xref: /dragonfly/sys/kern/sys_generic.c (revision 235099c3)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
39  * $FreeBSD: src/sys/kern/sys_generic.c,v 1.55.2.10 2001/03/17 10:39:32 peter Exp $
40  * $DragonFly: src/sys/kern/sys_generic.c,v 1.49 2008/05/05 22:09:44 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/proc.h>
53 #include <sys/signalvar.h>
54 #include <sys/socketvar.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/kern_syscall.h>
58 #include <sys/malloc.h>
59 #include <sys/mapped_ioctl.h>
60 #include <sys/poll.h>
61 #include <sys/queue.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysent.h>
65 #include <sys/buf.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_page.h>
71 #include <sys/file2.h>
72 
73 #include <machine/limits.h>
74 
75 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
76 static MALLOC_DEFINE(M_IOCTLMAP, "ioctlmap", "mapped ioctl handler buffer");
77 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
78 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
79 
80 static int 	doselect(int nd, fd_set *in, fd_set *ou, fd_set *ex,
81 			struct timeval *tv, int *res);
82 static int	pollscan (struct proc *, struct pollfd *, u_int, int *);
83 static int	selscan (struct proc *, fd_mask **, fd_mask **,
84 			int, int *);
85 static int	dofileread(int, struct file *, struct uio *, int, size_t *);
86 static int	dofilewrite(int, struct file *, struct uio *, int, size_t *);
87 
88 /*
89  * Read system call.
90  *
91  * MPSAFE
92  */
93 int
94 sys_read(struct read_args *uap)
95 {
96 	struct thread *td = curthread;
97 	struct uio auio;
98 	struct iovec aiov;
99 	int error;
100 
101 	if ((ssize_t)uap->nbyte < 0)
102 		error = EINVAL;
103 
104 	aiov.iov_base = uap->buf;
105 	aiov.iov_len = uap->nbyte;
106 	auio.uio_iov = &aiov;
107 	auio.uio_iovcnt = 1;
108 	auio.uio_offset = -1;
109 	auio.uio_resid = uap->nbyte;
110 	auio.uio_rw = UIO_READ;
111 	auio.uio_segflg = UIO_USERSPACE;
112 	auio.uio_td = td;
113 
114 	error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
115 	return(error);
116 }
117 
118 /*
119  * Positioned (Pread) read system call
120  *
121  * MPSAFE
122  */
123 int
124 sys_extpread(struct extpread_args *uap)
125 {
126 	struct thread *td = curthread;
127 	struct uio auio;
128 	struct iovec aiov;
129 	int error;
130 	int flags;
131 
132 	if ((ssize_t)uap->nbyte < 0)
133 		return(EINVAL);
134 
135 	aiov.iov_base = uap->buf;
136 	aiov.iov_len = uap->nbyte;
137 	auio.uio_iov = &aiov;
138 	auio.uio_iovcnt = 1;
139 	auio.uio_offset = uap->offset;
140 	auio.uio_resid = uap->nbyte;
141 	auio.uio_rw = UIO_READ;
142 	auio.uio_segflg = UIO_USERSPACE;
143 	auio.uio_td = td;
144 
145 	flags = uap->flags & O_FMASK;
146 	if (uap->offset != (off_t)-1)
147 		flags |= O_FOFFSET;
148 
149 	error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
150 	return(error);
151 }
152 
153 /*
154  * Scatter read system call.
155  *
156  * MPSAFE
157  */
158 int
159 sys_readv(struct readv_args *uap)
160 {
161 	struct thread *td = curthread;
162 	struct uio auio;
163 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
164 	int error;
165 
166 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
167 			     &auio.uio_resid);
168 	if (error)
169 		return (error);
170 	auio.uio_iov = iov;
171 	auio.uio_iovcnt = uap->iovcnt;
172 	auio.uio_offset = -1;
173 	auio.uio_rw = UIO_READ;
174 	auio.uio_segflg = UIO_USERSPACE;
175 	auio.uio_td = td;
176 
177 	error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
178 
179 	iovec_free(&iov, aiov);
180 	return (error);
181 }
182 
183 
184 /*
185  * Scatter positioned read system call.
