xref: /dragonfly/sys/kern/subr_sglist.c (revision 3c7e5806)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/subr_sglist.c,v 1.3 2009/08/21 02:59:07 jhb Exp $
31  */
32 
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/mbuf.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/uio.h>
41 
42 #include <vm/vm.h>
43 #include <vm/pmap.h>
44 #include <vm/vm_map.h>
45 
46 #include <sys/ktr.h>
47 
48 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
49 
50 /*
51  * Convenience macros to save the state of an sglist so it can be restored
52  * if an append attempt fails.  Since sglist's only grow we only need to
53  * save the current count of segments and the length of the ending segment.
54  * Earlier segments will not be changed by an append, and the only change
55  * that can occur to the ending segment is that it can be extended.
56  */
57 struct sgsave {
58 	u_short sg_nseg;
59 	size_t ss_len;
60 };
61 
62 #define	SGLIST_SAVE(sg, sgsave) do {					\
63 	(sgsave).sg_nseg = (sg)->sg_nseg;				\
64 	if ((sgsave).sg_nseg > 0)					\
65 		(sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
66 	else								\
67 		(sgsave).ss_len = 0;					\
68 } while (0)
69 
70 #define	SGLIST_RESTORE(sg, sgsave) do {					\
71 	(sg)->sg_nseg = (sgsave).sg_nseg;				\
72 	if ((sgsave).sg_nseg > 0)					\
73 		(sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
74 } while (0)
75 
76 /*
77  * Append a single (paddr, len) to a sglist.  sg is the list and ss is
78  * the current segment in the list.  If we run out of segments then
79  * EFBIG will be returned.
80  */
81 static __inline int
82 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
83     vm_paddr_t paddr, size_t len)
84 {
85 	struct sglist_seg *ss;
86 
87 	ss = *ssp;
88 	if (ss->ss_paddr + ss->ss_len == paddr)
89 		ss->ss_len += len;
90 	else {
91 		if (sg->sg_nseg == sg->sg_maxseg)
92 			return (EFBIG);
93 		ss++;
94 		ss->ss_paddr = paddr;
95 		ss->ss_len = len;
96 		sg->sg_nseg++;
97 		*ssp = ss;
98 	}
99 	return (0);
100 }
101 
102 /*
103  * Worker routine to append a virtual address range (either kernel or
104  * user) to a scatter/gather list.
105  */
106 static __inline int
107 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
108 		   size_t *donep)
109 {
110 	struct sglist_seg *ss;
111 	vm_offset_t vaddr, offset;
112 	vm_paddr_t paddr;
113 	void *handle;
114 	size_t seglen;
115 	int error;
116 
117 	if (donep)
118 		*donep = 0;
119 	if (len == 0)
120 		return (0);
121 
122 	/* Do the first page.  It may have an offset. */
123 	vaddr = (vm_offset_t)buf;
124 	offset = vaddr & PAGE_MASK;
125 	if (pmap != NULL) {
126 		paddr = pmap_extract(pmap, vaddr, &handle);
127 	} else {
128 		paddr = pmap_kextract(vaddr);
129 		handle = NULL;
130 	}
131 	seglen = MIN(len, PAGE_SIZE - offset);
132 	if (sg->sg_nseg == 0) {
133 		ss = sg->sg_segs;
134 		ss->ss_paddr = paddr;
135 		ss->ss_len = seglen;
136 		sg->sg_nseg = 1;
137 	} else {
138 		ss = &sg->sg_segs[sg->sg_nseg - 1];
139 		error = _sglist_append_range(sg, &ss, paddr, seglen);
140 		if (error) {
141 			pmap_extract_done(handle);
142 			return (error);
143 		}
144 	}
145 	pmap_extract_done(handle);
146 	vaddr += seglen;
147 	len -= seglen;
148 	if (donep)
149 		*donep += seglen;
150 
151 	while (len > 0) {
152 		seglen = MIN(len, PAGE_SIZE);
153 		if (pmap != NULL) {
154 			paddr = pmap_extract(pmap, vaddr, &handle);
155 			error = _sglist_append_range(sg, &ss, paddr, seglen);
156 			pmap_extract_done(handle);
157 		} else {
158 			paddr = pmap_kextract(vaddr);
159 			error = _sglist_append_range(sg, &ss, paddr, seglen);
160 		}
161 		if (error)
162 			return (error);
163 		vaddr += seglen;
164 		len -= seglen;
165 		if (donep)
166 			*donep += seglen;
167 	}
168 
169 	return (0);
170 }
171 
172 /*
173  * Determine the number of scatter/gather list elements needed to
174  * describe a kernel virtual address range.
