 
625 	return(RF_ALIGNMENT_LOG2(i));
626 }
627