186  *
187  * MPSAFE
188  */
189 int
190 sys_extpreadv(struct extpreadv_args *uap)
191 {
192 	struct thread *td = curthread;
193 	struct uio auio;
194 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
195 	int error;
196 	int flags;
197 
198 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
199 			     &auio.uio_resid);
200 	if (error)
201 		return (error);
202 	auio.uio_iov = iov;
203 	auio.uio_iovcnt = uap->iovcnt;
204 	auio.uio_offset = uap->offset;
205 	auio.uio_rw = UIO_READ;
206 	auio.uio_segflg = UIO_USERSPACE;
207 	auio.uio_td = td;
208 
209 	flags = uap->flags & O_FMASK;
210 	if (uap->offset != (off_t)-1)
211 		flags |= O_FOFFSET;
212 
213 	error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
214 
215 	iovec_free(&iov, aiov);
216 	return(error);
217 }
218 
219 /*
220  * MPSAFE
221  */
222 int
223 kern_preadv(int fd, struct uio *auio, int flags, size_t *res)
224 {
225 	struct thread *td = curthread;
226 	struct proc *p = td->td_proc;
227 	struct file *fp;
228 	int error;
229 
230 	KKASSERT(p);
231 
232 	fp = holdfp(p->p_fd, fd, FREAD);
233 	if (fp == NULL)
234 		return (EBADF);
235 	if (flags & O_FOFFSET && fp->f_type != DTYPE_VNODE) {
236 		error = ESPIPE;
237 	} else {
238 		error = dofileread(fd, fp, auio, flags, res);
239 	}
240 	fdrop(fp);
241 	return(error);
242 }
243 
244 /*
245  * Common code for readv and preadv that reads data in
246  * from a file using the passed in uio, offset, and flags.
247  *
248  * MPALMOSTSAFE - ktrace needs help
249  */
250 static int
251 dofileread(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
252 {
253 	struct thread *td = curthread;
254 	int error;
255 	size_t len;
256 #ifdef KTRACE
257 	struct iovec *ktriov = NULL;
258 	struct uio ktruio;
259 #endif
260 
261 #ifdef KTRACE
262 	/*
263 	 * if tracing, save a copy of iovec
264 	 */
265 	if (KTRPOINT(td, KTR_GENIO))  {
266 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
267 
268 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
269 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
270 		ktruio = *auio;
271 	}
272 #endif
273 	len = auio->uio_resid;
274 	error = fo_read(fp, auio, fp->f_cred, flags);
275 	if (error) {
276 		if (auio->uio_resid != len && (error == ERESTART ||
277 		    error == EINTR || error == EWOULDBLOCK))
278 			error = 0;
279 	}
280 #ifdef KTRACE
281 	if (ktriov != NULL) {
282 		if (error == 0) {
283 			ktruio.uio_iov = ktriov;
284 			ktruio.uio_resid = len - auio->uio_resid;
285 			get_mplock();
286 			ktrgenio(td->td_lwp, fd, UIO_READ, &ktruio, error);
287 			rel_mplock();
288 		}
289 		FREE(ktriov, M_TEMP);
290 	}
291 #endif
292 	if (error == 0)
293 		*res = len - auio->uio_resid;
294 
295 	return(error);
296 }
297 
298 /*
299  * Write system call
300  *
301  * MPSAFE
302  */
303 int
304 sys_write(struct write_args *uap)
305 {
306 	struct thread *td = curthread;
307 	struct uio auio;
308 	struct iovec aiov;
309 	int error;
310 
311 	if ((ssize_t)uap->nbyte < 0)
312 		error = EINVAL;
313 
314 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
315 	aiov.iov_len = uap->nbyte;
316 	auio.uio_iov = &aiov;
317 	auio.uio_iovcnt = 1;
318 	auio.uio_offset = -1;
319 	auio.uio_resid = uap->nbyte;
320 	auio.uio_rw = UIO_WRITE;
321 	auio.uio_segflg = UIO_USERSPACE;
322 	auio.uio_td = td;
323 
324 	error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
325 
326 	return(error);
327 }
328 
329 /*
330  * Pwrite system call
331  *
332  * MPSAFE
333  */
334 int
335 sys_extpwrite(struct extpwrite_args *uap)
336 {
337 	struct thread *td = curthread;
338 	struct uio auio;
339 	struct iovec aiov;
340 	int error;
341 	int flags;
342 
343 	if ((ssize_t)uap->nbyte < 0)
344 		error = EINVAL;
345 
346 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
347 	aiov.iov_len = uap->nbyte;
348 	auio.uio_iov = &aiov;
349 	auio.uio_iovcnt = 1;
350 	auio.uio_offset = uap->offset;
351 	auio.uio_resid = uap->nbyte;
352 	auio.uio_rw = UIO_WRITE;
353 	auio.uio_segflg = UIO_USERSPACE;
354 	auio.uio_td = td;
355 
356 	flags = uap->flags & O_FMASK;
357 	if (uap->offset != (off_t)-1)
358 		flags |= O_FOFFSET;
359 	error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
360 	return(error);
361 }
362 
363 /*
364  * MPSAFE
