xref: /dragonfly/sys/kern/subr_taskqueue.c (revision 35e996c9)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_taskqueue.c,v 1.69 2012/08/28 13:35:37 jhb Exp $"
27  */
28 
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/taskqueue.h>
34 #include <sys/interrupt.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/kthread.h>
38 #include <sys/spinlock.h>
39 #include <sys/spinlock2.h>
40 #include <sys/serialize.h>
41 #include <sys/proc.h>
42 
43 MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
44 
45 static STAILQ_HEAD(taskqueue_list, taskqueue) taskqueue_queues;
46 static struct lock	taskqueue_queues_lock;
47 static struct spinlock	taskqueue_queues_spin;
48 
49 struct taskqueue {
50 	STAILQ_ENTRY(taskqueue)	tq_link;
51 	STAILQ_HEAD(, task)	tq_queue;
52 	const char		*tq_name;
53 	/* NOTE: tq must be locked before calling tq_enqueue */
54 	taskqueue_enqueue_fn	tq_enqueue;
55 	void			*tq_context;
56 
57 	struct task		*tq_running;
58 	struct spinlock		tq_lock;
59 	struct thread		**tq_threads;
60 	int			tq_tcount;
61 	int			tq_flags;
62 	int			tq_callouts;
63 };
64 
65 #define	TQ_FLAGS_ACTIVE		(1 << 0)
66 #define	TQ_FLAGS_BLOCKED	(1 << 1)
67 #define	TQ_FLAGS_PENDING	(1 << 2)
68 
69 #define	DT_CALLOUT_ARMED	(1 << 0)
70 
71 void
72 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
73     int priority, task_fn_t func, void *context)
74 {
75 
76 	TASK_INIT(&timeout_task->t, priority, func, context);
77 	callout_init_mp(&timeout_task->c);
78 	timeout_task->t.ta_queue = queue;
79 	timeout_task->f = 0;
80 }
81 
82 static void taskqueue_run(struct taskqueue *queue, int lock_held);
83 
84 static __inline void
85 TQ_LOCK_INIT(struct taskqueue *tq)
86 {
87 	spin_init(&tq->tq_lock, "tqlock");
88 }
89 
90 static __inline void
91 TQ_LOCK_UNINIT(struct taskqueue *tq)
92 {
93 	spin_uninit(&tq->tq_lock);
94 }
95 
96 static __inline void
97 TQ_LOCK(struct taskqueue *tq)
98 {
99 	spin_lock(&tq->tq_lock);
100 }
101 
102 static __inline void
103 TQ_UNLOCK(struct taskqueue *tq)
104 {
105 	spin_unlock(&tq->tq_lock);
106 }
107 
108 static __inline void
109 TQ_SLEEP(struct taskqueue *tq, void *ident, const char *wmesg)
110 {
111 	ssleep(ident, &tq->tq_lock, 0, wmesg, 0);
112 }
113 
114 struct taskqueue *
115 taskqueue_create(const char *name, int mflags,
116 		 taskqueue_enqueue_fn enqueue, void *context)
117 {
118 	struct taskqueue *queue;
119 
120 	queue = kmalloc(sizeof(*queue), M_TASKQUEUE, mflags | M_ZERO);
121 	if (!queue)
122 		return NULL;
123 	STAILQ_INIT(&queue->tq_queue);
124 	queue->tq_name = name;
125 	queue->tq_enqueue = enqueue;
126 	queue->tq_context = context;
127 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
128 	TQ_LOCK_INIT(queue);
129 
130 	lockmgr(&taskqueue_queues_lock, LK_EXCLUSIVE);
131 	STAILQ_INSERT_TAIL(&taskqueue_queues, queue, tq_link);
132 	lockmgr(&taskqueue_queues_lock, LK_RELEASE);
133 
134 	return queue;
135 }
136 
137 /* NOTE: tq must be locked */
138 static void
139 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
140 {
141 	while (tq->tq_tcount > 0) {
142 		/* Unlock spinlock before wakeup() */
143 		TQ_UNLOCK(tq);
144 		wakeup(tq);
145 		TQ_LOCK(tq);
146 		TQ_SLEEP(tq, pp, "taskqueue_terminate");
147 	}
148 }
149 
150 void
151 taskqueue_free(struct taskqueue *queue)
152 {
153 	TQ_LOCK(queue);
154 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
155 	taskqueue_run(queue, 1);
156 	taskqueue_terminate(queue->tq_threads, queue);
157 	TQ_UNLOCK(queue);
158 
159 	lockmgr(&taskqueue_queues_lock, LK_EXCLUSIVE);
160 	STAILQ_REMOVE(&taskqueue_queues, queue, taskqueue, tq_link);