175  */
176 int
177 sglist_count(void *buf, size_t len)
178 {
179 	vm_offset_t vaddr, vendaddr;
180 	vm_paddr_t lastaddr, paddr;
181 	int nsegs;
182 
183 	if (len == 0)
184 		return (0);
185 
186 	vaddr = trunc_page((vm_offset_t)buf);
187 	vendaddr = (vm_offset_t)buf + len;
188 	nsegs = 1;
189 	lastaddr = pmap_kextract(vaddr);
190 	vaddr += PAGE_SIZE;
191 	while (vaddr < vendaddr) {
192 		paddr = pmap_kextract(vaddr);
193 		if (lastaddr + PAGE_SIZE != paddr)
194 			nsegs++;
195 		lastaddr = paddr;
196 		vaddr += PAGE_SIZE;
197 	}
198 	return (nsegs);
199 }
200 
201 /*
202  * Allocate a scatter/gather list along with 'nsegs' segments.  The
203  * 'mflags' parameters are the same as passed to kmalloc(9).  The caller
204  * should use sglist_free() to free this list.
205  */
206 struct sglist *
207 sglist_alloc(int nsegs, int mflags)
208 {
209 	struct sglist *sg;
210 
211 	sg = kmalloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
212 	    M_SGLIST, mflags);
213 	if (sg == NULL)
214 		return (NULL);
215 	sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
216 	return (sg);
217 }
218 
219 /*
220  * Free a scatter/gather list allocated via sglist_allc().
221  */
222 void
223 sglist_free(struct sglist *sg)
224 {
225 
226 	if (refcount_release(&sg->sg_refs))
227 		kfree(sg, M_SGLIST);
228 }
229 
230 /*
231  * Append the segments to describe a single kernel virtual address
232  * range to a scatter/gather list.  If there are insufficient
233  * segments, then this fails with EFBIG.
234  */
235 int
236 sglist_append(struct sglist *sg, void *buf, size_t len)
237 {
238 	struct sgsave save;
239 	int error;
240 
241 	if (sg->sg_maxseg == 0)
242 		return (EINVAL);
243 	SGLIST_SAVE(sg, save);
244 	error = _sglist_append_buf(sg, buf, len, NULL, NULL);
245 	if (error)
246 		SGLIST_RESTORE(sg, save);
247 	return (error);
248 }
249 
250 /*
251  * Append a single physical address range to a scatter/gather list.
252  * If there are insufficient segments, then this fails with EFBIG.
253  */
254 int
255 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
256 {
257 	struct sglist_seg *ss;
258 	struct sgsave save;
259 	int error;
260 
261 	if (sg->sg_maxseg == 0)
262 		return (EINVAL);
263 	if (len == 0)
264 		return (0);
265 
266 	if (sg->sg_nseg == 0) {
267 		sg->sg_segs[0].ss_paddr = paddr;
268 		sg->sg_segs[0].ss_len = len;
269 		sg->sg_nseg = 1;
270 		return (0);
271 	}
272 	ss = &sg->sg_segs[sg->sg_nseg - 1];
273 	SGLIST_SAVE(sg, save);
274 	error = _sglist_append_range(sg, &ss, paddr, len);
275 	if (error)
276 		SGLIST_RESTORE(sg, save);
277 	return (error);
278 }
279 
280 /*
281  * Append the segments that describe a single mbuf chain to a
282  * scatter/gather list.  If there are insufficient segments, then this
283  * fails with EFBIG.
284  */
285 int
286 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
287 {
288 	struct sgsave save;
289 	struct mbuf *m;
290 	int error;
291 
292 	if (sg->sg_maxseg == 0)
293 		return (EINVAL);
294 
295 	error = 0;
296 	SGLIST_SAVE(sg, save);
297 	for (m = m0; m != NULL; m = m->m_next) {
298 		if (m->m_len > 0) {
299 			error = sglist_append(sg, m->m_data, m->m_len);
300 			if (error) {
301 				SGLIST_RESTORE(sg, save);
302 				return (error);
303 			}
304 		}
305 	}
306 	return (0);
307 }
308 
309 /*
310  * Append the segments that describe a single user address range to a
311  * scatter/gather list.  If there are insufficient segments, then this
312  * fails with EFBIG.
