xref: /dragonfly/sys/kern/sys_generic.c (revision 3f625015)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
39  * $FreeBSD: src/sys/kern/sys_generic.c,v 1.55.2.10 2001/03/17 10:39:32 peter Exp $
40  * $DragonFly: src/sys/kern/sys_generic.c,v 1.44 2007/02/22 15:50:49 corecode Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/proc.h>
53 #include <sys/signalvar.h>
54 #include <sys/socketvar.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/kern_syscall.h>
58 #include <sys/malloc.h>
59 #include <sys/mapped_ioctl.h>
60 #include <sys/poll.h>
61 #include <sys/queue.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysent.h>
65 #include <sys/buf.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_page.h>
71 #include <sys/file2.h>
72 
73 #include <machine/limits.h>
74 
75 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
76 static MALLOC_DEFINE(M_IOCTLMAP, "ioctlmap", "mapped ioctl handler buffer");
77 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
78 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
79 
80 static int	pollscan (struct proc *, struct pollfd *, u_int, int *);
81 static int	selscan (struct proc *, fd_mask **, fd_mask **,
82 			int, int *);
83 static int	dofileread(int, struct file *, struct uio *, int, int *);
84 static int	dofilewrite(int, struct file *, struct uio *, int, int *);
85 
86 /*
87  * Read system call.
88  *
89  * MPSAFE
90  */
91 int
92 sys_read(struct read_args *uap)
93 {
94 	struct thread *td = curthread;
95 	struct uio auio;
96 	struct iovec aiov;
97 	int error;
98 
99 	aiov.iov_base = uap->buf;
100 	aiov.iov_len = uap->nbyte;
101 	auio.uio_iov = &aiov;
102 	auio.uio_iovcnt = 1;
103 	auio.uio_offset = -1;
104 	auio.uio_resid = uap->nbyte;
105 	auio.uio_rw = UIO_READ;
106 	auio.uio_segflg = UIO_USERSPACE;
107 	auio.uio_td = td;
108 
109 	if (auio.uio_resid < 0)
110 		error = EINVAL;
111 	else
112 		error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_result);
113 	return(error);
114 }
115 
116 /*
117  * Positioned (Pread) read system call
118  *
119  * MPSAFE
120  */
121 int
122 sys_extpread(struct extpread_args *uap)
123 {
124 	struct thread *td = curthread;
125 	struct uio auio;
126 	struct iovec aiov;
127 	int error;
128 	int flags;
129 
130 	aiov.iov_base = uap->buf;
131 	aiov.iov_len = uap->nbyte;
132 	auio.uio_iov = &aiov;
133 	auio.uio_iovcnt = 1;
134 	auio.uio_offset = uap->offset;
135 	auio.uio_resid = uap->nbyte;
136 	auio.uio_rw = UIO_READ;
137 	auio.uio_segflg = UIO_USERSPACE;
138 	auio.uio_td = td;
139 
140 	flags = uap->flags & O_FMASK;
141 	if (uap->offset != (off_t)-1)
142 		flags |= O_FOFFSET;
143 
144 	if (auio.uio_resid < 0)
145 		error = EINVAL;
146 	else
147 		error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_result);
148 	return(error);
149 }
150 
151 /*
152  * Scatter read system call.
153  *
154  * MPSAFE
155  */
156 int
157 sys_readv(struct readv_args *uap)
158 {
159 	struct thread *td = curthread;
160 	struct uio auio;
161 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
162 	int error;
163 
164 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
165 			     &auio.uio_resid);
166 	if (error)
167 		return (error);
168 	auio.uio_iov = iov;
169 	auio.uio_iovcnt = uap->iovcnt;
170 	auio.uio_offset = -1;
171 	auio.uio_rw = UIO_READ;
172 	auio.uio_segflg = UIO_USERSPACE;
173 	auio.uio_td = td;
174 
175 	error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_result);
176 
177 	iovec_free(&iov, aiov);
178 	return (error);
179 }
180 
181 
182 /*
183  * Scatter positioned read system call.
