xref: /dragonfly/sys/kern/sys_generic.c (revision 6693db17)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
39  * $FreeBSD: src/sys/kern/sys_generic.c,v 1.55.2.10 2001/03/17 10:39:32 peter Exp $
40  * $DragonFly: src/sys/kern/sys_generic.c,v 1.49 2008/05/05 22:09:44 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/proc.h>
53 #include <sys/signalvar.h>
54 #include <sys/socketvar.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/kern_syscall.h>
58 #include <sys/malloc.h>
59 #include <sys/mapped_ioctl.h>
60 #include <sys/poll.h>
61 #include <sys/queue.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysent.h>
65 #include <sys/buf.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_page.h>
71 
72 #include <sys/file2.h>
73 #include <sys/mplock2.h>
74 
75 #include <machine/limits.h>
76 
77 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
78 static MALLOC_DEFINE(M_IOCTLMAP, "ioctlmap", "mapped ioctl handler buffer");
79 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
80 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
81 
82 static int 	doselect(int nd, fd_set *in, fd_set *ou, fd_set *ex,
83 			struct timeval *tv, int *res);
84 static int	pollscan (struct proc *, struct pollfd *, u_int, int *);
85 static int	selscan (struct proc *, fd_mask **, fd_mask **,
86 			int, int *);
87 static int	dofileread(int, struct file *, struct uio *, int, size_t *);
88 static int	dofilewrite(int, struct file *, struct uio *, int, size_t *);
89 
90 /*
91  * Read system call.
92  *
93  * MPSAFE
94  */
95 int
96 sys_read(struct read_args *uap)
97 {
98 	struct thread *td = curthread;
99 	struct uio auio;
100 	struct iovec aiov;
101 	int error;
102 
103 	if ((ssize_t)uap->nbyte < 0)
104 		error = EINVAL;
105 
106 	aiov.iov_base = uap->buf;
107 	aiov.iov_len = uap->nbyte;
108 	auio.uio_iov = &aiov;
109 	auio.uio_iovcnt = 1;
110 	auio.uio_offset = -1;
111 	auio.uio_resid = uap->nbyte;
112 	auio.uio_rw = UIO_READ;
113 	auio.uio_segflg = UIO_USERSPACE;
114 	auio.uio_td = td;
115 
116 	error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
117 	return(error);
118 }
119 
120 /*
121  * Positioned (Pread) read system call
122  *
123  * MPSAFE
124  */
125 int
126 sys_extpread(struct extpread_args *uap)
127 {
128 	struct thread *td = curthread;
129 	struct uio auio;
130 	struct iovec aiov;
131 	int error;
132 	int flags;
133 
134 	if ((ssize_t)uap->nbyte < 0)
135 		return(EINVAL);
136 
137 	aiov.iov_base = uap->buf;
138 	aiov.iov_len = uap->nbyte;
139 	auio.uio_iov = &aiov;
140 	auio.uio_iovcnt = 1;
141 	auio.uio_offset = uap->offset;
142 	auio.uio_resid = uap->nbyte;
143 	auio.uio_rw = UIO_READ;
144 	auio.uio_segflg = UIO_USERSPACE;
145 	auio.uio_td = td;
146 
147 	flags = uap->flags & O_FMASK;
148 	if (uap->offset != (off_t)-1)
149 		flags |= O_FOFFSET;
150 
151 	error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
152 	return(error);
153 }
154 
155 /*
156  * Scatter read system call.
157  *
158  * MPSAFE
159  */
160 int
161 sys_readv(struct readv_args *uap)
162 {
163 	struct thread *td = curthread;
164 	struct uio auio;
165 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
166 	int error;
167 
168 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
169 			     &auio.uio_resid);
170 	if (error)
171 		return (error);
172 	auio.uio_iov = iov;
173 	auio.uio_iovcnt = uap->iovcnt;
174 	auio.uio_offset = -1;
175 	auio.uio_rw = UIO_READ;
176 	auio.uio_segflg = UIO_USERSPACE;
177 	auio.uio_td = td;
178 
179 	error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
180 
181 	iovec_free(&iov, aiov);
182 	return (error);
183 }
184 
185 
186 /*
187  * Scatter positioned read system call.