313  */
314 int
315 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
316 {
317 	struct sgsave save;
318 	int error;
319 
320 	if (sg->sg_maxseg == 0)
321 		return (EINVAL);
322 	SGLIST_SAVE(sg, save);
323 	error = _sglist_append_buf(sg, buf, len,
324 	    vmspace_pmap(td->td_proc->p_vmspace), NULL);
325 	if (error)
326 		SGLIST_RESTORE(sg, save);
327 	return (error);
328 }
329 
330 /*
331  * Append the segments that describe a single uio to a scatter/gather
332  * list.  If there are insufficient segments, then this fails with
333  * EFBIG.
334  */
335 int
336 sglist_append_uio(struct sglist *sg, struct uio *uio)
337 {
338 	struct iovec *iov;
339 	struct sgsave save;
340 	size_t resid, minlen;
341 	pmap_t pmap;
342 	int error, i;
343 
344 	if (sg->sg_maxseg == 0)
345 		return (EINVAL);
346 
347 	resid = uio->uio_resid;
348 	iov = uio->uio_iov;
349 
350 	if (uio->uio_segflg == UIO_USERSPACE) {
351 		KASSERT(uio->uio_td != NULL,
352 		    ("sglist_append_uio: USERSPACE but no thread"));
353 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
354 	} else
355 		pmap = NULL;
356 
357 	error = 0;
358 	SGLIST_SAVE(sg, save);
359 	for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
360 		/*
361 		 * Now at the first iovec to load.  Load each iovec
362 		 * until we have exhausted the residual count.
363 		 */
364 		minlen = MIN(resid, iov[i].iov_len);
365 		if (minlen > 0) {
366 			error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
367 			    pmap, NULL);
368 			if (error) {
369 				SGLIST_RESTORE(sg, save);
370 				return (error);
371 			}
372 			resid -= minlen;
373 		}
374 	}
375 	return (0);
376 }
377 
378 /*
379  * Append the segments that describe at most 'resid' bytes from a
380  * single uio to a scatter/gather list.  If there are insufficient
381  * segments, then only the amount that fits is appended.
382  */
383 int
384 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
385 {
386 	struct iovec *iov;
387 	size_t done;
388 	pmap_t pmap;
389 	int error, len;
390 
391 	if (sg->sg_maxseg == 0)
392 		return (EINVAL);
393 
394 	if (uio->uio_segflg == UIO_USERSPACE) {
395 		KASSERT(uio->uio_td != NULL,
396 		    ("sglist_consume_uio: USERSPACE but no thread"));
397 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
398 	} else
399 		pmap = NULL;
400 
401 	error = 0;
402 	while (resid > 0 && uio->uio_resid) {
403 		iov = uio->uio_iov;
404 		len = iov->iov_len;
405 		if (len == 0) {
406 			uio->uio_iov++;
407 			uio->uio_iovcnt--;
408 			continue;
409 		}
410 		if (len > resid)
411 			len = resid;
412 
413 		/*
414 		 * Try to append this iovec.  If we run out of room,
415 		 * then break out of the loop.
416 		 */
417 		error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
418 		iov->iov_base = (char *)iov->iov_base + done;
419 		iov->iov_len -= done;
420 		uio->uio_resid -= done;
421 		uio->uio_offset += done;
422 		resid -= done;
423 		if (error)
424 			break;
425 	}
426 	return (0);
427 }
428 
429 /*
430  * Allocate and populate a scatter/gather list to describe a single
431  * kernel virtual address range.
432  */
433 struct sglist *
434 sglist_build(void *buf, size_t len, int mflags)
435 {
436 	struct sglist *sg;
437 	int nsegs;
438 
439 	if (len == 0)
440 		return (NULL);
441 
442 	nsegs = sglist_count(buf, len);
443 	sg = sglist_alloc(nsegs, mflags);
444 	if (sg == NULL)
445 		return (NULL);
446 	if (sglist_append(sg, buf, len) != 0) {
447 		sglist_free(sg);
448 		return (NULL);
449 	}
450 	return (sg);
451 }
452 
453 /*
454  * Clone a new copy of a scatter/gather list.
