xref: /dragonfly/sys/kern/subr_taskqueue.c (revision 4353aa4e)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	 $FreeBSD: src/sys/kern/subr_taskqueue.c,v 1.1.2.3 2003/09/10 00:40:39 ken Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/taskqueue.h>
34 #include <sys/interrupt.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/kthread.h>
38 #include <sys/thread2.h>
39 #include <sys/spinlock.h>
40 #include <sys/spinlock2.h>
41 #include <sys/serialize.h>
42 #include <sys/proc.h>
43 #include <machine/varargs.h>
44 
45 MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
46 
47 static STAILQ_HEAD(taskqueue_list, taskqueue) taskqueue_queues;
48 static struct lock	taskqueue_queues_lock;
49 
50 struct taskqueue {
51 	STAILQ_ENTRY(taskqueue)	tq_link;
52 	STAILQ_HEAD(, task)	tq_queue;
53 	const char		*tq_name;
54 	taskqueue_enqueue_fn	tq_enqueue;
55 	void			*tq_context;
56 
57 	struct task		*tq_running;
58 	struct spinlock		tq_lock;
59 	struct thread		**tq_threads;
60 	int			tq_tcount;
61 	int			tq_flags;
62 };
63 
64 #define	TQ_FLAGS_ACTIVE		(1 << 0)
65 #define	TQ_FLAGS_BLOCKED	(1 << 1)
66 #define	TQ_FLAGS_PENDING	(1 << 2)
67 
68 static void taskqueue_run(struct taskqueue *queue, int lock_held);
69 
70 static __inline void
71 TQ_LOCK_INIT(struct taskqueue *tq)
72 {
73 	spin_init(&tq->tq_lock);
74 }
75 
76 static __inline void
77 TQ_LOCK_UNINIT(struct taskqueue *tq)
78 {
79 	spin_uninit(&tq->tq_lock);
80 }
81 
82 static __inline void
83 TQ_LOCK(struct taskqueue *tq)
84 {
85 	spin_lock(&tq->tq_lock);
86 }
87 
88 static __inline void
89 TQ_UNLOCK(struct taskqueue *tq)
90 {
91 	spin_unlock(&tq->tq_lock);
92 }
93 
94 static __inline void
95 TQ_SLEEP(struct taskqueue *tq, void *ident, const char *wmesg)
96 {
97 	ssleep(ident, &tq->tq_lock, 0, wmesg, 0);
98 }
99 
100 struct taskqueue *
101 taskqueue_create(const char *name, int mflags,
102 		 taskqueue_enqueue_fn enqueue, void *context)
103 {
104 	struct taskqueue *queue;
105 
106 	queue = kmalloc(sizeof(*queue), M_TASKQUEUE, mflags | M_ZERO);
107 	if (!queue)
108 		return NULL;
109 	STAILQ_INIT(&queue->tq_queue);
110 	queue->tq_name = name;
111 	queue->tq_enqueue = enqueue;
112 	queue->tq_context = context;
113 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
114 	TQ_LOCK_INIT(queue);
115 
116 	lockmgr(&taskqueue_queues_lock, LK_EXCLUSIVE);
117 	STAILQ_INSERT_TAIL(&taskqueue_queues, queue, tq_link);
118 	lockmgr(&taskqueue_queues_lock, LK_RELEASE);
119 
120 	return queue;
121 }
122 
123 static void
124 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
125 {
126 	while(tq->tq_tcount > 0) {
127 		wakeup(tq);
128 		TQ_SLEEP(tq, pp, "taskqueue_terminate");
129 	}
130 }
131 
132 void
133 taskqueue_free(struct taskqueue *queue)
134 {
135 	TQ_LOCK(queue);
136 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
137 	taskqueue_run(queue, 1);
138 	taskqueue_terminate(queue->tq_threads, queue);
139 	TQ_UNLOCK(queue);
140 
141 	lockmgr(&taskqueue_queues_lock, LK_EXCLUSIVE);
142 	STAILQ_REMOVE(&taskqueue_queues, queue, taskqueue, tq_link);
143 	lockmgr(&taskqueue_queues_lock, LK_RELEASE);
144 
145 	TQ_LOCK_UNINIT(queue);
146 
147 	kfree(queue, M_TASKQUEUE);
148 }
149 
150 struct taskqueue *
151 taskqueue_find(const char *name)
152 {
153 	struct taskqueue *queue;
154 
155 	lockmgr(&taskqueue_queues_lock, LK_EXCLUSIVE);
156 	STAILQ_FOREACH(queue, &taskqueue_queues, tq_link) {
157 		if (!strcmp(queue->tq_name, name)) {
158 			lockmgr(&taskqueue_queues_lock, LK_RELEASE);
159 			return queue;
160 		}
161 	}
162 	lockmgr(&taskqueue_queues_lock, LK_RELEASE);
163 	return NULL;
164 }
165 
166 /*
167  * NOTE!  If using the per-cpu taskqueues ``taskqueue_thread[mycpuid]'',
168  * be sure NOT TO SHARE the ``task'' between CPUs.  TASKS ARE NOT LOCKED.