161 	lockmgr(&taskqueue_queues_lock, LK_RELEASE);
162 
163 	TQ_LOCK_UNINIT(queue);
164 
165 	kfree(queue, M_TASKQUEUE);
166 }
167 
168 struct taskqueue *
169 taskqueue_find(const char *name)
170 {
171 	struct taskqueue *queue;
172 
173 	lockmgr(&taskqueue_queues_lock, LK_EXCLUSIVE);
174 	STAILQ_FOREACH(queue, &taskqueue_queues, tq_link) {
175 		if (!strcmp(queue->tq_name, name)) {
176 			lockmgr(&taskqueue_queues_lock, LK_RELEASE);
177 			return queue;
178 		}
179 	}
180 	lockmgr(&taskqueue_queues_lock, LK_RELEASE);
181 	return NULL;
182 }
183 
184 /*
185  * NOTE!  If using the per-cpu taskqueues ``taskqueue_thread[mycpuid]'',
186  * be sure NOT TO SHARE the ``task'' between CPUs.  TASKS ARE NOT LOCKED.
187  * So either use a throwaway task which will only be enqueued once, or
188  * use one task per CPU!
189  */
190 static int
191 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
192 {
193 	struct task *ins;
194 	struct task *prev;
195 
196 	/*
197 	 * Don't allow new tasks on a queue which is being freed.
198 	 */
199 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
200 		return EPIPE;
201 
202 	/*
203 	 * Count multiple enqueues.
204 	 */
205 	if (task->ta_pending) {
206 		KKASSERT(queue == task->ta_queue);
207 		task->ta_pending++;
208 		return 0;
209 	}
210 	task->ta_queue = queue;
211 
212 	/*
213 	 * Optimise the case when all tasks have the same priority.
214 	 */
215 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
216 	if (!prev || prev->ta_priority >= task->ta_priority) {
217 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
218 	} else {
219 		prev = NULL;
220 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
221 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
222 			if (ins->ta_priority < task->ta_priority)
223 				break;
224 
225 		if (prev)
226 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
227 		else
228 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
229 	}
230 
231 	task->ta_pending = 1;
232 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) {
233 		if (queue->tq_enqueue)
234 			queue->tq_enqueue(queue->tq_context);
235 	} else {
236 		queue->tq_flags |= TQ_FLAGS_PENDING;
237 	}
238 
239 	return 0;
240 }
241 
242 /*
243  * This version requires that the task not be moved between queues
244  * in an uncontrolled fashion.
245  */
246 int
247 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
248 {
249 	int res;
250 
251 	TQ_LOCK(queue);
252 	res = taskqueue_enqueue_locked(queue, task);
253 	TQ_UNLOCK(queue);
254 
255 	return (res);
256 }
257 
258 /*
259  * This version allows a task to be moved between queues in an uncontrolled
260  * fashion.  (*qpp) is set to the queue the task is (possibly already)
261  * enqueued on, or the specified queue if it is possible to move the task.
262  */
263 int
264 taskqueue_enqueue_optq(struct taskqueue *queue, struct taskqueue **qpp,
265 		       struct task *task)
266 {
267 	struct taskqueue *qtmp;
268 	int res;
269 
270 	/*
271 	 * Interlock for task structure check, handle the case where we
272 	 * are unable to safely shift the task to the specified queue.
273 	 */
274 	for (;;) {
275 		qtmp = task->ta_queue;
276 		cpu_ccfence();
277 
278 		if (qtmp == NULL) {
279 			spin_lock(&taskqueue_queues_spin);
280 			if (task->ta_queue == NULL)
281 				task->ta_queue = queue;
282 			spin_unlock(&taskqueue_queues_spin);
283 		} else {
284 			TQ_LOCK(qtmp);
285 			if (task->ta_queue == qtmp) {
286 				if (qtmp == queue)
287 					break;
288 
289 				/*
290 				 * If qtmp is pending on a different queue
291 				 * it must stay on that queue.