188  *
189  * MPSAFE
190  */
191 int
192 sys_extpreadv(struct extpreadv_args *uap)
193 {
194 	struct thread *td = curthread;
195 	struct uio auio;
196 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
197 	int error;
198 	int flags;
199 
200 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
201 			     &auio.uio_resid);
202 	if (error)
203 		return (error);
204 	auio.uio_iov = iov;
205 	auio.uio_iovcnt = uap->iovcnt;
206 	auio.uio_offset = uap->offset;
207 	auio.uio_rw = UIO_READ;
208 	auio.uio_segflg = UIO_USERSPACE;
209 	auio.uio_td = td;
210 
211 	flags = uap->flags & O_FMASK;
212 	if (uap->offset != (off_t)-1)
213 		flags |= O_FOFFSET;
214 
215 	error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
216 
217 	iovec_free(&iov, aiov);
218 	return(error);
219 }
220 
221 /*
222  * MPSAFE
223  */
224 int
225 kern_preadv(int fd, struct uio *auio, int flags, size_t *res)
226 {
227 	struct thread *td = curthread;
228 	struct proc *p = td->td_proc;
229 	struct file *fp;
230 	int error;
231 
232 	KKASSERT(p);
233 
234 	fp = holdfp(p->p_fd, fd, FREAD);
235 	if (fp == NULL)
236 		return (EBADF);
237 	if (flags & O_FOFFSET && fp->f_type != DTYPE_VNODE) {
238 		error = ESPIPE;
239 	} else {
240 		error = dofileread(fd, fp, auio, flags, res);
241 	}
242 	fdrop(fp);
243 	return(error);
244 }
245 
246 /*
247  * Common code for readv and preadv that reads data in
248  * from a file using the passed in uio, offset, and flags.
249  *
250  * MPALMOSTSAFE - ktrace needs help
251  */
252 static int
253 dofileread(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
254 {
255 	struct thread *td = curthread;
256 	int error;
257 	size_t len;
258 #ifdef KTRACE
259 	struct iovec *ktriov = NULL;
260 	struct uio ktruio;
261 #endif
262 
263 #ifdef KTRACE
264 	/*
265 	 * if tracing, save a copy of iovec
266 	 */
267 	if (KTRPOINT(td, KTR_GENIO))  {
268 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
269 
270 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
271 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
272 		ktruio = *auio;
273 	}
274 #endif
275 	len = auio->uio_resid;
276 	error = fo_read(fp, auio, fp->f_cred, flags);
277 	if (error) {
278 		if (auio->uio_resid != len && (error == ERESTART ||
279 		    error == EINTR || error == EWOULDBLOCK))
280 			error = 0;
281 	}
282 #ifdef KTRACE
283 	if (ktriov != NULL) {
284 		if (error == 0) {
285 			ktruio.uio_iov = ktriov;
286 			ktruio.uio_resid = len - auio->uio_resid;
287 			get_mplock();
288 			ktrgenio(td->td_lwp, fd, UIO_READ, &ktruio, error);
289 			rel_mplock();
290 		}
291 		FREE(ktriov, M_TEMP);
292 	}
293 #endif
294 	if (error == 0)
295 		*res = len - auio->uio_resid;
296 
297 	return(error);
298 }
299 
300 /*
301  * Write system call
302  *
303  * MPSAFE
304  */
305 int
306 sys_write(struct write_args *uap)
307 {
308 	struct thread *td = curthread;
309 	struct uio auio;
310 	struct iovec aiov;
311 	int error;
312 
313 	if ((ssize_t)uap->nbyte < 0)
314 		error = EINVAL;
315 
316 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
317 	aiov.iov_len = uap->nbyte;
318 	auio.uio_iov = &aiov;
319 	auio.uio_iovcnt = 1;
320 	auio.uio_offset = -1;
321 	auio.uio_resid = uap->nbyte;
322 	auio.uio_rw = UIO_WRITE;
323 	auio.uio_segflg = UIO_USERSPACE;
324 	auio.uio_td = td;
325 
326 	error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
327 
328 	return(error);
329 }
330 
331 /*
332  * Pwrite system call
333  *
334  * MPSAFE
335  */
336 int
337 sys_extpwrite(struct extpwrite_args *uap)
338 {
339 	struct thread *td = curthread;
340 	struct uio auio;
341 	struct iovec aiov;
342 	int error;
343 	int flags;
344 
345 	if ((ssize_t)uap->nbyte < 0)
346 		error = EINVAL;
347 
348 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
349 	aiov.iov_len = uap->nbyte;
350 	auio.uio_iov = &aiov;
351 	auio.uio_iovcnt = 1;
352 	auio.uio_offset = uap->offset;
353 	auio.uio_resid = uap->nbyte;
354 	auio.uio_rw = UIO_WRITE;
355 	auio.uio_segflg = UIO_USERSPACE;
356 	auio.uio_td = td;
357 
358 	flags = uap->flags & O_FMASK;
359 	if (uap->offset != (off_t)-1)
360 		flags |= O_FOFFSET;
361 	error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
362 	return(error);
363 }
364 
365 /*
366  * MPSAFE
367  */
368 int
369 sys_writev(struct writev_args *uap)