455  */
456 struct sglist *
457 sglist_clone(struct sglist *sg, int mflags)
458 {
459 	struct sglist *new;
460 
461 	if (sg == NULL)
462 		return (NULL);
463 	new = sglist_alloc(sg->sg_maxseg, mflags);
464 	if (new == NULL)
465 		return (NULL);
466 	new->sg_nseg = sg->sg_nseg;
467 	bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
468 	    sg->sg_nseg);
469 	return (new);
470 }
471 
472 /*
473  * Calculate the total length of the segments described in a
474  * scatter/gather list.
475  */
476 size_t
477 sglist_length(struct sglist *sg)
478 {
479 	size_t space;
480 	int i;
481 
482 	space = 0;
483 	for (i = 0; i < sg->sg_nseg; i++)
484 		space += sg->sg_segs[i].ss_len;
485 	return (space);
486 }
487 
488 /*
489  * Split a scatter/gather list into two lists.  The scatter/gather
490  * entries for the first 'length' bytes of the 'original' list are
491  * stored in the '*head' list and are removed from 'original'.
492  *
493  * If '*head' is NULL, then a new list will be allocated using
494  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
495  * ENOMEM will be returned.
496  *
497  * If '*head' is not NULL, it should point to an empty sglist.  If it
498  * does not have enough room for the remaining space, then EFBIG will
499  * be returned.  If '*head' is not empty, then EINVAL will be
500  * returned.
501  *
502  * If 'original' is shared (refcount > 1), then EDOOFUS will be
503  * returned.
504  */
505 int
506 sglist_split(struct sglist *original, struct sglist **head, size_t length,
507     int mflags)
508 {
509 	struct sglist *sg;
510 	size_t space, split;
511 	int count, i;
512 
513 	if (original->sg_refs > 1)
514 		return (EDOOFUS);
515 
516 	/* Figure out how big of a sglist '*head' has to hold. */
517 	count = 0;
518 	space = 0;
519 	split = 0;
520 	for (i = 0; i < original->sg_nseg; i++) {
521 		space += original->sg_segs[i].ss_len;
522 		count++;
523 		if (space >= length) {
524 			/*
525 			 * If 'length' falls in the middle of a
526 			 * scatter/gather list entry, then 'split'
527 			 * holds how much of that entry will remain in
528 			 * 'original'.
529 			 */
530 			split = space - length;
531 			break;
532 		}
533 	}
534 
535 	/* Nothing to do, so leave head empty. */
536 	if (count == 0)
537 		return (0);
538 
539 	if (*head == NULL) {
540 		sg = sglist_alloc(count, mflags);
541 		if (sg == NULL)
542 			return (ENOMEM);
543 		*head = sg;
544 	} else {
545 		sg = *head;
546 		if (sg->sg_maxseg < count)
547 			return (EFBIG);
548 		if (sg->sg_nseg != 0)
549 			return (EINVAL);
550 	}
551 
552 	/* Copy 'count' entries to 'sg' from 'original'. */
553 	bcopy(original->sg_segs, sg->sg_segs, count *
554 	    sizeof(struct sglist_seg));
555 	sg->sg_nseg = count;
556 
557 	/*
558 	 * If we had to split a list entry, fixup the last entry in
559 	 * 'sg' and the new first entry in 'original'.  We also
560 	 * decrement 'count' by 1 since we will only be removing
561 	 * 'count - 1' segments from 'original' now.
562 	 */
563 	if (split != 0) {
564 		count--;
565 		sg->sg_segs[count].ss_len -= split;
566 		original->sg_segs[count].ss_paddr =
567 		    sg->sg_segs[count].ss_paddr + split;
568 		original->sg_segs[count].ss_len = split;
569 	}
570 
571 	/* Trim 'count' entries from the front of 'original'. */
572 	original->sg_nseg -= count;
573 	bcopy(original->sg_segs + count, original->sg_segs, count *
574 	    sizeof(struct sglist_seg));
575 	return (0);
576 }
577 
578 /*
579  * Append the scatter/gather list elements in 'second' to the
580  * scatter/gather list 'first'.  If there is not enough space in
581  * 'first', EFBIG is returned.