292 				 *
293 				 * WARNING: Once ta_queue is reassigned
294 				 *	    our qtmp lock is no longer
295 				 *	    sufficient and we lose control
296 				 *	    of the task.
297 				 */
298 				if (task->ta_pending) {
299 					task->ta_pending++;
300 					*qpp = qtmp;
301 					TQ_UNLOCK(qtmp);
302 					return 0;
303 				}
304 				cpu_sfence();
305 				task->ta_queue = queue;
306 				cpu_ccfence();
307 			}
308 			TQ_UNLOCK(qtmp);
309 		}
310 		/* retry */
311 	}
312 
313 	/*
314 	 * The task is assigned to (queue), enqueue it there.
315 	 */
316 	*qpp = queue;
317 	res = taskqueue_enqueue_locked(queue, task);
318 	TQ_UNLOCK(queue);
319 
320 	return (res);
321 }
322 
323 static void
324 taskqueue_timeout_func(void *arg)
325 {
326 	struct taskqueue *queue;
327 	struct timeout_task *timeout_task;
328 
329 	timeout_task = arg;
330 	queue = timeout_task->t.ta_queue;
331 
332 	TQ_LOCK(queue);
333 	KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
334 	timeout_task->f &= ~DT_CALLOUT_ARMED;
335 	queue->tq_callouts--;
336 	taskqueue_enqueue_locked(queue, &timeout_task->t);
337 	TQ_UNLOCK(queue);
338 }
339 
340 int
341 taskqueue_enqueue_timeout(struct taskqueue *queue,
342     struct timeout_task *timeout_task, int ticks)
343 {
344 	int res;
345 
346 	TQ_LOCK(queue);
347 	KASSERT(timeout_task->t.ta_queue == NULL ||
348 		timeout_task->t.ta_queue == queue,
349 		("Migrated queue"));
350 	timeout_task->t.ta_queue = queue;
351 	res = timeout_task->t.ta_pending;
352 	if (ticks == 0) {
353 		taskqueue_enqueue_locked(queue, &timeout_task->t);
354 		TQ_UNLOCK(queue);
355 	} else {
356 		if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
357 			res++;
358 		} else {
359 			queue->tq_callouts++;
360 			timeout_task->f |= DT_CALLOUT_ARMED;
361 		}
362 		TQ_UNLOCK(queue);
363 		callout_reset(&timeout_task->c, ticks, taskqueue_timeout_func,
364 			      timeout_task);
365 	}
366 	return (res);
367 }
368 
369 void
370 taskqueue_block(struct taskqueue *queue)
371 {
372 	TQ_LOCK(queue);
373 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
374 	TQ_UNLOCK(queue);
375 }
376 
377 void
378 taskqueue_unblock(struct taskqueue *queue)
379 {
380 	TQ_LOCK(queue);
381 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
382 	if (queue->tq_flags & TQ_FLAGS_PENDING) {
383 		queue->tq_flags &= ~TQ_FLAGS_PENDING;
384 		if (queue->tq_enqueue)
385 			queue->tq_enqueue(queue->tq_context);
386 	}
387 	TQ_UNLOCK(queue);
388 }
389 
390 static void
391 taskqueue_run(struct taskqueue *queue, int lock_held)
392 {
393 	struct task *task;
394 	int pending;
395 
396 	if (lock_held == 0)
397 		TQ_LOCK(queue);
398 	while (STAILQ_FIRST(&queue->tq_queue)) {
399 		/*
400 		 * Carefully remove the first task from the queue and
401 		 * zero its pending count.