370 {
371 	struct thread *td = curthread;
372 	struct uio auio;
373 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
374 	int error;
375 
376 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
377 			     &auio.uio_resid);
378 	if (error)
379 		return (error);
380 	auio.uio_iov = iov;
381 	auio.uio_iovcnt = uap->iovcnt;
382 	auio.uio_offset = -1;
383 	auio.uio_rw = UIO_WRITE;
384 	auio.uio_segflg = UIO_USERSPACE;
385 	auio.uio_td = td;
386 
387 	error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
388 
389 	iovec_free(&iov, aiov);
390 	return (error);
391 }
392 
393 
394 /*
395  * Gather positioned write system call
396  *
397  * MPSAFE
398  */
399 int
400 sys_extpwritev(struct extpwritev_args *uap)
401 {
402 	struct thread *td = curthread;
403 	struct uio auio;
404 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
405 	int error;
406 	int flags;
407 
408 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
409 			     &auio.uio_resid);
410 	if (error)
411 		return (error);
412 	auio.uio_iov = iov;
413 	auio.uio_iovcnt = uap->iovcnt;
414 	auio.uio_offset = uap->offset;
415 	auio.uio_rw = UIO_WRITE;
416 	auio.uio_segflg = UIO_USERSPACE;
417 	auio.uio_td = td;
418 
419 	flags = uap->flags & O_FMASK;
420 	if (uap->offset != (off_t)-1)
421 		flags |= O_FOFFSET;
422 
423 	error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
424 
425 	iovec_free(&iov, aiov);
426 	return(error);
427 }
428 
429 /*
430  * MPSAFE
431  */
432 int
433 kern_pwritev(int fd, struct uio *auio, int flags, size_t *res)
434 {
435 	struct thread *td = curthread;
436 	struct proc *p = td->td_proc;
437 	struct file *fp;
438 	int error;
439 
440 	KKASSERT(p);
441 
442 	fp = holdfp(p->p_fd, fd, FWRITE);
443 	if (fp == NULL)
444 		return (EBADF);
445 	else if ((flags & O_FOFFSET) && fp->f_type != DTYPE_VNODE) {
446 		error = ESPIPE;
447 	} else {
448 		error = dofilewrite(fd, fp, auio, flags, res);
449 	}
450 
451 	fdrop(fp);
452 	return (error);
453 }
454 
455 /*
456  * Common code for writev and pwritev that writes data to
457  * a file using the passed in uio, offset, and flags.
458  *
459  * MPALMOSTSAFE - ktrace needs help
460  */
461 static int
462 dofilewrite(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
463 {
464 	struct thread *td = curthread;
465 	struct lwp *lp = td->td_lwp;
466 	int error;
467 	size_t len;
468 #ifdef KTRACE
469 	struct iovec *ktriov = NULL;
470 	struct uio ktruio;
471 #endif
472 
473 #ifdef KTRACE
474 	/*
475 	 * if tracing, save a copy of iovec and uio
476 	 */
477 	if (KTRPOINT(td, KTR_GENIO))  {
478 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
479 
480 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
481 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
482 		ktruio = *auio;
483 	}
484 #endif
485 	len = auio->uio_resid;
486 	error = fo_write(fp, auio, fp->f_cred, flags);
487 	if (error) {
488 		if (auio->uio_resid != len && (error == ERESTART ||
489 		    error == EINTR || error == EWOULDBLOCK))
490 			error = 0;
491 		/* Socket layer is responsible for issuing SIGPIPE. */
492 		if (error == EPIPE) {
493 			get_mplock();
494 			lwpsignal(lp->lwp_proc, lp, SIGPIPE);
495 			rel_mplock();
496 		}
497 	}
498 #ifdef KTRACE
499 	if (ktriov != NULL) {
500 		if (error == 0) {
501 			ktruio.uio_iov = ktriov;
502 			ktruio.uio_resid = len - auio->uio_resid;
503 			get_mplock();
504 			ktrgenio(lp, fd, UIO_WRITE, &ktruio, error);
505 			rel_mplock();
506 		}
507 		FREE(ktriov, M_TEMP);
508 	}
509 #endif
510 	if (error == 0)
511 		*res = len - auio->uio_resid;
512 
513 	return(error);
514 }
515 
516 /*
517  * Ioctl system call
518  *
519  * MPALMOSTSAFE
520  */
521 int
522 sys_ioctl(struct ioctl_args *uap)
523 {
524 	int error;
525 
526 	get_mplock();
527 	error = mapped_ioctl(uap->fd, uap->com, uap->data, NULL, &uap->sysmsg);
528 	rel_mplock();
529 	return (error);
530 }
531 
532 struct ioctl_map_entry {
533 	const char *subsys;
534 	struct ioctl_map_range *cmd_ranges;
535 	LIST_ENTRY(ioctl_map_entry) entries;
536 };
537 
538 /*
539  * The true heart of all ioctl syscall handlers (native, emulation).
540  * If map != NULL, it will be searched for a matching entry for com,
541  * and appropriate conversions/conversion functions will be utilized.