582  */
583 int
584 sglist_join(struct sglist *first, struct sglist *second)
585 {
586 	struct sglist_seg *flast, *sfirst;
587 	int append;
588 
589 	/* If 'second' is empty, there is nothing to do. */
590 	if (second->sg_nseg == 0)
591 		return (0);
592 
593 	/*
594 	 * If the first entry in 'second' can be appended to the last entry
595 	 * in 'first' then set append to '1'.
596 	 */
597 	append = 0;
598 	flast = &first->sg_segs[first->sg_nseg - 1];
599 	sfirst = &second->sg_segs[0];
600 	if (first->sg_nseg != 0 &&
601 	    flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
602 		append = 1;
603 
604 	/* Make sure 'first' has enough room. */
605 	if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
606 		return (EFBIG);
607 
608 	/* Merge last in 'first' and first in 'second' if needed. */
609 	if (append)
610 		flast->ss_len += sfirst->ss_len;
611 
612 	/* Append new segments from 'second' to 'first'. */
613 	bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
614 	    (second->sg_nseg - append) * sizeof(struct sglist_seg));
615 	first->sg_nseg += second->sg_nseg - append;
616 	sglist_reset(second);
617 	return (0);
618 }
619 
620 /*
621  * Generate a new scatter/gather list from a range of an existing
622  * scatter/gather list.  The 'offset' and 'length' parameters specify
623  * the logical range of the 'original' list to extract.  If that range
624  * is not a subset of the length of 'original', then EINVAL is
625  * returned.  The new scatter/gather list is stored in '*slice'.
626  *
627  * If '*slice' is NULL, then a new list will be allocated using
628  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
629  * ENOMEM will be returned.
630  *
631  * If '*slice' is not NULL, it should point to an empty sglist.  If it
632  * does not have enough room for the remaining space, then EFBIG will
633  * be returned.  If '*slice' is not empty, then EINVAL will be
634  * returned.
635  */
636 int
637 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
638     size_t length, int mflags)
639 {
640 	struct sglist *sg;
641 	size_t space, end, foffs, loffs;
642 	int count, i, fseg;
643 
644 	/* Nothing to do. */
645 	if (length == 0)
646 		return (0);
647 
648 	/* Figure out how many segments '*slice' needs to have. */
649 	end = offset + length;
650 	space = 0;
651 	count = 0;
652 	fseg = 0;
653 	foffs = loffs = 0;
654 	for (i = 0; i < original->sg_nseg; i++) {
655 		space += original->sg_segs[i].ss_len;
656 		if (space > offset) {
657 			/*
658 			 * When we hit the first segment, store its index
659 			 * in 'fseg' and the offset into the first segment
660 			 * of 'offset' in 'foffs'.
661 			 */
662 			if (count == 0) {
663 				fseg = i;
664 				foffs = offset - (space -
665 				    original->sg_segs[i].ss_len);
666 			}
667 			count++;
668 
669 			/*
670 			 * When we hit the last segment, break out of
671 			 * the loop.  Store the amount of extra space
672 			 * at the end of this segment in 'loffs'.
673 			 */
674 			if (space >= end) {
675 				loffs = space - end;
676 				break;
677 			}
678 		}
679 	}
680 
681 	/* If we never hit 'end', then 'length' ran off the end, so fail. */
682 	if (space < end)
683 		return (EINVAL);
684 
685 	if (*slice == NULL) {
686 		sg = sglist_alloc(count, mflags);
687 		if (sg == NULL)
688 			return (ENOMEM);
689 		*slice = sg;
690 	} else {
691 		sg = *slice;
692 		if (sg->sg_maxseg < count)
693 			return (EFBIG);
694 		if (sg->sg_nseg != 0)
695 			return (EINVAL);
696 	}
697 
698 	/*
699 	 * Copy over 'count' segments from 'original' starting at
700 	 * 'fseg' to 'sg'.
701 	 */
702 	bcopy(original->sg_segs + fseg, sg->sg_segs,
703 	    count * sizeof(struct sglist_seg));
704 	sg->sg_nseg = count;
705 
706 	/* Fixup first and last segments if needed. */
707 	if (foffs != 0) {
708 		sg->sg_segs[0].ss_paddr += foffs;
709 		sg->sg_segs[0].ss_len -= foffs;
710 	}
711 	if (loffs != 0) {
712 		sg->sg_segs[count - 1].ss_len -= loffs;
713 	}
714 	return (0);
715 }
716