365  */
366 int
367 sys_writev(struct writev_args *uap)
368 {
369 	struct thread *td = curthread;
370 	struct uio auio;
371 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
372 	int error;
373 
374 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
375 			     &auio.uio_resid);
376 	if (error)
377 		return (error);
378 	auio.uio_iov = iov;
379 	auio.uio_iovcnt = uap->iovcnt;
380 	auio.uio_offset = -1;
381 	auio.uio_rw = UIO_WRITE;
382 	auio.uio_segflg = UIO_USERSPACE;
383 	auio.uio_td = td;
384 
385 	error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
386 
387 	iovec_free(&iov, aiov);
388 	return (error);
389 }
390 
391 
392 /*
393  * Gather positioned write system call
394  *
395  * MPSAFE
396  */
397 int
398 sys_extpwritev(struct extpwritev_args *uap)
399 {
400 	struct thread *td = curthread;
401 	struct uio auio;
402 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
403 	int error;
404 	int flags;
405 
406 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
407 			     &auio.uio_resid);
408 	if (error)
409 		return (error);
410 	auio.uio_iov = iov;
411 	auio.uio_iovcnt = uap->iovcnt;
412 	auio.uio_offset = uap->offset;
413 	auio.uio_rw = UIO_WRITE;
414 	auio.uio_segflg = UIO_USERSPACE;
415 	auio.uio_td = td;
416 
417 	flags = uap->flags & O_FMASK;
418 	if (uap->offset != (off_t)-1)
419 		flags |= O_FOFFSET;
420 
421 	error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
422 
423 	iovec_free(&iov, aiov);
424 	return(error);
425 }
426 
427 /*
428  * MPSAFE
429  */
430 int
431 kern_pwritev(int fd, struct uio *auio, int flags, size_t *res)
432 {
433 	struct thread *td = curthread;
434 	struct proc *p = td->td_proc;
435 	struct file *fp;
436 	int error;
437 
438 	KKASSERT(p);
439 
440 	fp = holdfp(p->p_fd, fd, FWRITE);
441 	if (fp == NULL)
442 		return (EBADF);
443 	else if ((flags & O_FOFFSET) && fp->f_type != DTYPE_VNODE) {
444 		error = ESPIPE;
445 	} else {
446 		error = dofilewrite(fd, fp, auio, flags, res);
447 	}
448 
449 	fdrop(fp);
450 	return (error);
451 }
452 
453 /*
454  * Common code for writev and pwritev that writes data to
455  * a file using the passed in uio, offset, and flags.
456  *
457  * MPALMOSTSAFE - ktrace needs help
458  */
459 static int
460 dofilewrite(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
461 {
462 	struct thread *td = curthread;
463 	struct lwp *lp = td->td_lwp;
464 	int error;
465 	size_t len;
466 #ifdef KTRACE
467 	struct iovec *ktriov = NULL;
468 	struct uio ktruio;
469 #endif
470 
471 #ifdef KTRACE
472 	/*
473 	 * if tracing, save a copy of iovec and uio
474 	 */
475 	if (KTRPOINT(td, KTR_GENIO))  {
476 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
477 
478 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
479 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
480 		ktruio = *auio;
481 	}
482 #endif
483 	len = auio->uio_resid;
484 	error = fo_write(fp, auio, fp->f_cred, flags);
485 	if (error) {
486 		if (auio->uio_resid != len && (error == ERESTART ||
487 		    error == EINTR || error == EWOULDBLOCK))
488 			error = 0;
489 		/* Socket layer is responsible for issuing SIGPIPE. */
490 		if (error == EPIPE) {
491 			get_mplock();
492 			lwpsignal(lp->lwp_proc, lp, SIGPIPE);
493 			rel_mplock();
494 		}
495 	}
496 #ifdef KTRACE
497 	if (ktriov != NULL) {
498 		if (error == 0) {
499 			ktruio.uio_iov = ktriov;
500 			ktruio.uio_resid = len - auio->uio_resid;
501 			get_mplock();
502 			ktrgenio(lp, fd, UIO_WRITE, &ktruio, error);
503 			rel_mplock();
504 		}
505 		FREE(ktriov, M_TEMP);
506 	}
507 #endif
508 	if (error == 0)
509 		*res = len - auio->uio_resid;
510 
511 	return(error);
512 }
513 
514 /*
515  * Ioctl system call
516  */
517 /* ARGSUSED */
518 int
519 sys_ioctl(struct ioctl_args *uap)
520 {
521 	return(mapped_ioctl(uap->fd, uap->com, uap->data, NULL, &uap->sysmsg));
522 }
523 
524 struct ioctl_map_entry {
525 	const char *subsys;
526 	struct ioctl_map_range *cmd_ranges;
527 	LIST_ENTRY(ioctl_map_entry) entries;
528 };
529 
530 /*
531  * The true heart of all ioctl syscall handlers (native, emulation).
532  * If map != NULL, it will be searched for a matching entry for com,
533  * and appropriate conversions/conversion functions will be utilized.