542  */
543 int
544 mapped_ioctl(int fd, u_long com, caddr_t uspc_data, struct ioctl_map *map,
545 	     struct sysmsg *msg)
546 {
547 	struct thread *td = curthread;
548 	struct proc *p = td->td_proc;
549 	struct ucred *cred;
550 	struct file *fp;
551 	struct ioctl_map_range *iomc = NULL;
552 	int error;
553 	u_int size;
554 	u_long ocom = com;
555 	caddr_t data, memp;
556 	int tmp;
557 #define STK_PARAMS	128
558 	union {
559 	    char stkbuf[STK_PARAMS];
560 	    long align;
561 	} ubuf;
562 
563 	KKASSERT(p);
564 	cred = td->td_ucred;
565 
566 	fp = holdfp(p->p_fd, fd, FREAD|FWRITE);
567 	if (fp == NULL)
568 		return(EBADF);
569 
570 	if (map != NULL) {	/* obey translation map */
571 		u_long maskcmd;
572 		struct ioctl_map_entry *e;
573 
574 		maskcmd = com & map->mask;
575 
576 		LIST_FOREACH(e, &map->mapping, entries) {
577 			for (iomc = e->cmd_ranges; iomc->start != 0 ||
578 			     iomc->maptocmd != 0 || iomc->wrapfunc != NULL ||
579 			     iomc->mapfunc != NULL;
580 			     iomc++) {
581 				if (maskcmd >= iomc->start &&
582 				    maskcmd <= iomc->end)
583 					break;
584 			}
585 
586 			/* Did we find a match? */
587 			if (iomc->start != 0 || iomc->maptocmd != 0 ||
588 			    iomc->wrapfunc != NULL || iomc->mapfunc != NULL)
589 				break;
590 		}
591 
592 		if (iomc == NULL ||
593 		    (iomc->start == 0 && iomc->maptocmd == 0
594 		     && iomc->wrapfunc == NULL && iomc->mapfunc == NULL)) {
595 			kprintf("%s: 'ioctl' fd=%d, cmd=0x%lx ('%c',%d) not implemented\n",
596 			       map->sys, fd, maskcmd,
597 			       (int)((maskcmd >> 8) & 0xff),
598 			       (int)(maskcmd & 0xff));
599 			error = EINVAL;
600 			goto done;
601 		}
602 
603 		/*
604 		 * If it's a non-range one to one mapping, maptocmd should be
605 		 * correct. If it's a ranged one to one mapping, we pass the
606 		 * original value of com, and for a range mapped to a different
607 		 * range, we always need a mapping function to translate the
608 		 * ioctl to our native ioctl. Ex. 6500-65ff <-> 9500-95ff
609 		 */
610 		if (iomc->start == iomc->end && iomc->maptocmd == iomc->maptoend) {
611 			com = iomc->maptocmd;
612 		} else if (iomc->start == iomc->maptocmd && iomc->end == iomc->maptoend) {
613 			if (iomc->mapfunc != NULL)
614 				com = iomc->mapfunc(iomc->start, iomc->end,
615 						    iomc->start, iomc->end,
616 						    com, com);
617 		} else {
618 			if (iomc->mapfunc != NULL) {
619 				com = iomc->mapfunc(iomc->start, iomc->end,
620 						    iomc->maptocmd, iomc->maptoend,
621 						    com, ocom);
622 			} else {
623 				kprintf("%s: Invalid mapping for fd=%d, cmd=%#lx ('%c',%d)\n",
624 				       map->sys, fd, maskcmd,
625 				       (int)((maskcmd >> 8) & 0xff),
626 				       (int)(maskcmd & 0xff));
627 				error = EINVAL;
628 				goto done;
629 			}
630 		}
631 	}
632 
633 	switch (com) {
634 	case FIONCLEX:
635 		error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
636 		goto done;
637 	case FIOCLEX:
638 		error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
639 		goto done;
640 	}
641 
642 	/*
643 	 * Interpret high order word to find amount of data to be
644 	 * copied to/from the user's address space.
645 	 */
646 	size = IOCPARM_LEN(com);
647 	if (size > IOCPARM_MAX) {
648 		error = ENOTTY;
649 		goto done;
650 	}
651 
652 	memp = NULL;
653 	if (size > sizeof (ubuf.stkbuf)) {
654 		memp = kmalloc(size, M_IOCTLOPS, M_WAITOK);
655 		data = memp;
656 	} else {
657 		data = ubuf.stkbuf;
658 	}
659 	if ((com & IOC_IN) != 0) {
660 		if (size != 0) {
661 			error = copyin(uspc_data, data, (size_t)size);
662 			if (error) {
663 				if (memp != NULL)
664 					kfree(memp, M_IOCTLOPS);
665 				goto done;
666 			}
667 		} else {
668 			*(caddr_t *)data = uspc_data;
669 		}
670 	} else if ((com & IOC_OUT) != 0 && size) {
671 		/*
672 		 * Zero the buffer so the user always
673 		 * gets back something deterministic.
674 		 */
675 		bzero(data, (size_t)size);
676 	} else if ((com & IOC_VOID) != 0) {
677 		*(caddr_t *)data = uspc_data;
678 	}
679 
680 	switch (com) {
681 	case FIONBIO:
682 		if ((tmp = *(int *)data))
683 			fp->f_flag |= FNONBLOCK;
684 		else
685 			fp->f_flag &= ~FNONBLOCK;
686 		error = 0;
687 		break;
688 
689 	case FIOASYNC:
690 		if ((tmp = *(int *)data))
691 			fp->f_flag |= FASYNC;
692 		else
693 			fp->f_flag &= ~FASYNC;
694 		error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred, msg);
695 		break;
696 
697 	default:
698 		/*
699 		 *  If there is a override function,
700 		 *  call it instead of directly routing the call
701 		 */
702 		if (map != NULL && iomc->wrapfunc != NULL)
703 			error = iomc->wrapfunc(fp, com, ocom, data, cred);
704 		else
705 			error = fo_ioctl(fp, com, data, cred, msg);
706 		/*
707 		 * Copy any data to user, size was
708 		 * already set and checked above.
