xref: /dragonfly/sys/kern/subr_rman.c (revision 9ddb8543)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
30  * $DragonFly: src/sys/kern/subr_rman.c,v 1.15 2008/09/30 12:20:29 hasso Exp $
31  */
32 
33 /*
34  * The kernel resource manager.  This code is responsible for keeping track
35  * of hardware resources which are apportioned out to various drivers.
36  * It does not actually assign those resources, and it is not expected
37  * that end-device drivers will call into this code directly.  Rather,
38  * the code which implements the buses that those devices are attached to,
39  * and the code which manages CPU resources, will call this code, and the
40  * end-device drivers will make upcalls to that code to actually perform
41  * the allocation.
42  *
43  * There are two sorts of resources managed by this code.  The first is
44  * the more familiar array (RMAN_ARRAY) type; resources in this class
45  * consist of a sequence of individually-allocatable objects which have
46  * been numbered in some well-defined order.  Most of the resources
47  * are of this type, as it is the most familiar.  The second type is
48  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
49  * resources in which each instance is indistinguishable from every
50  * other instance).  The principal anticipated application of gauges
51  * is in the context of power consumption, where a bus may have a specific
52  * power budget which all attached devices share.  RMAN_GAUGE is not
53  * implemented yet.
54  *
55  * For array resources, we make one simplifying assumption: two clients
56  * sharing the same resource must use the same range of indices.  That
57  * is to say, sharing of overlapping-but-not-identical regions is not
58  * permitted.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/bus.h>		/* XXX debugging */
67 #include <sys/rman.h>
68 #include <sys/sysctl.h>
69 
70 int	rman_debug = 0;
71 TUNABLE_INT("debug.rman_debug", &rman_debug);
72 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
73     &rman_debug, 0, "rman debug");
74 
75 #define DPRINTF(params) if (rman_debug) kprintf params
76 
77 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
78 
79 struct	rman_head rman_head;
80 static	struct lwkt_token rman_tok; /* mutex to protect rman_head */
81 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
82 				       struct resource **whohas);
83 static	int int_rman_deactivate_resource(struct resource *r);
84 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
85 
86 int
87 rman_init(struct rman *rm)
88 {
89 	static int once;
90 	lwkt_tokref ilock;
91 
92 	if (once == 0) {
93 		once = 1;
94 		TAILQ_INIT(&rman_head);
95 		lwkt_token_init(&rman_tok);
96 	}
97 
98 	if (rm->rm_type == RMAN_UNINIT)
99 		panic("rman_init");
100 	if (rm->rm_type == RMAN_GAUGE)
101 		panic("implement RMAN_GAUGE");
102 
103 	TAILQ_INIT(&rm->rm_list);
104 	rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
105 	if (rm->rm_slock == NULL)
106 		return ENOMEM;
107 	lwkt_token_init(rm->rm_slock);
108 
109 	lwkt_gettoken(&ilock, &rman_tok);
110 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
111 	lwkt_reltoken(&ilock);
112 	return 0;
113 }
114 
115 /*
116  * NB: this interface is not robust against programming errors which
117  * add multiple copies of the same region.
118  */
119 int
120 rman_manage_region(struct rman *rm, u_long start, u_long end)
121 {
122 	struct resource *r, *s;
123 	lwkt_tokref ilock;
124 
125 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
126 	    rm->rm_descr, start, end));
127 	r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
128 	if (r == 0)
129 		return ENOMEM;
130 	r->r_sharehead = 0;
131 	r->r_start = start;
132 	r->r_end = end;
133 	r->r_flags = 0;
134 	r->r_dev = 0;
135 	r->r_rm = rm;
136 
137 	lwkt_gettoken(&ilock, rm->rm_slock);
138 	for (s = TAILQ_FIRST(&rm->rm_list);
139 	     s && s->r_end < r->r_start;
140 	     s = TAILQ_NEXT(s, r_link))
141 		;
142 
143 	if (s == NULL)
144 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
145 	else
146 		TAILQ_INSERT_BEFORE(s, r, r_link);
147 
148 	lwkt_reltoken(&ilock);
149 	return 0;
150 }
151 
152 int
153 rman_fini(struct rman *rm)
154 {
155 	struct resource *r;
156 	lwkt_tokref ilock;
157 
158 	lwkt_gettoken(&ilock, rm->rm_slock);
159 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
160 		if (r->r_flags & RF_ALLOCATED) {
161 			lwkt_reltoken(&ilock);
162 			return EBUSY;
163 		}
164 	}
165 
166 	/*
167 	 * There really should only be one of these if we are in this
168 	 * state and the code is working properly, but it can't hurt.