534  */
535 int
536 mapped_ioctl(int fd, u_long com, caddr_t uspc_data, struct ioctl_map *map,
537 	     struct sysmsg *msg)
538 {
539 	struct thread *td = curthread;
540 	struct proc *p = td->td_proc;
541 	struct ucred *cred;
542 	struct file *fp;
543 	struct ioctl_map_range *iomc = NULL;
544 	int error;
545 	u_int size;
546 	u_long ocom = com;
547 	caddr_t data, memp;
548 	int tmp;
549 #define STK_PARAMS	128
550 	union {
551 	    char stkbuf[STK_PARAMS];
552 	    long align;
553 	} ubuf;
554 
555 	KKASSERT(p);
556 	cred = p->p_ucred;
557 
558 	fp = holdfp(p->p_fd, fd, FREAD|FWRITE);
559 	if (fp == NULL)
560 		return(EBADF);
561 
562 	if (map != NULL) {	/* obey translation map */
563 		u_long maskcmd;
564 		struct ioctl_map_entry *e;
565 
566 		maskcmd = com & map->mask;
567 
568 		LIST_FOREACH(e, &map->mapping, entries) {
569 			for (iomc = e->cmd_ranges; iomc->start != 0 ||
570 			     iomc->maptocmd != 0 || iomc->wrapfunc != NULL ||
571 			     iomc->mapfunc != NULL;
572 			     iomc++) {
573 				if (maskcmd >= iomc->start &&
574 				    maskcmd <= iomc->end)
575 					break;
576 			}
577 
578 			/* Did we find a match? */
579 			if (iomc->start != 0 || iomc->maptocmd != 0 ||
580 			    iomc->wrapfunc != NULL || iomc->mapfunc != NULL)
581 				break;
582 		}
583 
584 		if (iomc == NULL ||
585 		    (iomc->start == 0 && iomc->maptocmd == 0
586 		     && iomc->wrapfunc == NULL && iomc->mapfunc == NULL)) {
587 			kprintf("%s: 'ioctl' fd=%d, cmd=0x%lx ('%c',%d) not implemented\n",
588 			       map->sys, fd, maskcmd,
589 			       (int)((maskcmd >> 8) & 0xff),
590 			       (int)(maskcmd & 0xff));
591 			error = EINVAL;
592 			goto done;
593 		}
594 
595 		/*
596 		 * If it's a non-range one to one mapping, maptocmd should be
597 		 * correct. If it's a ranged one to one mapping, we pass the
598 		 * original value of com, and for a range mapped to a different
599 		 * range, we always need a mapping function to translate the
600 		 * ioctl to our native ioctl. Ex. 6500-65ff <-> 9500-95ff
601 		 */
602 		if (iomc->start == iomc->end && iomc->maptocmd == iomc->maptoend) {
603 			com = iomc->maptocmd;
604 		} else if (iomc->start == iomc->maptocmd && iomc->end == iomc->maptoend) {
605 			if (iomc->mapfunc != NULL)
606 				com = iomc->mapfunc(iomc->start, iomc->end,
607 						    iomc->start, iomc->end,
608 						    com, com);
609 		} else {
610 			if (iomc->mapfunc != NULL) {
611 				com = iomc->mapfunc(iomc->start, iomc->end,
612 						    iomc->maptocmd, iomc->maptoend,
613 						    com, ocom);
614 			} else {
615 				kprintf("%s: Invalid mapping for fd=%d, cmd=%#lx ('%c',%d)\n",
616 				       map->sys, fd, maskcmd,
617 				       (int)((maskcmd >> 8) & 0xff),
618 				       (int)(maskcmd & 0xff));
619 				error = EINVAL;
620 				goto done;
621 			}
622 		}
623 	}
624 
625 	switch (com) {
626 	case FIONCLEX:
627 		error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
628 		goto done;
629 	case FIOCLEX:
630 		error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
631 		goto done;
632 	}
633 
634 	/*
635 	 * Interpret high order word to find amount of data to be
636 	 * copied to/from the user's address space.
637 	 */
638 	size = IOCPARM_LEN(com);
639 	if (size > IOCPARM_MAX) {
640 		error = ENOTTY;
641 		goto done;
642 	}
643 
644 	memp = NULL;
645 	if (size > sizeof (ubuf.stkbuf)) {
646 		memp = kmalloc(size, M_IOCTLOPS, M_WAITOK);
647 		data = memp;
648 	} else {
649 		data = ubuf.stkbuf;
650 	}
651 	if ((com & IOC_IN) != 0) {
652 		if (size != 0) {
653 			error = copyin(uspc_data, data, (size_t)size);
654 			if (error) {
655 				if (memp != NULL)
656 					kfree(memp, M_IOCTLOPS);
657 				goto done;
658 			}
659 		} else {
660 			*(caddr_t *)data = uspc_data;
661 		}
662 	} else if ((com & IOC_OUT) != 0 && size) {
663 		/*
664 		 * Zero the buffer so the user always
665 		 * gets back something deterministic.