169  * So either use a throwaway task which will only be enqueued once, or
170  * use one task per CPU!
171  */
172 int
173 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
174 {
175 	struct task *ins;
176 	struct task *prev;
177 
178 	TQ_LOCK(queue);
179 
180 	/*
181 	 * Don't allow new tasks on a queue which is being freed.
182 	 */
183 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) {
184 		TQ_UNLOCK(queue);
185 		return EPIPE;
186 	}
187 
188 	/*
189 	 * Count multiple enqueues.
190 	 */
191 	if (task->ta_pending) {
192 		task->ta_pending++;
193 		TQ_UNLOCK(queue);
194 		return 0;
195 	}
196 
197 	/*
198 	 * Optimise the case when all tasks have the same priority.
199 	 */
200 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
201 	if (!prev || prev->ta_priority >= task->ta_priority) {
202 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
203 	} else {
204 		prev = NULL;
205 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
206 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
207 			if (ins->ta_priority < task->ta_priority)
208 				break;
209 
210 		if (prev)
211 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
212 		else
213 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
214 	}
215 
216 	task->ta_pending = 1;
217 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) {
218 		if (queue->tq_enqueue)
219 			queue->tq_enqueue(queue->tq_context);
220 	} else {
221 		queue->tq_flags |= TQ_FLAGS_PENDING;
222 	}
223 
224 	TQ_UNLOCK(queue);
225 
226 	return 0;
227 }
228 
229 void
230 taskqueue_block(struct taskqueue *queue)
231 {
232 	TQ_LOCK(queue);
233 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
234 	TQ_UNLOCK(queue);
235 }
236 
237 void
238 taskqueue_unblock(struct taskqueue *queue)
239 {
240 	TQ_LOCK(queue);
241 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
242 	if (queue->tq_flags & TQ_FLAGS_PENDING) {
243 		queue->tq_flags &= ~TQ_FLAGS_PENDING;
244 		if (queue->tq_enqueue)
245 			queue->tq_enqueue(queue->tq_context);
246 	}
247 	TQ_UNLOCK(queue);
248 }
249 
250 void
251 taskqueue_run(struct taskqueue *queue, int lock_held)
252 {
253 	struct task *task;
254 	int pending;
255 
256 	if (lock_held == 0)
257 		TQ_LOCK(queue);
258 	while (STAILQ_FIRST(&queue->tq_queue)) {
259 		/*
260 		 * Carefully remove the first task from the queue and
261 		 * zero its pending count.
262 		 */
263 		task = STAILQ_FIRST(&queue->tq_queue);
264 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
265 		pending = task->ta_pending;
266 		task->ta_pending = 0;
267 		queue->tq_running = task;
268 		TQ_UNLOCK(queue);
269 
270 		task->ta_func(task->ta_context, pending);
271 
272 		TQ_LOCK(queue);
273 		queue->tq_running = NULL;
274 		wakeup(task);
275 	}
276 	if (lock_held == 0)
277 		TQ_UNLOCK(queue);
278 }
279 
280 void
281 taskqueue_drain(struct taskqueue *queue, struct task *task)
282 {
283 	TQ_LOCK(queue);
284 	while (task->ta_pending != 0 || task == queue->tq_running)
285 		TQ_SLEEP(queue, task, "-");
286 	TQ_UNLOCK(queue);
287 }
288 
289 static void
290 taskqueue_swi_enqueue(void *context)
291 {
292 	setsofttq();
293 }
294 
295 static void
296 taskqueue_swi_run(void *arg, void *frame)
297 {
298 	taskqueue_run(taskqueue_swi, 0);
299 }
300 
301 static void
302 taskqueue_swi_mp_run(void *arg, void *frame)
303 {
304 	taskqueue_run(taskqueue_swi_mp, 0);
305 }
306 
307 int
308 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, int ncpu,
309 			const char *fmt, ...)