709 		 */
710 		if (error == 0 && (com & IOC_OUT) != 0 && size != 0)
711 			error = copyout(data, uspc_data, (size_t)size);
712 		break;
713 	}
714 	if (memp != NULL)
715 		kfree(memp, M_IOCTLOPS);
716 done:
717 	fdrop(fp);
718 	return(error);
719 }
720 
721 int
722 mapped_ioctl_register_handler(struct ioctl_map_handler *he)
723 {
724 	struct ioctl_map_entry *ne;
725 
726 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL &&
727 		 he->subsys != NULL && *he->subsys != '\0');
728 
729 	ne = kmalloc(sizeof(struct ioctl_map_entry), M_IOCTLMAP, M_WAITOK);
730 
731 	ne->subsys = he->subsys;
732 	ne->cmd_ranges = he->cmd_ranges;
733 
734 	LIST_INSERT_HEAD(&he->map->mapping, ne, entries);
735 
736 	return(0);
737 }
738 
739 int
740 mapped_ioctl_unregister_handler(struct ioctl_map_handler *he)
741 {
742 	struct ioctl_map_entry *ne;
743 
744 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL);
745 
746 	LIST_FOREACH(ne, &he->map->mapping, entries) {
747 		if (ne->cmd_ranges != he->cmd_ranges)
748 			continue;
749 		LIST_REMOVE(ne, entries);
750 		kfree(ne, M_IOCTLMAP);
751 		return(0);
752 	}
753 	return(EINVAL);
754 }
755 
756 static int	nselcoll;	/* Select collisions since boot */
757 int	selwait;
758 SYSCTL_INT(_kern, OID_AUTO, nselcoll, CTLFLAG_RD, &nselcoll, 0, "");
759 
760 /*
761  * Select system call.
762  *
763  * MPALMOSTSAFE
764  */
765 int
766 sys_select(struct select_args *uap)
767 {
768 	struct timeval ktv;
769 	struct timeval *ktvp;
770 	int error;
771 
772 	/*
773 	 * Get timeout if any.
774 	 */
775 	if (uap->tv != NULL) {
776 		error = copyin(uap->tv, &ktv, sizeof (ktv));
777 		if (error)
778 			return (error);
779 		error = itimerfix(&ktv);
780 		if (error)
781 			return (error);
782 		ktvp = &ktv;
783 	} else {
784 		ktvp = NULL;
785 	}
786 
787 	/*
788 	 * Do real work.
789 	 */
790 	get_mplock();
791 	error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktvp,
792 			&uap->sysmsg_result);
793 	rel_mplock();
794 
795 	return (error);
796 }
797 
798 
799 /*
800  * Pselect system call.
801  *
802  * MPALMOSTSAFE
803  */
804 int
805 sys_pselect(struct pselect_args *uap)
806 {
807 	struct thread *td = curthread;
808 	struct lwp *lp = td->td_lwp;
809 	struct timespec kts;
810 	struct timeval ktv;
811 	struct timeval *ktvp;
812 	sigset_t sigmask;
813 	int error;
814 
815 	/*
816 	 * Get timeout if any and convert it.
817 	 * Round up during conversion to avoid timeout going off early.
818 	 */
819 	if (uap->ts != NULL) {
820 		error = copyin(uap->ts, &kts, sizeof (kts));
821 		if (error)
822 			return (error);
823 		ktv.tv_sec = kts.tv_sec;
824 		ktv.tv_usec = (kts.tv_nsec + 999) / 1000;
825 		error = itimerfix(&ktv);
826 		if (error)
827 			return (error);
828 		ktvp = &ktv;
829 	} else {
830 		ktvp = NULL;
831 	}
832 
833 	/*
834 	 * Install temporary signal mask if any provided.
835 	 */
836 	if (uap->sigmask != NULL) {
837 		error = copyin(uap->sigmask, &sigmask, sizeof(sigmask));
838 		if (error)
839 			return (error);
840 		get_mplock();
841 		lp->lwp_oldsigmask = lp->lwp_sigmask;
842 		SIG_CANTMASK(sigmask);
843 		lp->lwp_sigmask = sigmask;
844 	} else {
845 		get_mplock();
846 	}
847 
848 	/*
849 	 * Do real job.
850 	 */
851 	error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktvp,
852 			&uap->sysmsg_result);
853 
854 	if (uap->sigmask != NULL) {
855 		/* doselect() responsible for turning ERESTART into EINTR */
856 		KKASSERT(error != ERESTART);
857 		if (error == EINTR) {
858 			/*
859 			 * We can't restore the previous signal mask now
860 			 * because it could block the signal that interrupted
861 			 * us.  So make a note to restore it after executing
862 			 * the handler.