402 		 */
403 		task = STAILQ_FIRST(&queue->tq_queue);
404 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
405 		pending = task->ta_pending;
406 		task->ta_pending = 0;
407 		queue->tq_running = task;
408 
409 		TQ_UNLOCK(queue);
410 		task->ta_func(task->ta_context, pending);
411 		queue->tq_running = NULL;
412 		wakeup(task);
413 		TQ_LOCK(queue);
414 	}
415 	if (lock_held == 0)
416 		TQ_UNLOCK(queue);
417 }
418 
419 static int
420 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
421     u_int *pendp)
422 {
423 
424 	if (task->ta_pending > 0)
425 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
426 	if (pendp != NULL)
427 		*pendp = task->ta_pending;
428 	task->ta_pending = 0;
429 	return (task == queue->tq_running ? EBUSY : 0);
430 }
431 
432 int
433 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
434 {
435 	int error;
436 
437 	TQ_LOCK(queue);
438 	error = taskqueue_cancel_locked(queue, task, pendp);
439 	TQ_UNLOCK(queue);
440 
441 	return (error);
442 }
443 
444 int
445 taskqueue_cancel_simple(struct task *task)
446 {
447 	struct taskqueue *queue;
448 	int error;
449 
450 	for (;;) {
451 		queue = task->ta_queue;
452 		cpu_ccfence();
453 		if (queue == NULL) {
454 			error = 0;
455 			break;
456 		}
457 		TQ_LOCK(queue);
458 		if (queue == task->ta_queue) {
459 			error = taskqueue_cancel_locked(queue, task, NULL);
460 			TQ_UNLOCK(queue);
461 			break;
462 		}
463 		TQ_UNLOCK(queue);
464 	}
465 	return error;
466 }
467 
468 int
469 taskqueue_cancel_timeout(struct taskqueue *queue,
470 			 struct timeout_task *timeout_task, u_int *pendp)
471 {
472 	u_int pending, pending1;
473 	int error;
474 
475 	pending = !!callout_stop(&timeout_task->c);
476 	TQ_LOCK(queue);
477 	error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
478 	if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
479 		timeout_task->f &= ~DT_CALLOUT_ARMED;
480 		queue->tq_callouts--;
481 	}
482 	TQ_UNLOCK(queue);
483 
484 	if (pendp != NULL)
485 		*pendp = pending + pending1;
486 	return (error);
487 }
488 
489 void
490 taskqueue_drain(struct taskqueue *queue, struct task *task)
491 {
492 	TQ_LOCK(queue);
493 	while (task->ta_pending != 0 || task == queue->tq_running)
494 		TQ_SLEEP(queue, task, "-");
495 	TQ_UNLOCK(queue);
496 }
497 
498 /*
499  * Wait for the task to drain and return
500  */
501 void
502 taskqueue_drain_simple(struct task *task)
503 {
504 	struct taskqueue *queue;
505 
506 	for (;;) {
507 		queue = task->ta_queue;
508 		cpu_ccfence();
509 		if (queue == NULL)
510 			return;
511 		TQ_LOCK(queue);
512 		if (task->ta_pending == 0 && task != queue->tq_running) {
513 			TQ_UNLOCK(queue);
514 			return;
515 		}
516 		TQ_SLEEP(queue, task, "-");
517 		TQ_UNLOCK(queue);
518 	}
519 }
520 
521 void
522 taskqueue_drain_timeout(struct taskqueue *queue,
523     struct timeout_task *timeout_task)
524 {
525 	callout_cancel(&timeout_task->c);
526 	taskqueue_drain(queue, &timeout_task->t);
527 }
528 
529 static void
530 taskqueue_swi_enqueue(void *context)
531 {
532 	setsofttq();
533 }
534 
535 static void
536 taskqueue_swi_run(void *arg, void *frame)
537 {
538 	taskqueue_run(taskqueue_swi, 0);
539 }
540 
541 static void
542 taskqueue_swi_mp_run(void *arg, void *frame)
543 {
544 	taskqueue_run(taskqueue_swi_mp, 0);
545 }
546 
547 int
548 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, int ncpu,
549 			const char *fmt, ...)