184  *
185  * MPSAFE
186  */
187 int
188 sys_extpreadv(struct extpreadv_args *uap)
189 {
190 	struct thread *td = curthread;
191 	struct uio auio;
192 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
193 	int error;
194 	int flags;
195 
196 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
197 			     &auio.uio_resid);
198 	if (error)
199 		return (error);
200 	auio.uio_iov = iov;
201 	auio.uio_iovcnt = uap->iovcnt;
202 	auio.uio_offset = uap->offset;
203 	auio.uio_rw = UIO_READ;
204 	auio.uio_segflg = UIO_USERSPACE;
205 	auio.uio_td = td;
206 
207 	flags = uap->flags & O_FMASK;
208 	if (uap->offset != (off_t)-1)
209 		flags |= O_FOFFSET;
210 
211 	error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_result);
212 
213 	iovec_free(&iov, aiov);
214 	return(error);
215 }
216 
217 /*
218  * MPSAFE
219  */
220 int
221 kern_preadv(int fd, struct uio *auio, int flags, int *res)
222 {
223 	struct thread *td = curthread;
224 	struct proc *p = td->td_proc;
225 	struct file *fp;
226 	int error;
227 
228 	KKASSERT(p);
229 
230 	fp = holdfp(p->p_fd, fd, FREAD);
231 	if (fp == NULL)
232 		return (EBADF);
233 	if (flags & O_FOFFSET && fp->f_type != DTYPE_VNODE) {
234 		error = ESPIPE;
235 	} else if (auio->uio_resid < 0) {
236 		error = EINVAL;
237 	} else {
238 		error = dofileread(fd, fp, auio, flags, res);
239 	}
240 	fdrop(fp);
241 	return(error);
242 }
243 
244 /*
245  * Common code for readv and preadv that reads data in
246  * from a file using the passed in uio, offset, and flags.
247  *
248  * MPALMOSTSAFE - ktrace needs help
249  */
250 static int
251 dofileread(int fd, struct file *fp, struct uio *auio, int flags, int *res)
252 {
253 	struct thread *td = curthread;
254 	struct proc *p = td->td_proc;
255 	int error;
256 	int len;
257 #ifdef KTRACE
258 	struct iovec *ktriov = NULL;
259 	struct uio ktruio;
260 #endif
261 
262 #ifdef KTRACE
263 	/*
264 	 * if tracing, save a copy of iovec
265 	 */
266 	if (KTRPOINT(td, KTR_GENIO))  {
267 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
268 
269 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
270 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
271 		ktruio = *auio;
272 	}
273 #endif
274 	len = auio->uio_resid;
275 	error = fo_read(fp, auio, fp->f_cred, flags);
276 	if (error) {
277 		if (auio->uio_resid != len && (error == ERESTART ||
278 		    error == EINTR || error == EWOULDBLOCK))
279 			error = 0;
280 	}
281 #ifdef KTRACE
282 	if (ktriov != NULL) {
283 		if (error == 0) {
284 			ktruio.uio_iov = ktriov;
285 			ktruio.uio_resid = len - auio->uio_resid;
286 			get_mplock();
287 			ktrgenio(p, fd, UIO_READ, &ktruio, error);
288 			rel_mplock();
289 		}
290 		FREE(ktriov, M_TEMP);
291 	}
292 #endif
293 	if (error == 0)
294 		*res = len - auio->uio_resid;
295 
296 	return(error);
297 }
298 
299 /*
300  * Write system call
301  *
302  * MPSAFE
303  */
304 int
305 sys_write(struct write_args *uap)
306 {
307 	struct thread *td = curthread;
308 	struct uio auio;
309 	struct iovec aiov;
310 	int error;
311 
312 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
313 	aiov.iov_len = uap->nbyte;
314 	auio.uio_iov = &aiov;
315 	auio.uio_iovcnt = 1;
316 	auio.uio_offset = -1;
317 	auio.uio_resid = uap->nbyte;
318 	auio.uio_rw = UIO_WRITE;
319 	auio.uio_segflg = UIO_USERSPACE;
320 	auio.uio_td = td;
321 
322 	if (auio.uio_resid < 0)
323 		error = EINVAL;
324 	else
325 		error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_result);
326 
327 	return(error);
328 }
329 
330 /*
331  * Pwrite system call
332  *
333  * MPSAFE
334  */
335 int
336 sys_extpwrite(struct extpwrite_args *uap)
337 {
338 	struct thread *td = curthread;
339 	struct uio auio;
340 	struct iovec aiov;
341 	int error;
342 	int flags;
343 
344 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
345 	aiov.iov_len = uap->nbyte;
346 	auio.uio_iov = &aiov;
347 	auio.uio_iovcnt = 1;
348 	auio.uio_offset = uap->offset;
349 	auio.uio_resid = uap->nbyte;
350 	auio.uio_rw = UIO_WRITE;
351 	auio.uio_segflg = UIO_USERSPACE;
352 	auio.uio_td = td;
353 
354 	flags = uap->flags & O_FMASK;
355 	if (uap->offset != (off_t)-1)
356 		flags |= O_FOFFSET;
357 
358 	if (auio.uio_resid < 0)
359 		error = EINVAL;
360 	else
361 		error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_result);