169 	 */
170 	while (!TAILQ_EMPTY(&rm->rm_list)) {
171 		r = TAILQ_FIRST(&rm->rm_list);
172 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
173 		kfree(r, M_RMAN);
174 	}
175 	lwkt_reltoken(&ilock);
176 	/* XXX what's the point of this if we are going to free the struct? */
177 	lwkt_gettoken(&ilock, &rman_tok);
178 	TAILQ_REMOVE(&rman_head, rm, rm_link);
179 	lwkt_reltoken(&ilock);
180 	kfree(rm->rm_slock, M_RMAN);
181 
182 	return 0;
183 }
184 
185 struct resource *
186 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
187 		      u_int flags, struct device *dev)
188 {
189 	u_int	want_activate;
190 	struct	resource *r, *s, *rv;
191 	u_long	rstart, rend;
192 	lwkt_tokref ilock;
193 
194 	rv = 0;
195 
196 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
197 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end,
198 	       count, flags,
199 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
200 	want_activate = (flags & RF_ACTIVE);
201 	flags &= ~RF_ACTIVE;
202 
203 	lwkt_gettoken(&ilock, rm->rm_slock);
204 
205 	for (r = TAILQ_FIRST(&rm->rm_list);
206 	     r && r->r_end < start;
207 	     r = TAILQ_NEXT(r, r_link))
208 		;
209 
210 	if (r == NULL) {
211 		DPRINTF(("could not find a region\n"));
212 		goto out;
213 	}
214 
215 	/*
216 	 * First try to find an acceptable totally-unshared region.
217 	 */
218 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
219 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
220 		if (s->r_start > end) {
221 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
222 			    s->r_start, end));
223 			break;
224 		}
225 		if (s->r_flags & RF_ALLOCATED) {
226 			DPRINTF(("region is allocated\n"));
227 			continue;
228 		}
229 		rstart = max(s->r_start, start);
230 		rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
231 		    ~((1ul << RF_ALIGNMENT(flags)) - 1);
232 		rend = min(s->r_end, max(start + count, end));
233 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
234 		       rstart, rend, (rend - rstart + 1), count));
235 
236 		if ((rend - rstart + 1) >= count) {
237 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
238 			       rstart, rend, (rend - rstart + 1)));
239 			if ((s->r_end - s->r_start + 1) == count) {
240 				DPRINTF(("candidate region is entire chunk\n"));
241 				rv = s;
242 				rv->r_flags |= RF_ALLOCATED | flags;
243 				rv->r_dev = dev;
244 				goto out;
245 			}
246 
247 			/*
248 			 * If s->r_start < rstart and
249 			 *    s->r_end > rstart + count - 1, then
250 			 * we need to split the region into three pieces
251 			 * (the middle one will get returned to the user).
252 			 * Otherwise, we are allocating at either the
253 			 * beginning or the end of s, so we only need to
254 			 * split it in two.  The first case requires
255 			 * two new allocations; the second requires but one.
256 			 */
257 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
258 			if (rv == 0)
259 				goto out;
260 			rv->r_start = rstart;
261 			rv->r_end = rstart + count - 1;
262 			rv->r_flags = flags | RF_ALLOCATED;
263 			rv->r_dev = dev;
264 			rv->r_sharehead = 0;
265 			rv->r_rm = rm;
266 
267 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
268 				DPRINTF(("splitting region in three parts: "
269 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
270 				       s->r_start, rv->r_start - 1,
271 				       rv->r_start, rv->r_end,
272 				       rv->r_end + 1, s->r_end));
273 				/*
274 				 * We are allocating in the middle.
275 				 */
276 				r = kmalloc(sizeof *r, M_RMAN,
277 				    M_NOWAIT | M_ZERO);
278 				if (r == 0) {
279 					kfree(rv, M_RMAN);
280 					rv = 0;
281 					goto out;
282 				}
283 				r->r_start = rv->r_end + 1;
284 				r->r_end = s->r_end;
285 				r->r_flags = s->r_flags;
286 				r->r_dev = 0;
287 				r->r_sharehead = 0;
288 				r->r_rm = rm;
289 				s->r_end = rv->r_start - 1;
290 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
291 						     r_link);
292 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
293 						     r_link);
294 			} else if (s->r_start == rv->r_start) {
295 				DPRINTF(("allocating from the beginning\n"));
296 				/*
297 				 * We are allocating at the beginning.