666 		 */
667 		bzero(data, (size_t)size);
668 	} else if ((com & IOC_VOID) != 0) {
669 		*(caddr_t *)data = uspc_data;
670 	}
671 
672 	switch (com) {
673 	case FIONBIO:
674 		if ((tmp = *(int *)data))
675 			fp->f_flag |= FNONBLOCK;
676 		else
677 			fp->f_flag &= ~FNONBLOCK;
678 		error = 0;
679 		break;
680 
681 	case FIOASYNC:
682 		if ((tmp = *(int *)data))
683 			fp->f_flag |= FASYNC;
684 		else
685 			fp->f_flag &= ~FASYNC;
686 		error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred, msg);
687 		break;
688 
689 	default:
690 		/*
691 		 *  If there is a override function,
692 		 *  call it instead of directly routing the call
693 		 */
694 		if (map != NULL && iomc->wrapfunc != NULL)
695 			error = iomc->wrapfunc(fp, com, ocom, data, cred);
696 		else
697 			error = fo_ioctl(fp, com, data, cred, msg);
698 		/*
699 		 * Copy any data to user, size was
700 		 * already set and checked above.
701 		 */
702 		if (error == 0 && (com & IOC_OUT) != 0 && size != 0)
703 			error = copyout(data, uspc_data, (size_t)size);
704 		break;
705 	}
706 	if (memp != NULL)
707 		kfree(memp, M_IOCTLOPS);
708 done:
709 	fdrop(fp);
710 	return(error);
711 }
712 
713 int
714 mapped_ioctl_register_handler(struct ioctl_map_handler *he)
715 {
716 	struct ioctl_map_entry *ne;
717 
718 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL &&
719 		 he->subsys != NULL && *he->subsys != '\0');
720 
721 	ne = kmalloc(sizeof(struct ioctl_map_entry), M_IOCTLMAP, M_WAITOK);
722 
723 	ne->subsys = he->subsys;
724 	ne->cmd_ranges = he->cmd_ranges;
725 
726 	LIST_INSERT_HEAD(&he->map->mapping, ne, entries);
727 
728 	return(0);
729 }
730 
731 int
732 mapped_ioctl_unregister_handler(struct ioctl_map_handler *he)
733 {
734 	struct ioctl_map_entry *ne;
735 
736 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL);
737 
738 	LIST_FOREACH(ne, &he->map->mapping, entries) {
739 		if (ne->cmd_ranges != he->cmd_ranges)
740 			continue;
741 		LIST_REMOVE(ne, entries);
742 		kfree(ne, M_IOCTLMAP);
743 		return(0);
744 	}
745 	return(EINVAL);
746 }
747 
748 static int	nselcoll;	/* Select collisions since boot */
749 int	selwait;
750 SYSCTL_INT(_kern, OID_AUTO, nselcoll, CTLFLAG_RD, &nselcoll, 0, "");
751 
752 /*
753  * Select system call.
754  */
755 int
756 sys_select(struct select_args *uap)
757 {
758 	struct timeval ktv;
759 	struct timeval *ktvp;
760 	int error;
761 
762 	/*
763 	 * Get timeout if any.
764 	 */
765 	if (uap->tv != NULL) {
766 		error = copyin(uap->tv, &ktv, sizeof (ktv));
767 		if (error)
768 			return (error);
769 		error = itimerfix(&ktv);
770 		if (error)
771 			return (error);
772 		ktvp = &ktv;
773 	} else {
774 		ktvp = NULL;
775 	}
776 
777 	/*
778 	 * Do real work.
779 	 */
780 	error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktvp,
781 			&uap->sysmsg_result);
782 
783 	return (error);
784 }
785 
786 
787 /*
788  * Pselect system call.
789  */
790 int
791 sys_pselect(struct pselect_args *uap)
792 {
793 	struct thread *td = curthread;
794 	struct lwp *lp = td->td_lwp;
795 	struct timespec kts;
796 	struct timeval ktv;
797 	struct timeval *ktvp;
798 	sigset_t sigmask;
799 	int error;
800 
801 	/*
802 	 * Get timeout if any and convert it.
803 	 * Round up during conversion to avoid timeout going off early.
804 	 */
805 	if (uap->ts != NULL) {
806 		error = copyin(uap->ts, &kts, sizeof (kts));
807 		if (error)
808 			return (error);
809 		ktv.tv_sec = kts.tv_sec;
810 		ktv.tv_usec = (kts.tv_nsec + 999) / 1000;
811 		error = itimerfix(&ktv);
812 		if (error)
813 			return (error);
814 		ktvp = &ktv;
815 	} else {
816 		ktvp = NULL;
817 	}
818 
819 	/*
820 	 * Install temporary signal mask if any provided.
821 	 */
822 	if (uap->sigmask != NULL) {
823 		error = copyin(uap->sigmask, &sigmask, sizeof(sigmask));
824 		if (error)
825 			return (error);
826 		lp->lwp_oldsigmask = lp->lwp_sigmask;
827 		SIG_CANTMASK(sigmask);
828 		lp->lwp_sigmask = sigmask;
829 	}
830 
831 	/*
832 	 * Do real job.