863 			 */
864 			lp->lwp_flag |= LWP_OLDMASK;
865 		} else {
866 			/*
867 			 * No handler to run. Restore previous mask immediately.
868 			 */
869 			lp->lwp_sigmask = lp->lwp_oldsigmask;
870 		}
871 	}
872 	rel_mplock();
873 
874 	return (error);
875 }
876 
877 /*
878  * Common code for sys_select() and sys_pselect().
879  *
880  * in, out and ex are userland pointers.  tv must point to validated
881  * kernel-side timeout value or NULL for infinite timeout.  res must
882  * point to syscall return value.
883  */
884 static int
885 doselect(int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tv,
886 		int *res)
887 {
888 	struct lwp *lp = curthread->td_lwp;
889 	struct proc *p = curproc;
890 
891 	/*
892 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
893 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
894 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
895 	 * of 256.
896 	 */
897 	fd_mask s_selbits[howmany(2048, NFDBITS)];
898 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
899 	struct timeval atv, rtv, ttv;
900 	int ncoll, error, timo;
901 	u_int nbufbytes, ncpbytes, nfdbits;
902 
903 	if (nd < 0)
904 		return (EINVAL);
905 	if (nd > p->p_fd->fd_nfiles)
906 		nd = p->p_fd->fd_nfiles;   /* forgiving; slightly wrong */
907 
908 	/*
909 	 * Allocate just enough bits for the non-null fd_sets.  Use the
910 	 * preallocated auto buffer if possible.
911 	 */
912 	nfdbits = roundup(nd, NFDBITS);
913 	ncpbytes = nfdbits / NBBY;
914 	nbufbytes = 0;
915 	if (in != NULL)
916 		nbufbytes += 2 * ncpbytes;
917 	if (ou != NULL)
918 		nbufbytes += 2 * ncpbytes;
919 	if (ex != NULL)
920 		nbufbytes += 2 * ncpbytes;
921 	if (nbufbytes <= sizeof s_selbits)
922 		selbits = &s_selbits[0];
923 	else
924 		selbits = kmalloc(nbufbytes, M_SELECT, M_WAITOK);
925 
926 	/*
927 	 * Assign pointers into the bit buffers and fetch the input bits.
928 	 * Put the output buffers together so that they can be bzeroed
929 	 * together.
930 	 */
931 	sbp = selbits;
932 #define	getbits(name, x) \
933 	do {								\
934 		if (name == NULL)					\
935 			ibits[x] = NULL;				\
936 		else {							\
937 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
938 			obits[x] = sbp;					\
939 			sbp += ncpbytes / sizeof *sbp;			\
940 			error = copyin(name, ibits[x], ncpbytes);	\
941 			if (error != 0)					\
942 				goto done;				\
943 		}							\
944 	} while (0)
945 	getbits(in, 0);
946 	getbits(ou, 1);
947 	getbits(ex, 2);
948 #undef	getbits
949 	if (nbufbytes != 0)
950 		bzero(selbits, nbufbytes / 2);
951 
952 	if (tv != NULL) {
953 		atv = *tv;
954 		getmicrouptime(&rtv);
955 		timevaladd(&atv, &rtv);
956 	} else {
957 		atv.tv_sec = 0;
958 		atv.tv_usec = 0;
959 	}
960 	timo = 0;
961 retry:
962 	ncoll = nselcoll;
963 	lp->lwp_flag |= LWP_SELECT;
964 	error = selscan(p, ibits, obits, nd, res);
965 	if (error || *res)
966 		goto done;
967 	if (atv.tv_sec || atv.tv_usec) {
968 		getmicrouptime(&rtv);
969 		if (timevalcmp(&rtv, &atv, >=))
970 			goto done;
971 		ttv = atv;
972 		timevalsub(&ttv, &rtv);
973 		timo = ttv.tv_sec > 24 * 60 * 60 ?