550 {
551 	__va_list ap;
552 	struct thread *td;
553 	struct taskqueue *tq;
554 	int i, error, cpu;
555 	char ktname[MAXCOMLEN];
556 
557 	tq = *tqp;
558 	cpu = ncpu;
559 
560 	/* catch call argument mistakes */
561 	KKASSERT(pri > 0 && pri < TDPRI_MAX);
562 	KKASSERT(tq->tq_enqueue == taskqueue_thread_enqueue);
563 
564 	if (count <= 0)
565 		return EINVAL;
566 
567 	__va_start(ap, fmt);
568 	kvsnprintf(ktname, MAXCOMLEN, fmt, ap);
569 	__va_end(ap);
570 
571 	tq->tq_threads = kmalloc(sizeof(struct thread *) * count, M_TASKQUEUE,
572 	    M_WAITOK | M_ZERO);
573 
574 	for (i = 0; i < count; i++) {
575 		/*
576 		 * If no specific cpu was specified and more than one thread
577 		 * is to be created, we distribute the threads amongst all
578 		 * cpus.
579 		 */
580 		if ((ncpu <= -1) && (count > 1))
581 			cpu = i % ncpus;
582 
583 		if (count == 1) {
584 			error = lwkt_create(taskqueue_thread_loop, tqp,
585 					    &tq->tq_threads[i], NULL,
586 					    TDF_NOSTART, cpu,
587 					    "%s", ktname);
588 		} else {
589 			error = lwkt_create(taskqueue_thread_loop, tqp,
590 					    &tq->tq_threads[i], NULL,
591 					    TDF_NOSTART, cpu,
592 					    "%s_%d", ktname, i);
593 		}
594 		if (error) {
595 			kprintf("%s: lwkt_create(%s): error %d", __func__,
596 			    ktname, error);
597 			tq->tq_threads[i] = NULL;
598 		} else {
599 			td = tq->tq_threads[i];
600 			lwkt_setpri_initial(td, pri);
601 			lwkt_schedule(td);
602 			tq->tq_tcount++;
603 		}
604 	}
605 
606 	return 0;
607 }
608 
609 void
610 taskqueue_thread_loop(void *arg)
611 {
612 	struct taskqueue **tqp, *tq;
613 
614 	tqp = arg;
615 	tq = *tqp;
616 	TQ_LOCK(tq);
617 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
618 		taskqueue_run(tq, 1);
619 		TQ_SLEEP(tq, tq, "tqthr");
620 	}
621 
622 	/* rendezvous with thread that asked us to terminate */
623 	tq->tq_tcount--;
624 	TQ_UNLOCK(tq);
625 	wakeup_one(tq->tq_threads);
626 	lwkt_exit();
627 }
628 
629 /* NOTE: tq must be locked */
630 void
631 taskqueue_thread_enqueue(void *context)
632 {
633 	struct taskqueue **tqp, *tq;
634 
635 	tqp = context;
636 	tq = *tqp;
637 
638 	/* Unlock spinlock before wakeup_one() */
639 	TQ_UNLOCK(tq);
640 	wakeup_one(tq);
641 	TQ_LOCK(tq);
642 }
643 
644 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, 0,
645 	 register_swi(SWI_TQ, taskqueue_swi_run, NULL, "swi_taskq", NULL, -1));
646 /*
647  * XXX: possibly use a different SWI_TQ_MP or so.
648  * related: sys/interrupt.h
649  * related: platform/XXX/isa/ipl_funcs.c
650  */
651 TASKQUEUE_DEFINE(swi_mp, taskqueue_swi_enqueue, 0,
652     register_swi_mp(SWI_TQ, taskqueue_swi_mp_run, NULL, "swi_mp_taskq", NULL,
653 		    -1));
654 
655 struct taskqueue *taskqueue_thread[MAXCPU];
656 
657 static void
658 taskqueue_init(void)
659 {
660 	int cpu;
661 
662 	lockinit(&taskqueue_queues_lock, "tqqueues", 0, 0);
663 	spin_init(&taskqueue_queues_spin, "tqspin");
664 	STAILQ_INIT(&taskqueue_queues);
665 
666 	for (cpu = 0; cpu < ncpus; cpu++) {
667 		taskqueue_thread[cpu] = taskqueue_create("thread", M_INTWAIT,
668 		    taskqueue_thread_enqueue, &taskqueue_thread[cpu]);
669 		taskqueue_start_threads(&taskqueue_thread[cpu], 1,
670 		    TDPRI_KERN_DAEMON, cpu, "taskq_cpu %d", cpu);
671 	}
672 }
673 
674 SYSINIT(taskqueueinit, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, taskqueue_init, NULL);
675