362 
363 	return(error);
364 }
365 
366 /*
367  * MPSAFE
368  */
369 int
370 sys_writev(struct writev_args *uap)
371 {
372 	struct thread *td = curthread;
373 	struct uio auio;
374 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
375 	int error;
376 
377 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
378 			     &auio.uio_resid);
379 	if (error)
380 		return (error);
381 	auio.uio_iov = iov;
382 	auio.uio_iovcnt = uap->iovcnt;
383 	auio.uio_offset = -1;
384 	auio.uio_rw = UIO_WRITE;
385 	auio.uio_segflg = UIO_USERSPACE;
386 	auio.uio_td = td;
387 
388 	error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_result);
389 
390 	iovec_free(&iov, aiov);
391 	return (error);
392 }
393 
394 
395 /*
396  * Gather positioned write system call
397  *
398  * MPSAFE
399  */
400 int
401 sys_extpwritev(struct extpwritev_args *uap)
402 {
403 	struct thread *td = curthread;
404 	struct uio auio;
405 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
406 	int error;
407 	int flags;
408 
409 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
410 			     &auio.uio_resid);
411 	if (error)
412 		return (error);
413 	auio.uio_iov = iov;
414 	auio.uio_iovcnt = uap->iovcnt;
415 	auio.uio_offset = uap->offset;
416 	auio.uio_rw = UIO_WRITE;
417 	auio.uio_segflg = UIO_USERSPACE;
418 	auio.uio_td = td;
419 
420 	flags = uap->flags & O_FMASK;
421 	if (uap->offset != (off_t)-1)
422 		flags |= O_FOFFSET;
423 
424 	error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_result);
425 
426 	iovec_free(&iov, aiov);
427 	return(error);
428 }
429 
430 /*
431  * MPSAFE
432  */
433 int
434 kern_pwritev(int fd, struct uio *auio, int flags, int *res)
435 {
436 	struct thread *td = curthread;
437 	struct proc *p = td->td_proc;
438 	struct file *fp;
439 	int error;
440 
441 	KKASSERT(p);
442 
443 	fp = holdfp(p->p_fd, fd, FWRITE);
444 	if (fp == NULL)
445 		return (EBADF);
446 	else if ((flags & O_FOFFSET) && fp->f_type != DTYPE_VNODE) {
447 		error = ESPIPE;
448 	} else {
449 		error = dofilewrite(fd, fp, auio, flags, res);
450 	}
451 
452 	fdrop(fp);
453 	return (error);
454 }
455 
456 /*
457  * Common code for writev and pwritev that writes data to
458  * a file using the passed in uio, offset, and flags.
459  *
460  * MPALMOSTSAFE - ktrace needs help
461  */
462 static int
463 dofilewrite(int fd, struct file *fp, struct uio *auio, int flags, int *res)
464 {
465 	struct thread *td = curthread;
466 	struct lwp *lp = td->td_lwp;
467 	struct proc *p = td->td_proc;
468 	int error;
469 	int len;
470 #ifdef KTRACE
471 	struct iovec *ktriov = NULL;
472 	struct uio ktruio;
473 #endif
474 
475 #ifdef KTRACE
476 	/*
477 	 * if tracing, save a copy of iovec and uio
478 	 */
479 	if (KTRPOINT(td, KTR_GENIO))  {
480 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
481 
482 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
483 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
484 		ktruio = *auio;
485 	}
486 #endif
487 	len = auio->uio_resid;
488 	if (fp->f_type == DTYPE_VNODE)
489 		bwillwrite();
490 	error = fo_write(fp, auio, fp->f_cred, flags);
491 	if (error) {
492 		if (auio->uio_resid != len && (error == ERESTART ||
493 		    error == EINTR || error == EWOULDBLOCK))
494 			error = 0;
495 		/* Socket layer is responsible for issuing SIGPIPE. */
496 		if (error == EPIPE) {
497 			get_mplock();
498 			lwpsignal(p, lp, SIGPIPE);
499 			rel_mplock();
500 		}
501 	}
502 #ifdef KTRACE
503 	if (ktriov != NULL) {
504 		if (error == 0) {
505 			ktruio.uio_iov = ktriov;
506 			ktruio.uio_resid = len - auio->uio_resid;
507 			get_mplock();
508 			ktrgenio(p, fd, UIO_WRITE, &ktruio, error);
509 			rel_mplock();
510 		}
511 		FREE(ktriov, M_TEMP);
512 	}
513 #endif
514 	if (error == 0)
515 		*res = len - auio->uio_resid;
516 
517 	return(error);
518 }
519 
520 /*
521  * Ioctl system call
522  */
523 /* ARGSUSED */
524 int
525 sys_ioctl(struct ioctl_args *uap)
526 {
527 	return(mapped_ioctl(uap->fd, uap->com, uap->data, NULL));
528 }
529 
530 struct ioctl_map_entry {
531 	const char *subsys;
532 	struct ioctl_map_range *cmd_ranges;
533 	LIST_ENTRY(ioctl_map_entry) entries;
534 };
535 
536 /*
537  * The true heart of all ioctl syscall handlers (native, emulation).