310 {
311 	__va_list ap;
312 	struct thread *td;
313 	struct taskqueue *tq;
314 	int i, error, cpu;
315 	char ktname[MAXCOMLEN];
316 
317 	if (count <= 0)
318 		return EINVAL;
319 
320 	tq = *tqp;
321 	cpu = ncpu;
322 
323 	__va_start(ap, fmt);
324 	kvsnprintf(ktname, MAXCOMLEN, fmt, ap);
325 	__va_end(ap);
326 
327 	tq->tq_threads = kmalloc(sizeof(struct thread *) * count, M_TASKQUEUE,
328 	    M_WAITOK | M_ZERO);
329 
330 	for (i = 0; i < count; i++) {
331 		/*
332 		 * If no specific cpu was specified and more than one thread
333 		 * is to be created, we distribute the threads amongst all
334 		 * cpus.
335 		 */
336 		if ((ncpu <= -1) && (count > 1))
337 			cpu = i%ncpus;
338 
339 		if (count == 1) {
340 			error = lwkt_create(taskqueue_thread_loop, tqp,
341 					    &tq->tq_threads[i], NULL,
342 					    TDF_NOSTART, cpu,
343 					    "%s", ktname);
344 		} else {
345 			error = lwkt_create(taskqueue_thread_loop, tqp,
346 					    &tq->tq_threads[i], NULL,
347 					    TDF_NOSTART, cpu,
348 					    "%s_%d", ktname, i);
349 		}
350 		if (error) {
351 			kprintf("%s: lwkt_create(%s): error %d", __func__,
352 			    ktname, error);
353 			tq->tq_threads[i] = NULL;
354 		} else {
355 			td = tq->tq_threads[i];
356 			lwkt_setpri_initial(td, pri);
357 			lwkt_schedule(td);
358 			tq->tq_tcount++;
359 		}
360 	}
361 
362 	return 0;
363 }
364 
365 void
366 taskqueue_thread_loop(void *arg)
367 {
368 	struct taskqueue **tqp, *tq;
369 
370 	tqp = arg;
371 	tq = *tqp;
372 	TQ_LOCK(tq);
373 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
374 		taskqueue_run(tq, 1);
375 		TQ_SLEEP(tq, tq, "tqthr");
376 	}
377 
378 	/* rendezvous with thread that asked us to terminate */
379 	tq->tq_tcount--;
380 	wakeup_one(tq->tq_threads);
381 	TQ_UNLOCK(tq);
382 	lwkt_exit();
383 }
384 
385 void
386 taskqueue_thread_enqueue(void *context)
387 {
388 	struct taskqueue **tqp, *tq;
389 
390 	tqp = context;
391 	tq = *tqp;
392 
393 	wakeup_one(tq);
394 }
395 
396 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, 0,
397 	 register_swi(SWI_TQ, taskqueue_swi_run, NULL, "swi_taskq", NULL, -1));
398 /*
399  * XXX: possibly use a different SWI_TQ_MP or so.
400  * related: sys/interrupt.h
401  * related: platform/XXX/isa/ipl_funcs.c
402  */
403 TASKQUEUE_DEFINE(swi_mp, taskqueue_swi_enqueue, 0,
404     register_swi_mp(SWI_TQ, taskqueue_swi_mp_run, NULL, "swi_mp_taskq", NULL,
405 		    -1));
406 
407 struct taskqueue *taskqueue_thread[MAXCPU];
408 
409 static void
410 taskqueue_init(void)
411 {
412 	int cpu;
413 
414 	lockinit(&taskqueue_queues_lock, "tqqueues", 0, 0);
415 	STAILQ_INIT(&taskqueue_queues);
416 
417 	for (cpu = 0; cpu < ncpus; cpu++) {
418 		taskqueue_thread[cpu] = taskqueue_create("thread", M_INTWAIT,
419 		    taskqueue_thread_enqueue, &taskqueue_thread[cpu]);
420 		taskqueue_start_threads(&taskqueue_thread[cpu], 1,
421 		    TDPRI_KERN_DAEMON, cpu, "taskq_cpu %d", cpu);
422 	}
423 }
424 
425 SYSINIT(taskqueueinit, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, taskqueue_init, NULL);
426