974 		    24 * 60 * 60 * hz : tvtohz_high(&ttv);
975 	}
976 	crit_enter();
977 	tsleep_interlock(&selwait, PCATCH);
978 	if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
979 		crit_exit();
980 		goto retry;
981 	}
982 	lp->lwp_flag &= ~LWP_SELECT;
983 	error = tsleep(&selwait, PCATCH | PINTERLOCKED, "select", timo);
984 	crit_exit();
985 
986 	if (error == 0)
987 		goto retry;
988 done:
989 	lp->lwp_flag &= ~LWP_SELECT;
990 	/* select is not restarted after signals... */
991 	if (error == ERESTART)
992 		error = EINTR;
993 	if (error == EWOULDBLOCK)
994 		error = 0;
995 #define	putbits(name, x) \
996 	if (name && (error2 = copyout(obits[x], name, ncpbytes))) \
997 		error = error2;
998 	if (error == 0) {
999 		int error2;
1000 
1001 		putbits(in, 0);
1002 		putbits(ou, 1);
1003 		putbits(ex, 2);
1004 #undef putbits
1005 	}
1006 	if (selbits != &s_selbits[0])
1007 		kfree(selbits, M_SELECT);
1008 	return (error);
1009 }
1010 
1011 static int
1012 selscan(struct proc *p, fd_mask **ibits, fd_mask **obits, int nfd, int *res)
1013 {
1014 	int msk, i, fd;
1015 	fd_mask bits;
1016 	struct file *fp;
1017 	int n = 0;
1018 	/* Note: backend also returns POLLHUP/POLLERR if appropriate. */
1019 	static int flag[3] = { POLLRDNORM, POLLWRNORM, POLLRDBAND };
1020 
1021 	for (msk = 0; msk < 3; msk++) {
1022 		if (ibits[msk] == NULL)
1023 			continue;
1024 		for (i = 0; i < nfd; i += NFDBITS) {
1025 			bits = ibits[msk][i/NFDBITS];
1026 			/* ffs(int mask) not portable, fd_mask is long */
1027 			for (fd = i; bits && fd < nfd; fd++, bits >>= 1) {
1028 				if (!(bits & 1))
1029 					continue;
1030 				fp = holdfp(p->p_fd, fd, -1);
1031 				if (fp == NULL)
1032 					return (EBADF);
1033 				if (fo_poll(fp, flag[msk], fp->f_cred)) {
1034 					obits[msk][(fd)/NFDBITS] |=
1035 					    ((fd_mask)1 << ((fd) % NFDBITS));
1036 					n++;
1037 				}
1038 				fdrop(fp);
1039 			}
1040 		}
1041 	}
1042 	*res = n;
1043 	return (0);
1044 }
1045 
1046 /*
1047  * Poll system call.
1048  *
1049  * MPALMOSTSAFE
1050  */
1051 int
1052 sys_poll(struct poll_args *uap)
1053 {
1054 	struct pollfd *bits;
1055 	struct pollfd smallbits[32];
1056 	struct timeval atv, rtv, ttv;
1057 	int ncoll, error = 0, timo;
1058 	u_int nfds;
1059 	size_t ni;
1060 	struct lwp *lp = curthread->td_lwp;
1061 	struct proc *p = curproc;
1062 
1063 	nfds = uap->nfds;
1064 	/*
1065 	 * This is kinda bogus.  We have fd limits, but that is not
1066 	 * really related to the size of the pollfd array.  Make sure
1067 	 * we let the process use at least FD_SETSIZE entries and at
1068 	 * least enough for the current limits.  We want to be reasonably
1069 	 * safe, but not overly restrictive.
1070 	 */
1071 	if (nfds > p->p_rlimit[RLIMIT_NOFILE].rlim_cur && nfds > FD_SETSIZE)
1072 		return (EINVAL);
1073 	ni = nfds * sizeof(struct pollfd);
1074 	if (ni > sizeof(smallbits))
1075 		bits = kmalloc(ni, M_TEMP, M_WAITOK);
1076 	else
1077 		bits = smallbits;
1078 	error = copyin(uap->fds, bits, ni);
1079 	if (error)
1080 		goto done2;
1081 	if (uap->timeout != INFTIM) {
1082 		atv.tv_sec = uap->timeout / 1000;
1083 		atv.tv_usec = (uap->timeout % 1000) * 1000;
1084 		if (itimerfix(&atv)) {
1085 			error = EINVAL;
1086 			goto done2;
1087 		}
1088 		getmicrouptime(&rtv);
1089 		timevaladd(&atv, &rtv);
1090 	} else {
1091 		atv.tv_sec = 0;
1092 		atv.tv_usec = 0;
1093 	}
1094 	timo = 0;
1095 	get_mplock();
1096 retry:
1097 	ncoll = nselcoll;
1098 	lp->lwp_flag |= LWP_SELECT;
1099 	error = pollscan(p, bits, nfds, &uap->sysmsg_result);
1100 	if (error || uap->sysmsg_result)
1101 		goto done1;
1102 	if (atv.tv_sec || atv.tv_usec) {
1103 		getmicrouptime(&rtv);
1104 		if (timevalcmp(&rtv, &atv, >=))
1105 			goto done1;
1106 		ttv = atv;
1107 		timevalsub(&ttv, &rtv);
1108 		timo = ttv.tv_sec > 24 * 60 * 60 ?