538  * If map != NULL, it will be searched for a matching entry for com,
539  * and appropriate conversions/conversion functions will be utilized.
540  */
541 int
542 mapped_ioctl(int fd, u_long com, caddr_t uspc_data, struct ioctl_map *map)
543 {
544 	struct thread *td = curthread;
545 	struct proc *p = td->td_proc;
546 	struct ucred *cred;
547 	struct file *fp;
548 	struct ioctl_map_range *iomc = NULL;
549 	int error;
550 	u_int size;
551 	u_long ocom = com;
552 	caddr_t data, memp;
553 	int tmp;
554 #define STK_PARAMS	128
555 	union {
556 	    char stkbuf[STK_PARAMS];
557 	    long align;
558 	} ubuf;
559 
560 	KKASSERT(p);
561 	cred = p->p_ucred;
562 
563 	fp = holdfp(p->p_fd, fd, FREAD|FWRITE);
564 	if (fp == NULL)
565 		return(EBADF);
566 
567 	if (map != NULL) {	/* obey translation map */
568 		u_long maskcmd;
569 		struct ioctl_map_entry *e;
570 
571 		maskcmd = com & map->mask;
572 
573 		LIST_FOREACH(e, &map->mapping, entries) {
574 			for (iomc = e->cmd_ranges; iomc->start != 0 ||
575 			     iomc->maptocmd != 0 || iomc->wrapfunc != NULL ||
576 			     iomc->mapfunc != NULL;
577 			     iomc++) {
578 				if (maskcmd >= iomc->start &&
579 				    maskcmd <= iomc->end)
580 					break;
581 			}
582 
583 			/* Did we find a match? */
584 			if (iomc->start != 0 || iomc->maptocmd != 0 ||
585 			    iomc->wrapfunc != NULL || iomc->mapfunc != NULL)
586 				break;
587 		}
588 
589 		if (iomc == NULL ||
590 		    (iomc->start == 0 && iomc->maptocmd == 0
591 		     && iomc->wrapfunc == NULL && iomc->mapfunc == NULL)) {
592 			kprintf("%s: 'ioctl' fd=%d, cmd=0x%lx ('%c',%d) not implemented\n",
593 			       map->sys, fd, maskcmd,
594 			       (int)((maskcmd >> 8) & 0xff),
595 			       (int)(maskcmd & 0xff));
596 			error = EINVAL;
597 			goto done;
598 		}
599 
600 		/*
601 		 * If it's a non-range one to one mapping, maptocmd should be
602 		 * correct. If it's a ranged one to one mapping, we pass the
603 		 * original value of com, and for a range mapped to a different
604 		 * range, we always need a mapping function to translate the
605 		 * ioctl to our native ioctl. Ex. 6500-65ff <-> 9500-95ff
606 		 */
607 		if (iomc->start == iomc->end && iomc->maptocmd == iomc->maptoend) {
608 			com = iomc->maptocmd;
609 		} else if (iomc->start == iomc->maptocmd && iomc->end == iomc->maptoend) {
610 			if (iomc->mapfunc != NULL)
611 				com = iomc->mapfunc(iomc->start, iomc->end,
612 						    iomc->start, iomc->end,
613 						    com, com);
614 		} else {
615 			if (iomc->mapfunc != NULL) {
616 				com = iomc->mapfunc(iomc->start, iomc->end,
617 						    iomc->maptocmd, iomc->maptoend,
618 						    com, ocom);
619 			} else {
620 				kprintf("%s: Invalid mapping for fd=%d, cmd=%#lx ('%c',%d)\n",
621 				       map->sys, fd, maskcmd,
622 				       (int)((maskcmd >> 8) & 0xff),
623 				       (int)(maskcmd & 0xff));
624 				error = EINVAL;
625 				goto done;
626 			}
627 		}
628 	}
629 
630 	switch (com) {
631 	case FIONCLEX:
632 		error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
633 		goto done;
634 	case FIOCLEX:
635 		error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
636 		goto done;
637 	}
638 
639 	/*
640 	 * Interpret high order word to find amount of data to be
641 	 * copied to/from the user's address space.