298 				 */
299 				s->r_start = rv->r_end + 1;
300 				TAILQ_INSERT_BEFORE(s, rv, r_link);
301 			} else {
302 				DPRINTF(("allocating at the end\n"));
303 				/*
304 				 * We are allocating at the end.
305 				 */
306 				s->r_end = rv->r_start - 1;
307 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
308 						     r_link);
309 			}
310 			goto out;
311 		}
312 	}
313 
314 	/*
315 	 * Now find an acceptable shared region, if the client's requirements
316 	 * allow sharing.  By our implementation restriction, a candidate
317 	 * region must match exactly by both size and sharing type in order
318 	 * to be considered compatible with the client's request.  (The
319 	 * former restriction could probably be lifted without too much
320 	 * additional work, but this does not seem warranted.)
321 	 */
322 	DPRINTF(("no unshared regions found\n"));
323 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
324 		goto out;
325 
326 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
327 		if (s->r_start > end)
328 			break;
329 		if ((s->r_flags & flags) != flags)
330 			continue;
331 		rstart = max(s->r_start, start);
332 		rend = min(s->r_end, max(start + count, end));
333 		if (s->r_start >= start && s->r_end <= end
334 		    && (s->r_end - s->r_start + 1) == count) {
335 			rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
336 			if (rv == 0)
337 				goto out;
338 			rv->r_start = s->r_start;
339 			rv->r_end = s->r_end;
340 			rv->r_flags = s->r_flags &
341 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
342 			rv->r_dev = dev;
343 			rv->r_rm = rm;
344 			if (s->r_sharehead == 0) {
345 				s->r_sharehead = kmalloc(sizeof *s->r_sharehead,
346 							M_RMAN,
347 							M_NOWAIT | M_ZERO);
348 				if (s->r_sharehead == 0) {
349 					kfree(rv, M_RMAN);
350 					rv = 0;
351 					goto out;
352 				}
353 				LIST_INIT(s->r_sharehead);
354 				LIST_INSERT_HEAD(s->r_sharehead, s,
355 						 r_sharelink);
356 				s->r_flags |= RF_FIRSTSHARE;
357 			}
358 			rv->r_sharehead = s->r_sharehead;
359 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
360 			goto out;
361 		}
362 	}
363 
364 	/*
365 	 * We couldn't find anything.
366 	 */
367 out:
368 	/*
369 	 * If the user specified RF_ACTIVE in the initial flags,
370 	 * which is reflected in `want_activate', we attempt to atomically
371 	 * activate the resource.  If this fails, we release the resource
372 	 * and indicate overall failure.  (This behavior probably doesn't
373 	 * make sense for RF_TIMESHARE-type resources.)
374 	 */
375 	if (rv && want_activate) {
376 		struct resource *whohas;
377 		if (int_rman_activate_resource(rm, rv, &whohas)) {
378 			int_rman_release_resource(rm, rv);
379 			rv = 0;
380 		}
381 	}
382 	lwkt_reltoken(&ilock);
383 	return (rv);
384 }
385 
386 static int
387 int_rman_activate_resource(struct rman *rm, struct resource *r,
388 			   struct resource **whohas)
389 {
390 	struct resource *s;
391 	int ok;
392 
393 	/*
394 	 * If we are not timesharing, then there is nothing much to do.
395 	 * If we already have the resource, then there is nothing at all to do.
396 	 * If we are not on a sharing list with anybody else, then there is
397 	 * little to do.