833 	 */
834 	error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktvp,
835 			&uap->sysmsg_result);
836 
837 	if (uap->sigmask != NULL) {
838 		/* doselect() responsible for turning ERESTART into EINTR */
839 		KKASSERT(error != ERESTART);
840 		if (error == EINTR) {
841 			/*
842 			 * We can't restore the previous signal mask now
843 			 * because it could block the signal that interrupted
844 			 * us.  So make a note to restore it after executing
845 			 * the handler.
846 			 */
847 			lp->lwp_flag |= LWP_OLDMASK;
848 		} else {
849 			/*
850 			 * No handler to run. Restore previous mask immediately.
851 			 */
852 			lp->lwp_sigmask = lp->lwp_oldsigmask;
853 		}
854 	}
855 
856 	return (error);
857 }
858 
859 /*
860  * Common code for sys_select() and sys_pselect().
861  *
862  * in, out and ex are userland pointers.  tv must point to validated
863  * kernel-side timeout value or NULL for infinite timeout.  res must
864  * point to syscall return value.
865  */
866 static int
867 doselect(int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tv,
868 		int *res)
869 {
870 	struct lwp *lp = curthread->td_lwp;
871 	struct proc *p = curproc;
872 
873 	/*
874 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
875 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
876 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
877 	 * of 256.
878 	 */
879 	fd_mask s_selbits[howmany(2048, NFDBITS)];
880 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
881 	struct timeval atv, rtv, ttv;
882 	int ncoll, error, timo;
883 	u_int nbufbytes, ncpbytes, nfdbits;
884 
885 	if (nd < 0)
886 		return (EINVAL);
887 	if (nd > p->p_fd->fd_nfiles)
888 		nd = p->p_fd->fd_nfiles;   /* forgiving; slightly wrong */
889 
890 	/*
891 	 * Allocate just enough bits for the non-null fd_sets.  Use the
892 	 * preallocated auto buffer if possible.
893 	 */
894 	nfdbits = roundup(nd, NFDBITS);
895 	ncpbytes = nfdbits / NBBY;
896 	nbufbytes = 0;
897 	if (in != NULL)
898 		nbufbytes += 2 * ncpbytes;
899 	if (ou != NULL)
900 		nbufbytes += 2 * ncpbytes;
901 	if (ex != NULL)
902 		nbufbytes += 2 * ncpbytes;
903 	if (nbufbytes <= sizeof s_selbits)
904 		selbits = &s_selbits[0];
905 	else
906 		selbits = kmalloc(nbufbytes, M_SELECT, M_WAITOK);
907 
908 	/*
909 	 * Assign pointers into the bit buffers and fetch the input bits.
910 	 * Put the output buffers together so that they can be bzeroed
911 	 * together.
912 	 */
913 	sbp = selbits;
914 #define	getbits(name, x) \
915 	do {								\
916 		if (name == NULL)					\
917 			ibits[x] = NULL;				\
918 		else {							\
919 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
920 			obits[x] = sbp;					\
921 			sbp += ncpbytes / sizeof *sbp;			\
922 			error = copyin(name, ibits[x], ncpbytes);	\
923 			if (error != 0)					\
924 				goto done;				\
925 		}							\
926 	} while (0)
927 	getbits(in, 0);
928 	getbits(ou, 1);
929 	getbits(ex, 2);
930 #undef	getbits
931 	if (nbufbytes != 0)
932 		bzero(selbits, nbufbytes / 2);
933 
934 	if (tv != NULL) {
935 		atv = *tv;
936 		getmicrouptime(&rtv);
937 		timevaladd(&atv, &rtv);
938 	} else {
939 		atv.tv_sec = 0;
940 		atv.tv_usec = 0;
941 	}
942 	timo = 0;
943 retry:
944 	ncoll = nselcoll;
945 	lp->lwp_flag |= LWP_SELECT;
946 	error = selscan(p, ibits, obits, nd, res);
947 	if (error || *res)
948 		goto done;
949 	if (atv.tv_sec || atv.tv_usec) {
950 		getmicrouptime(&rtv);
951 		if (timevalcmp(&rtv, &atv, >=))
952 			goto done;
953 		ttv = atv;
954 		timevalsub(&ttv, &rtv);
955 		timo = ttv.tv_sec > 24 * 60 * 60 ?