642 	 */
643 	size = IOCPARM_LEN(com);
644 	if (size > IOCPARM_MAX) {
645 		error = ENOTTY;
646 		goto done;
647 	}
648 
649 	memp = NULL;
650 	if (size > sizeof (ubuf.stkbuf)) {
651 		memp = kmalloc(size, M_IOCTLOPS, M_WAITOK);
652 		data = memp;
653 	} else {
654 		data = ubuf.stkbuf;
655 	}
656 	if ((com & IOC_IN) != 0) {
657 		if (size != 0) {
658 			error = copyin(uspc_data, data, (u_int)size);
659 			if (error) {
660 				if (memp != NULL)
661 					kfree(memp, M_IOCTLOPS);
662 				goto done;
663 			}
664 		} else {
665 			*(caddr_t *)data = uspc_data;
666 		}
667 	} else if ((com & IOC_OUT) != 0 && size) {
668 		/*
669 		 * Zero the buffer so the user always
670 		 * gets back something deterministic.
671 		 */
672 		bzero(data, size);
673 	} else if ((com & IOC_VOID) != 0) {
674 		*(caddr_t *)data = uspc_data;
675 	}
676 
677 	switch (com) {
678 	case FIONBIO:
679 		if ((tmp = *(int *)data))
680 			fp->f_flag |= FNONBLOCK;
681 		else
682 			fp->f_flag &= ~FNONBLOCK;
683 		error = 0;
684 		break;
685 
686 	case FIOASYNC:
687 		if ((tmp = *(int *)data))
688 			fp->f_flag |= FASYNC;
689 		else
690 			fp->f_flag &= ~FASYNC;
691 		error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred);
692 		break;
693 
694 	default:
695 		/*
696 		 *  If there is a override function,
697 		 *  call it instead of directly routing the call
698 		 */
699 		if (map != NULL && iomc->wrapfunc != NULL)
700 			error = iomc->wrapfunc(fp, com, ocom, data, cred);
701 		else
702 			error = fo_ioctl(fp, com, data, cred);
703 		/*
704 		 * Copy any data to user, size was
705 		 * already set and checked above.
706 		 */
707 		if (error == 0 && (com & IOC_OUT) != 0 && size != 0)
708 			error = copyout(data, uspc_data, (u_int)size);
709 		break;
710 	}
711 	if (memp != NULL)
712 		kfree(memp, M_IOCTLOPS);
713 done:
714 	fdrop(fp);
715 	return(error);
716 }
717 
718 int
719 mapped_ioctl_register_handler(struct ioctl_map_handler *he)
720 {
721 	struct ioctl_map_entry *ne;
722 
723 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL &&
724 		 he->subsys != NULL && *he->subsys != '\0');
725 
726 	ne = kmalloc(sizeof(struct ioctl_map_entry), M_IOCTLMAP, M_WAITOK);
727 
728 	ne->subsys = he->subsys;
729 	ne->cmd_ranges = he->cmd_ranges;
730 
731 	LIST_INSERT_HEAD(&he->map->mapping, ne, entries);
732 
733 	return(0);
734 }
735 
736 int
737 mapped_ioctl_unregister_handler(struct ioctl_map_handler *he)
738 {
739 	struct ioctl_map_entry *ne;
740 
741 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL);
742 
743 	LIST_FOREACH(ne, &he->map->mapping, entries) {
744 		if (ne->cmd_ranges != he->cmd_ranges)
745 			continue;
746 		LIST_REMOVE(ne, entries);
747 		kfree(ne, M_IOCTLMAP);
748 		return(0);
749 	}
750 	return(EINVAL);
751 }
752 
753 static int	nselcoll;	/* Select collisions since boot */
754 int	selwait;
755 SYSCTL_INT(_kern, OID_AUTO, nselcoll, CTLFLAG_RD, &nselcoll, 0, "");
756 
757 /*
758  * Select system call.
759  */
760 int
761 sys_select(struct select_args *uap)
762 {
763 	struct lwp *lp = curthread->td_lwp;
764 	struct proc *p = curproc;
765 
766 	/*
767 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
768 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
769 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
770 	 * of 256.