398 	 */
399 	if ((r->r_flags & RF_TIMESHARE) == 0
400 	    || (r->r_flags & RF_ACTIVE) != 0
401 	    || r->r_sharehead == 0) {
402 		r->r_flags |= RF_ACTIVE;
403 		return 0;
404 	}
405 
406 	ok = 1;
407 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
408 	     s = LIST_NEXT(s, r_sharelink)) {
409 		if ((s->r_flags & RF_ACTIVE) != 0) {
410 			ok = 0;
411 			*whohas = s;
412 		}
413 	}
414 	if (ok) {
415 		r->r_flags |= RF_ACTIVE;
416 		return 0;
417 	}
418 	return EBUSY;
419 }
420 
421 int
422 rman_activate_resource(struct resource *r)
423 {
424 	int rv;
425 	struct resource *whohas;
426 	lwkt_tokref ilock;
427 	struct rman *rm;
428 
429 	rm = r->r_rm;
430 	lwkt_gettoken(&ilock, rm->rm_slock);
431 	rv = int_rman_activate_resource(rm, r, &whohas);
432 	lwkt_reltoken(&ilock);
433 	return rv;
434 }
435 
436 #if 0
437 
438 /* XXX */
439 int
440 rman_await_resource(struct resource *r, lwkt_tokref_t ilock, int slpflags, int timo)
441 {
442 	int	rv;
443 	struct	resource *whohas;
444 	struct	rman *rm;
445 
446 	rm = r->r_rm;
447 	for (;;) {
448 		lwkt_gettoken(ilock, rm->rm_slock);
449 		rv = int_rman_activate_resource(rm, r, &whohas);
450 		if (rv != EBUSY)
451 			return (rv);	/* returns with ilock held */
452 
453 		if (r->r_sharehead == 0)
454 			panic("rman_await_resource");
455 		/*
456 		 * A critical section will hopefully will prevent a race
457 		 * between lwkt_reltoken and tsleep where a process
458 		 * could conceivably get in and release the resource
459 		 * before we have a chance to sleep on it. YYY
460 		 */
461 		crit_enter();
462 		whohas->r_flags |= RF_WANTED;
463 		rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo);
464 		if (rv) {
465 			lwkt_reltoken(ilock);
466 			crit_exit();
467 			return rv;
468 		}
469 		crit_exit();
470 	}
471 }
472 
473 #endif
474 
475 static int
476 int_rman_deactivate_resource(struct resource *r)
477 {
478 	struct	rman *rm;
479 
480 	rm = r->r_rm;
481 	r->r_flags &= ~RF_ACTIVE;
482 	if (r->r_flags & RF_WANTED) {
483 		r->r_flags &= ~RF_WANTED;
484 		wakeup(r->r_sharehead);
485 	}
486 	return 0;
487 }
488 
489 int
490 rman_deactivate_resource(struct resource *r)
491 {
492 	lwkt_tokref ilock;
493 	struct rman *rm;
494 
495 	rm = r->r_rm;
496 	lwkt_gettoken(&ilock, rm->rm_slock);
497 	int_rman_deactivate_resource(r);
498 	lwkt_reltoken(&ilock);
499 	return 0;
500 }
501 
502 static int
503 int_rman_release_resource(struct rman *rm, struct resource *r)
504 {
505 	struct	resource *s, *t;
506 
507 	if (r->r_flags & RF_ACTIVE)
508 		int_rman_deactivate_resource(r);
509 
510 	/*
511 	 * Check for a sharing list first.  If there is one, then we don't
512 	 * have to think as hard.
513 	 */
514 	if (r->r_sharehead) {
515 		/*
516 		 * If a sharing list exists, then we know there are at
517 		 * least two sharers.
518 		 *
519 		 * If we are in the main circleq, appoint someone else.
520 		 */
521 		LIST_REMOVE(r, r_sharelink);
522 		s = LIST_FIRST(r->r_sharehead);
523 		if (r->r_flags & RF_FIRSTSHARE) {
524 			s->r_flags |= RF_FIRSTSHARE;
525 			TAILQ_INSERT_BEFORE(r, s, r_link);
526 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
527 		}
528 
529 		/*
530 		 * Make sure that the sharing list goes away completely
531 		 * if the resource is no longer being shared at all.
532 		 */
533 		if (LIST_NEXT(s, r_sharelink) == 0) {
534 			kfree(s->r_sharehead, M_RMAN);
535 			s->r_sharehead = 0;
536 			s->r_flags &= ~RF_FIRSTSHARE;
537 		}
538 		goto out;
539 	}
540 
541 	/*
542 	 * Look at the adjacent resources in the list and see if our
543 	 * segment can be merged with any of them.
544 	 */
545 	s = TAILQ_PREV(r, resource_head, r_link);
546 	t = TAILQ_NEXT(r, r_link);
547 
548 	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
549 	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
550 		/*
551 		 * Merge all three segments.
552 		 */
553 		s->r_end = t->r_end;
554 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
555 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
556 		kfree(t, M_RMAN);
557 	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
558 		/*
559 		 * Merge previous segment with ours.