1109 		    24 * 60 * 60 * hz : tvtohz_high(&ttv);
1110 	}
1111 	crit_enter();
1112 	tsleep_interlock(&selwait, PCATCH);
1113 	if ((lp->lwp_flag & LWP_SELECT) == 0 || nselcoll != ncoll) {
1114 		crit_exit();
1115 		goto retry;
1116 	}
1117 	lp->lwp_flag &= ~LWP_SELECT;
1118 	error = tsleep(&selwait, PCATCH | PINTERLOCKED, "poll", timo);
1119 	crit_exit();
1120 
1121 	if (error == 0)
1122 		goto retry;
1123 done1:
1124 	rel_mplock();
1125 done2:
1126 	lp->lwp_flag &= ~LWP_SELECT;
1127 	/* poll is not restarted after signals... */
1128 	if (error == ERESTART)
1129 		error = EINTR;
1130 	if (error == EWOULDBLOCK)
1131 		error = 0;
1132 	if (error == 0) {
1133 		error = copyout(bits, uap->fds, ni);
1134 		if (error)
1135 			goto out;
1136 	}
1137 out:
1138 	if (ni > sizeof(smallbits))
1139 		kfree(bits, M_TEMP);
1140 	return (error);
1141 }
1142 
1143 static int
1144 pollscan(struct proc *p, struct pollfd *fds, u_int nfd, int *res)
1145 {
1146 	int i;
1147 	struct file *fp;
1148 	int n = 0;
1149 
1150 	for (i = 0; i < nfd; i++, fds++) {
1151 		if (fds->fd >= p->p_fd->fd_nfiles) {
1152 			fds->revents = POLLNVAL;
1153 			n++;
1154 		} else if (fds->fd < 0) {
1155 			fds->revents = 0;
1156 		} else {
1157 			fp = holdfp(p->p_fd, fds->fd, -1);
1158 			if (fp == NULL) {
1159 				fds->revents = POLLNVAL;
1160 				n++;
1161 			} else {
1162 				/*
1163 				 * Note: backend also returns POLLHUP and
1164 				 * POLLERR if appropriate.
1165 				 */
1166 				fds->revents = fo_poll(fp, fds->events,
1167 							fp->f_cred);
1168 				if (fds->revents != 0)
1169 					n++;
1170 				fdrop(fp);
1171 			}
1172 		}
1173 	}
1174 	*res = n;
1175 	return (0);
1176 }
1177 
1178 /*
1179  * OpenBSD poll system call.
1180  * XXX this isn't quite a true representation..  OpenBSD uses select ops.
1181  *
1182  * MPSAFE
1183  */
1184 int
1185 sys_openbsd_poll(struct openbsd_poll_args *uap)
1186 {
1187 	return (sys_poll((struct poll_args *)uap));
1188 }
1189 
1190 /*ARGSUSED*/
1191 int
1192 seltrue(cdev_t dev, int events)
1193 {
1194 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1195 }
1196 
1197 /*
1198  * Record a select request.  A global wait must be used since a process/thread
1199  * might go away after recording its request.
1200  */
1201 void
1202 selrecord(struct thread *selector, struct selinfo *sip)
1203 {
1204 	struct proc *p;
1205 	struct lwp *lp = NULL;
1206 
1207 	if (selector->td_lwp == NULL)
1208 		panic("selrecord: thread needs a process");
1209 
1210 	if (sip->si_pid == selector->td_proc->p_pid &&
1211 	    sip->si_tid == selector->td_lwp->lwp_tid)
1212 		return;
1213 	if (sip->si_pid && (p = pfind(sip->si_pid)))
1214 		lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, sip->si_tid);
1215 	if (lp != NULL && lp->lwp_wchan == (caddr_t)&selwait) {
1216 		sip->si_flags |= SI_COLL;
1217 	} else {
1218 		sip->si_pid = selector->td_proc->p_pid;
1219 		sip->si_tid = selector->td_lwp->lwp_tid;
1220 	}
1221 }
1222 
1223 /*
1224  * Do a wakeup when a selectable event occurs.
1225  */
1226 void
1227 selwakeup(struct selinfo *sip)
1228 {
1229 	struct proc *p;
1230 	struct lwp *lp = NULL;
1231 
1232 	if (sip->si_pid == 0)
1233 		return;
1234 	if (sip->si_flags & SI_COLL) {
1235 		nselcoll++;
1236 		sip->si_flags &= ~SI_COLL;
1237 		wakeup((caddr_t)&selwait);	/* YYY fixable */
1238 	}
1239 	p = pfind(sip->si_pid);
1240 	sip->si_pid = 0;
1241 	if (p == NULL)
1242 		return;
1243 	lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, sip->si_tid);
1244 	if (lp == NULL)
1245 		return;
1246 
1247 	/*
1248 	 * This is a temporary hack until the code can be rewritten.
1249 	 * Check LWP_SELECT before assuming we can setrunnable().
1250 	 * Otherwise we might catch the lwp before it actually goes to
1251 	 * sleep.
1252 	 */
1253 	crit_enter();
1254 	if (lp->lwp_flag & LWP_SELECT) {
1255 		lp->lwp_flag &= ~LWP_SELECT;
1256 	} else if (lp->lwp_wchan == (caddr_t)&selwait) {
1257 		/*
1258 		 * Flag the process to break the tsleep when
1259 		 * setrunnable is called, but only call setrunnable
1260 		 * here if the process is not in a stopped state.
1261 		 */
1262 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1263 		if (p->p_stat != SSTOP)
1264 			setrunnable(lp);
1265 	}
1266 	crit_exit();
1267 }
1268 
1269