771 	 */
772 	fd_mask s_selbits[howmany(2048, NFDBITS)];
773 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
774 	struct timeval atv, rtv, ttv;
775 	int ncoll, error, timo;
776 	u_int nbufbytes, ncpbytes, nfdbits;
777 
778 	if (uap->nd < 0)
779 		return (EINVAL);
780 	if (uap->nd > p->p_fd->fd_nfiles)
781 		uap->nd = p->p_fd->fd_nfiles;   /* forgiving; slightly wrong */
782 
783 	/*
784 	 * Allocate just enough bits for the non-null fd_sets.  Use the
785 	 * preallocated auto buffer if possible.
786 	 */
787 	nfdbits = roundup(uap->nd, NFDBITS);
788 	ncpbytes = nfdbits / NBBY;
789 	nbufbytes = 0;
790 	if (uap->in != NULL)
791 		nbufbytes += 2 * ncpbytes;
792 	if (uap->ou != NULL)
793 		nbufbytes += 2 * ncpbytes;
794 	if (uap->ex != NULL)
795 		nbufbytes += 2 * ncpbytes;
796 	if (nbufbytes <= sizeof s_selbits)
797 		selbits = &s_selbits[0];
798 	else
799 		selbits = kmalloc(nbufbytes, M_SELECT, M_WAITOK);
800 
801 	/*
802 	 * Assign pointers into the bit buffers and fetch the input bits.
803 	 * Put the output buffers together so that they can be bzeroed
804 	 * together.
805 	 */
806 	sbp = selbits;
807 #define	getbits(name, x) \
808 	do {								\
809 		if (uap->name == NULL)					\
810 			ibits[x] = NULL;				\
811 		else {							\
812 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
813 			obits[x] = sbp;					\
814 			sbp += ncpbytes / sizeof *sbp;			\
815 			error = copyin(uap->name, ibits[x], ncpbytes);	\
816 			if (error != 0)					\
817 				goto done;				\
818 		}							\
819 	} while (0)
820 	getbits(in, 0);
821 	getbits(ou, 1);
822 	getbits(ex, 2);
823 #undef	getbits
824 	if (nbufbytes != 0)
825 		bzero(selbits, nbufbytes / 2);
826 
827 	if (uap->tv) {
828 		error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
829 			sizeof (atv));
830 		if (error)
831 			goto done;
832 		if (itimerfix(&atv)) {
833 			error = EINVAL;
834 			goto done;
835 		}
836 		getmicrouptime(&rtv);
837 		timevaladd(&atv, &rtv);
838 	} else {
839 		atv.tv_sec = 0;
840 		atv.tv_usec = 0;
841 	}
842 	timo = 0;
843 retry:
844 	ncoll = nselcoll;
845 	lp->lwp_flag |= LWP_SELECT;
846 	error = selscan(p, ibits, obits, uap->nd, &uap->sysmsg_result);
847 	if (error || uap->sysmsg_result)
848 		goto done;
849 	if (atv.tv_sec || atv.tv_usec) {
850 		getmicrouptime(&rtv);
851 		if (timevalcmp(&rtv, &atv, >=))
852 			goto done;
853 		ttv = atv;
854 		timevalsub(&ttv, &rtv);
855 		timo = ttv.tv_sec > 24 * 60 * 60 ?