956 		    24 * 60 * 60 * hz : tvtohz_high(&ttv);
957 	}
958 	crit_enter();
959 	if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
960 		crit_exit();
961 		goto retry;
962 	}
963 	lp->lwp_flag &= ~LWP_SELECT;
964 
965 	error = tsleep((caddr_t)&selwait, PCATCH, "select", timo);
966 
967 	crit_exit();
968 	if (error == 0)
969 		goto retry;
970 done:
971 	lp->lwp_flag &= ~LWP_SELECT;
972 	/* select is not restarted after signals... */
973 	if (error == ERESTART)
974 		error = EINTR;
975 	if (error == EWOULDBLOCK)
976 		error = 0;
977 #define	putbits(name, x) \
978 	if (name && (error2 = copyout(obits[x], name, ncpbytes))) \
979 		error = error2;
980 	if (error == 0) {
981 		int error2;
982 
983 		putbits(in, 0);
984 		putbits(ou, 1);
985 		putbits(ex, 2);
986 #undef putbits
987 	}
988 	if (selbits != &s_selbits[0])
989 		kfree(selbits, M_SELECT);
990 	return (error);
991 }
992 
993 static int
994 selscan(struct proc *p, fd_mask **ibits, fd_mask **obits, int nfd, int *res)
995 {
996 	int msk, i, fd;
997 	fd_mask bits;
998 	struct file *fp;
999 	int n = 0;
1000 	/* Note: backend also returns POLLHUP/POLLERR if appropriate. */
1001 	static int flag[3] = { POLLRDNORM, POLLWRNORM, POLLRDBAND };
1002 
1003 	for (msk = 0; msk < 3; msk++) {
1004 		if (ibits[msk] == NULL)
1005 			continue;
1006 		for (i = 0; i < nfd; i += NFDBITS) {
1007 			bits = ibits[msk][i/NFDBITS];
1008 			/* ffs(int mask) not portable, fd_mask is long */
1009 			for (fd = i; bits && fd < nfd; fd++, bits >>= 1) {
1010 				if (!(bits & 1))
1011 					continue;
1012 				fp = holdfp(p->p_fd, fd, -1);
1013 				if (fp == NULL)
1014 					return (EBADF);
1015 				if (fo_poll(fp, flag[msk], fp->f_cred)) {
1016 					obits[msk][(fd)/NFDBITS] |=
1017 					    ((fd_mask)1 << ((fd) % NFDBITS));
1018 					n++;
1019 				}
1020 				fdrop(fp);
1021 			}
1022 		}
1023 	}
1024 	*res = n;
1025 	return (0);
1026 }
1027 
1028 /*
1029  * Poll system call.
1030  */
1031 int
1032 sys_poll(struct poll_args *uap)
1033 {
1034 	struct pollfd *bits;
1035 	struct pollfd smallbits[32];
1036 	struct timeval atv, rtv, ttv;
1037 	int ncoll, error = 0, timo;
1038 	u_int nfds;
1039 	size_t ni;
1040 	struct lwp *lp = curthread->td_lwp;
1041 	struct proc *p = curproc;
1042 
1043 	nfds = uap->nfds;
1044 	/*
1045 	 * This is kinda bogus.  We have fd limits, but that is not
1046 	 * really related to the size of the pollfd array.  Make sure
1047 	 * we let the process use at least FD_SETSIZE entries and at
1048 	 * least enough for the current limits.  We want to be reasonably
1049 	 * safe, but not overly restrictive.
1050 	 */
1051 	if (nfds > p->p_rlimit[RLIMIT_NOFILE].rlim_cur && nfds > FD_SETSIZE)
1052 		return (EINVAL);
1053 	ni = nfds * sizeof(struct pollfd);
1054 	if (ni > sizeof(smallbits))
1055 		bits = kmalloc(ni, M_TEMP, M_WAITOK);
1056 	else
1057 		bits = smallbits;
1058 	error = copyin(uap->fds, bits, ni);
1059 	if (error)
1060 		goto done;
1061 	if (uap->timeout != INFTIM) {
1062 		atv.tv_sec = uap->timeout / 1000;
1063 		atv.tv_usec = (uap->timeout % 1000) * 1000;
1064 		if (itimerfix(&atv)) {
1065 			error = EINVAL;
1066 			goto done;
1067 		}
1068 		getmicrouptime(&rtv);
1069 		timevaladd(&atv, &rtv);
1070 	} else {
1071 		atv.tv_sec = 0;
1072 		atv.tv_usec = 0;
1073 	}
1074 	timo = 0;
1075 retry:
1076 	ncoll = nselcoll;
1077 	lp->lwp_flag |= LWP_SELECT;
1078 	error = pollscan(p, bits, nfds, &uap->sysmsg_result);
1079 	if (error || uap->sysmsg_result)
1080 		goto done;
1081 	if (atv.tv_sec || atv.tv_usec) {
1082 		getmicrouptime(&rtv);
1083 		if (timevalcmp(&rtv, &atv, >=))
1084 			goto done;
1085 		ttv = atv;
1086 		timevalsub(&ttv, &rtv);
1087 		timo = ttv.tv_sec > 24 * 60 * 60 ?