560 		 */
561 		s->r_end = r->r_end;
562 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
563 	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
564 		/*
565 		 * Merge next segment with ours.
566 		 */
567 		t->r_start = r->r_start;
568 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
569 	} else {
570 		/*
571 		 * At this point, we know there is nothing we
572 		 * can potentially merge with, because on each
573 		 * side, there is either nothing there or what is
574 		 * there is still allocated.  In that case, we don't
575 		 * want to remove r from the list; we simply want to
576 		 * change it to an unallocated region and return
577 		 * without freeing anything.
578 		 */
579 		r->r_flags &= ~RF_ALLOCATED;
580 		return 0;
581 	}
582 
583 out:
584 	kfree(r, M_RMAN);
585 	return 0;
586 }
587 
588 int
589 rman_release_resource(struct resource *r)
590 {
591 	struct	rman *rm = r->r_rm;
592 	lwkt_tokref ilock;
593 	int	rv;
594 
595 	lwkt_gettoken(&ilock, rm->rm_slock);
596 	rv = int_rman_release_resource(rm, r);
597 	lwkt_reltoken(&ilock);
598 	return (rv);
599 }
600 
601 uint32_t
602 rman_make_alignment_flags(uint32_t size)
603 {
604 	int	i;
605 
606 	/*
607 	 * Find the hightest bit set, and add one if more than one bit
608 	 * set.  We're effectively computing the ceil(log2(size)) here.
609 	 */
610 	for (i = 32; i > 0; i--)
611 		if ((1 << i) & size)
612 			break;
613 	if (~(1 << i) & size)
614 		i++;
615 
616 	return(RF_ALIGNMENT_LOG2(i));
617 }
618 
619 /*
620  * Sysctl interface for scanning the resource lists.
621  *
622  * We take two input parameters; the index into the list of resource
623  * managers, and the resource offset into the list.
624  */
625 static int
626 sysctl_rman(SYSCTL_HANDLER_ARGS)
627 {
628 	int			*name = (int *)arg1;
629 	u_int			namelen = arg2;
630 	int			rman_idx, res_idx;
631 	struct rman		*rm;
632 	struct resource		*res;
633 	struct u_rman		urm;
634 	struct u_resource	ures;
635 	int			error;
636 
637 	if (namelen != 3)
638 		return (EINVAL);
639 
640 	if (bus_data_generation_check(name[0]))
641 		return (EINVAL);
642 	rman_idx = name[1];
643 	res_idx = name[2];
644 
645 	/*
646 	 * Find the indexed resource manager
647 	 */
648 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
649 		if (rman_idx-- == 0)
650 			break;
651 	}
652 	if (rm == NULL)
653 		return (ENOENT);
654 
655 	/*
656 	 * If the resource index is -1, we want details on the
657 	 * resource manager.
658 	 */
659 	if (res_idx == -1) {
660 		urm.rm_handle = (uintptr_t)rm;
661 		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
662 		urm.rm_start = rm->rm_start;
663 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
664 		urm.rm_type = rm->rm_type;
665 
666 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
667 		return (error);
668 	}
669 
670 	/*
671 	 * Find the indexed resource and return it.
672 	 */
673 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
674 		if (res_idx-- == 0) {
675 			ures.r_handle = (uintptr_t)res;
676 			ures.r_parent = (uintptr_t)res->r_rm;
677 			ures.r_device = (uintptr_t)res->r_dev;
678 			if (res->r_dev != NULL) {
679 				if (device_get_name(res->r_dev) != NULL) {
680 					ksnprintf(ures.r_devname, RM_TEXTLEN,
681 					    "%s%d",
682 					    device_get_name(res->r_dev),
683 					    device_get_unit(res->r_dev));
684 				} else {
685 					strlcpy(ures.r_devname, "nomatch",
686 					    RM_TEXTLEN);
687 				}
688 			} else {
689 				ures.r_devname[0] = '\0';
690 			}
691 			ures.r_start = res->r_start;
692 			ures.r_size = res->r_end - res->r_start + 1;
693 			ures.r_flags = res->r_flags;
694 
695 			error = SYSCTL_OUT(req, &ures, sizeof(ures));
696 			return (error);
697 		}
698 	}
699 	return (ENOENT);
700 }
701 
702 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
703     "kernel resource manager");
704