856 		    24 * 60 * 60 * hz : tvtohz_high(&ttv);
857 	}
858 	crit_enter();
859 	if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
860 		crit_exit();
861 		goto retry;
862 	}
863 	lp->lwp_flag &= ~LWP_SELECT;
864 
865 	error = tsleep((caddr_t)&selwait, PCATCH, "select", timo);
866 
867 	crit_exit();
868 	if (error == 0)
869 		goto retry;
870 done:
871 	lp->lwp_flag &= ~LWP_SELECT;
872 	/* select is not restarted after signals... */
873 	if (error == ERESTART)
874 		error = EINTR;
875 	if (error == EWOULDBLOCK)
876 		error = 0;
877 #define	putbits(name, x) \
878 	if (uap->name && (error2 = copyout(obits[x], uap->name, ncpbytes))) \
879 		error = error2;
880 	if (error == 0) {
881 		int error2;
882 
883 		putbits(in, 0);
884 		putbits(ou, 1);
885 		putbits(ex, 2);
886 #undef putbits
887 	}
888 	if (selbits != &s_selbits[0])
889 		kfree(selbits, M_SELECT);
890 	return (error);
891 }
892 
893 static int
894 selscan(struct proc *p, fd_mask **ibits, fd_mask **obits, int nfd, int *res)
895 {
896 	int msk, i, fd;
897 	fd_mask bits;
898 	struct file *fp;
899 	int n = 0;
900 	/* Note: backend also returns POLLHUP/POLLERR if appropriate. */
901 	static int flag[3] = { POLLRDNORM, POLLWRNORM, POLLRDBAND };
902 
903 	for (msk = 0; msk < 3; msk++) {
904 		if (ibits[msk] == NULL)
905 			continue;
906 		for (i = 0; i < nfd; i += NFDBITS) {
907 			bits = ibits[msk][i/NFDBITS];
908 			/* ffs(int mask) not portable, fd_mask is long */
909 			for (fd = i; bits && fd < nfd; fd++, bits >>= 1) {
910 				if (!(bits & 1))
911 					continue;
912 				fp = holdfp(p->p_fd, fd, -1);
913 				if (fp == NULL)
914 					return (EBADF);
915 				if (fo_poll(fp, flag[msk], fp->f_cred)) {
916 					obits[msk][(fd)/NFDBITS] |=
917 					    ((fd_mask)1 << ((fd) % NFDBITS));
918 					n++;
919 				}
920 				fdrop(fp);
921 			}
922 		}
923 	}
924 	*res = n;
925 	return (0);
926 }
927 
928 /*
929  * Poll system call.
930  */
931 int
932 sys_poll(struct poll_args *uap)
933 {
934 	struct pollfd *bits;
935 	struct pollfd smallbits[32];
936 	struct timeval atv, rtv, ttv;
937 	int ncoll, error = 0, timo;
938 	u_int nfds;
939 	size_t ni;
940 	struct lwp *lp = curthread->td_lwp;
941 	struct proc *p = curproc;
942 
943 	nfds = uap->nfds;
944 	/*
945 	 * This is kinda bogus.  We have fd limits, but that is not
946 	 * really related to the size of the pollfd array.  Make sure
947 	 * we let the process use at least FD_SETSIZE entries and at
948 	 * least enough for the current limits.  We want to be reasonably
949 	 * safe, but not overly restrictive.
950 	 */
951 	if (nfds > p->p_rlimit[RLIMIT_NOFILE].rlim_cur && nfds > FD_SETSIZE)
952 		return (EINVAL);
953 	ni = nfds * sizeof(struct pollfd);
954 	if (ni > sizeof(smallbits))
955 		bits = kmalloc(ni, M_TEMP, M_WAITOK);
956 	else
957 		bits = smallbits;
958 	error = copyin(uap->fds, bits, ni);
959 	if (error)
960 		goto done;
961 	if (uap->timeout != INFTIM) {
962 		atv.tv_sec = uap->timeout / 1000;
963 		atv.tv_usec = (uap->timeout % 1000) * 1000;
964 		if (itimerfix(&atv)) {
965 			error = EINVAL;
966 			goto done;
967 		}
968 		getmicrouptime(&rtv);
969 		timevaladd(&atv, &rtv);
970 	} else {
971 		atv.tv_sec = 0;
972 		atv.tv_usec = 0;
973 	}
974 	timo = 0;
975 retry:
976 	ncoll = nselcoll;
977 	lp->lwp_flag |= LWP_SELECT;
978 	error = pollscan(p, bits, nfds, &uap->sysmsg_result);
979 	if (error || uap->sysmsg_result)
980 		goto done;
981 	if (atv.tv_sec || atv.tv_usec) {
982 		getmicrouptime(&rtv);
983 		if (timevalcmp(&rtv, &atv, >=))
984 			goto done;
985 		ttv = atv;
986 		timevalsub(&ttv, &rtv);
987 		timo = ttv.tv_sec > 24 * 60 * 60 ?