1088 		    24 * 60 * 60 * hz : tvtohz_high(&ttv);
1089 	}
1090 	crit_enter();
1091 	if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
1092 		crit_exit();
1093 		goto retry;
1094 	}
1095 	lp->lwp_flag &= ~LWP_SELECT;
1096 	error = tsleep((caddr_t)&selwait, PCATCH, "poll", timo);
1097 	crit_exit();
1098 	if (error == 0)
1099 		goto retry;
1100 done:
1101 	lp->lwp_flag &= ~LWP_SELECT;
1102 	/* poll is not restarted after signals... */
1103 	if (error == ERESTART)
1104 		error = EINTR;
1105 	if (error == EWOULDBLOCK)
1106 		error = 0;
1107 	if (error == 0) {
1108 		error = copyout(bits, uap->fds, ni);
1109 		if (error)
1110 			goto out;
1111 	}
1112 out:
1113 	if (ni > sizeof(smallbits))
1114 		kfree(bits, M_TEMP);
1115 	return (error);
1116 }
1117 
1118 static int
1119 pollscan(struct proc *p, struct pollfd *fds, u_int nfd, int *res)
1120 {
1121 	int i;
1122 	struct file *fp;
1123 	int n = 0;
1124 
1125 	for (i = 0; i < nfd; i++, fds++) {
1126 		if (fds->fd >= p->p_fd->fd_nfiles) {
1127 			fds->revents = POLLNVAL;
1128 			n++;
1129 		} else if (fds->fd < 0) {
1130 			fds->revents = 0;
1131 		} else {
1132 			fp = holdfp(p->p_fd, fds->fd, -1);
1133 			if (fp == NULL) {
1134 				fds->revents = POLLNVAL;
1135 				n++;
1136 			} else {
1137 				/*
1138 				 * Note: backend also returns POLLHUP and
1139 				 * POLLERR if appropriate.
1140 				 */
1141 				fds->revents = fo_poll(fp, fds->events,
1142 							fp->f_cred);
1143 				if (fds->revents != 0)
1144 					n++;
1145 				fdrop(fp);
1146 			}
1147 		}
1148 	}
1149 	*res = n;
1150 	return (0);
1151 }
1152 
1153 /*
1154  * OpenBSD poll system call.
1155  * XXX this isn't quite a true representation..  OpenBSD uses select ops.
1156  */
1157 int
1158 sys_openbsd_poll(struct openbsd_poll_args *uap)
1159 {
1160 	return (sys_poll((struct poll_args *)uap));
1161 }
1162 
1163 /*ARGSUSED*/
1164 int
1165 seltrue(cdev_t dev, int events)
1166 {
1167 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1168 }
1169 
1170 /*
1171  * Record a select request.  A global wait must be used since a process/thread
1172  * might go away after recording its request.
1173  */
1174 void
1175 selrecord(struct thread *selector, struct selinfo *sip)
1176 {
1177 	struct proc *p;
1178 	struct lwp *lp = NULL;
1179 
1180 	if (selector->td_lwp == NULL)
1181 		panic("selrecord: thread needs a process");
1182 
1183 	if (sip->si_pid == selector->td_proc->p_pid &&
1184 	    sip->si_tid == selector->td_lwp->lwp_tid)
1185 		return;
1186 	if (sip->si_pid && (p = pfind(sip->si_pid)))
1187 		lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, sip->si_tid);
1188 	if (lp != NULL && lp->lwp_wchan == (caddr_t)&selwait) {
1189 		sip->si_flags |= SI_COLL;
1190 	} else {
1191 		sip->si_pid = selector->td_proc->p_pid;
1192 		sip->si_tid = selector->td_lwp->lwp_tid;
1193 	}
1194 }
1195 
1196 /*
1197  * Do a wakeup when a selectable event occurs.
1198  */
1199 void
1200 selwakeup(struct selinfo *sip)
1201 {
1202 	struct proc *p;
1203 	struct lwp *lp = NULL;
1204 
1205 	if (sip->si_pid == 0)
1206 		return;
1207 	if (sip->si_flags & SI_COLL) {
1208 		nselcoll++;
1209 		sip->si_flags &= ~SI_COLL;
1210 		wakeup((caddr_t)&selwait);	/* YYY fixable */
1211 	}
1212 	p = pfind(sip->si_pid);
1213 	sip->si_pid = 0;
1214 	if (p == NULL)
1215 		return;
1216 	lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, sip->si_tid);
1217 	if (lp == NULL)
1218 		return;
1219 
1220 	crit_enter();
1221 	if (lp->lwp_wchan == (caddr_t)&selwait) {
1222 		/*
1223 		 * Flag the process to break the tsleep when
1224 		 * setrunnable is called, but only call setrunnable
1225 		 * here if the process is not in a stopped state.
1226 		 */
1227 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1228 		if (p->p_stat != SSTOP)
1229 			setrunnable(lp);
1230 	} else if (lp->lwp_flag & LWP_SELECT) {
1231 		lp->lwp_flag &= ~LWP_SELECT;
1232 	}
1233 	crit_exit();
1234 }
1235 
1236