988 		    24 * 60 * 60 * hz : tvtohz_high(&ttv);
989 	}
990 	crit_enter();
991 	if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
992 		crit_exit();
993 		goto retry;
994 	}
995 	lp->lwp_flag &= ~LWP_SELECT;
996 	error = tsleep((caddr_t)&selwait, PCATCH, "poll", timo);
997 	crit_exit();
998 	if (error == 0)
999 		goto retry;
1000 done:
1001 	lp->lwp_flag &= ~LWP_SELECT;
1002 	/* poll is not restarted after signals... */
1003 	if (error == ERESTART)
1004 		error = EINTR;
1005 	if (error == EWOULDBLOCK)
1006 		error = 0;
1007 	if (error == 0) {
1008 		error = copyout(bits, uap->fds, ni);
1009 		if (error)
1010 			goto out;
1011 	}
1012 out:
1013 	if (ni > sizeof(smallbits))
1014 		kfree(bits, M_TEMP);
1015 	return (error);
1016 }
1017 
1018 static int
1019 pollscan(struct proc *p, struct pollfd *fds, u_int nfd, int *res)
1020 {
1021 	int i;
1022 	struct file *fp;
1023 	int n = 0;
1024 
1025 	for (i = 0; i < nfd; i++, fds++) {
1026 		if (fds->fd >= p->p_fd->fd_nfiles) {
1027 			fds->revents = POLLNVAL;
1028 			n++;
1029 		} else if (fds->fd < 0) {
1030 			fds->revents = 0;
1031 		} else {
1032 			fp = holdfp(p->p_fd, fds->fd, -1);
1033 			if (fp == NULL) {
1034 				fds->revents = POLLNVAL;
1035 				n++;
1036 			} else {
1037 				/*
1038 				 * Note: backend also returns POLLHUP and
1039 				 * POLLERR if appropriate.
1040 				 */
1041 				fds->revents = fo_poll(fp, fds->events,
1042 							fp->f_cred);
1043 				if (fds->revents != 0)
1044 					n++;
1045 				fdrop(fp);
1046 			}
1047 		}
1048 	}
1049 	*res = n;
1050 	return (0);
1051 }
1052 
1053 /*
1054  * OpenBSD poll system call.
1055  * XXX this isn't quite a true representation..  OpenBSD uses select ops.
1056  */
1057 int
1058 sys_openbsd_poll(struct openbsd_poll_args *uap)
1059 {
1060 	return (sys_poll((struct poll_args *)uap));
1061 }
1062 
1063 /*ARGSUSED*/
1064 int
1065 seltrue(cdev_t dev, int events)
1066 {
1067 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1068 }
1069 
1070 /*
1071  * Record a select request.  A global wait must be used since a process/thread
1072  * might go away after recording its request.
1073  */
1074 void
1075 selrecord(struct thread *selector, struct selinfo *sip)
1076 {
1077 	struct proc *p;
1078 	struct lwp *lp = NULL;
1079 
1080 	if (selector->td_lwp == NULL)
1081 		panic("selrecord: thread needs a process");
1082 
1083 	if (sip->si_pid == selector->td_proc->p_pid &&
1084 	    sip->si_tid == selector->td_lwp->lwp_tid)
1085 		return;
1086 	if (sip->si_pid && (p = pfind(sip->si_pid))) {
1087 		FOREACH_LWP_IN_PROC(lp, p) {
1088 			if (sip->si_tid == lp->lwp_tid)
1089 				break;
1090 		}
1091 	}
1092 	if (lp != NULL && lp->lwp_wchan == (caddr_t)&selwait) {
1093 		sip->si_flags |= SI_COLL;
1094 	} else {
1095 		sip->si_pid = selector->td_proc->p_pid;
1096 	}
1097 }
1098 
1099 /*
1100  * Do a wakeup when a selectable event occurs.
1101  */
1102 void
1103 selwakeup(struct selinfo *sip)
1104 {
1105 	struct proc *p;
1106 	struct lwp *lp = NULL;
1107 
1108 	if (sip->si_pid == 0)
1109 		return;
1110 	if (sip->si_flags & SI_COLL) {
1111 		nselcoll++;
1112 		sip->si_flags &= ~SI_COLL;
1113 		wakeup((caddr_t)&selwait);	/* YYY fixable */
1114 	}
1115 	p = pfind(sip->si_pid);
1116 	sip->si_pid = 0;
1117 	if (p == NULL)
1118 		return;
1119 	FOREACH_LWP_IN_PROC(lp, p) {
1120 		if (lp->lwp_tid == sip->si_tid)
1121 			break;
1122 	}
1123 	if (lp == NULL)
1124 		return;
1125 
1126 	crit_enter();
1127 	if (lp->lwp_wchan == (caddr_t)&selwait) {
1128 		/*
1129 		 * Flag the process to break the tsleep when
1130 		 * setrunnable is called, but only call setrunnable
1131 		 * here if the process is not in a stopped state.
1132 		 */
1133 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1134 		if (p->p_stat != SSTOP)
1135 			setrunnable(lp);
1136 	} else if (lp->lwp_flag & LWP_SELECT) {
1137 		lp->lwp_flag &= ~LWP_SELECT;
1138 	}
1139 	crit_exit();
1140 }
1141 
1142