xref: /dragonfly/sys/kern/sys_pipe.c (revision 222a27c4)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.26 2005/03/01 23:35:14 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_zone.h>
86 
87 #include <sys/file2.h>
88 
89 #include <machine/cpufunc.h>
90 
91 /*
92  * interfaces to the outside world
93  */
94 static int pipe_read (struct file *fp, struct uio *uio,
95 		struct ucred *cred, int flags, struct thread *td);
96 static int pipe_write (struct file *fp, struct uio *uio,
97 		struct ucred *cred, int flags, struct thread *td);
98 static int pipe_close (struct file *fp, struct thread *td);
99 static int pipe_poll (struct file *fp, int events, struct ucred *cred,
100 		struct thread *td);
101 static int pipe_kqfilter (struct file *fp, struct knote *kn);
102 static int pipe_stat (struct file *fp, struct stat *sb, struct thread *td);
103 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct thread *td);
104 
105 static struct fileops pipeops = {
106 	NULL,	/* port */
107 	NULL,	/* clone */
108 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
109 	pipe_stat, pipe_close
110 };
111 
112 static void	filt_pipedetach(struct knote *kn);
113 static int	filt_piperead(struct knote *kn, long hint);
114 static int	filt_pipewrite(struct knote *kn, long hint);
115 
116 static struct filterops pipe_rfiltops =
117 	{ 1, NULL, filt_pipedetach, filt_piperead };
118 static struct filterops pipe_wfiltops =
119 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
120 
121 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
122 
123 /*
124  * Default pipe buffer size(s), this can be kind-of large now because pipe
125  * space is pageable.  The pipe code will try to maintain locality of
126  * reference for performance reasons, so small amounts of outstanding I/O
127  * will not wipe the cache.
128  */
129 #define MINPIPESIZE (PIPE_SIZE/3)
130 #define MAXPIPESIZE (2*PIPE_SIZE/3)
131 
132 /*
133  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
134  * is there so that on large systems, we don't exhaust it.
135  */
136 #define MAXPIPEKVA (8*1024*1024)
137 
138 /*
139  * Limit for direct transfers, we cannot, of course limit
140  * the amount of kva for pipes in general though.
141  */
142 #define LIMITPIPEKVA (16*1024*1024)
143 
144 /*
145  * Limit the number of "big" pipes
146  */
147 #define LIMITBIGPIPES	32
148 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
149 
150 static int pipe_maxbig = LIMITBIGPIPES;
151 static int pipe_maxcache = PIPEQ_MAX_CACHE;
152 static int pipe_nbig;
153 static int pipe_bcache_alloc;
154 static int pipe_bkmem_alloc;
155 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
156 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
157 					/* 3:sfbuf_dmap w/ forced invlpg */
158 
159 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
160 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
161         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
162 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
163         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
164 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
165         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
166 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
167         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
168 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
169         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
170 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
171 #if !defined(NO_PIPE_SYSCTL_STATS)
172 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
173         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
174 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
175         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
176 #endif
177 
178 static void pipeclose (struct pipe *cpipe);
179 static void pipe_free_kmem (struct pipe *cpipe);
180 static int pipe_create (struct pipe **cpipep);
181 static __inline int pipelock (struct pipe *cpipe, int catch);
182 static __inline void pipeunlock (struct pipe *cpipe);
183 static __inline void pipeselwakeup (struct pipe *cpipe);
184 #ifndef PIPE_NODIRECT
185 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
186 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
187 static void pipe_clone_write_buffer (struct pipe *wpipe);
188 #endif
189 static int pipespace (struct pipe *cpipe, int size);
190 
191 /*
192  * The pipe system call for the DTYPE_PIPE type of pipes
193  *
194  * pipe_ARgs(int dummy)
195  */
196 
197 /* ARGSUSED */
198 int
199 pipe(struct pipe_args *uap)
200 {
201 	struct thread *td = curthread;
202 	struct proc *p = td->td_proc;
203 	struct filedesc *fdp;
204 	struct file *rf, *wf;
205 	struct pipe *rpipe, *wpipe;
206 	int fd1, fd2, error;
207 
208 	KKASSERT(p);
209 	fdp = p->p_fd;
210 
211 	rpipe = wpipe = NULL;
212 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
213 		pipeclose(rpipe);
214 		pipeclose(wpipe);
215 		return (ENFILE);
216 	}
217 
218 	rpipe->pipe_state |= PIPE_DIRECTOK;
219 	wpipe->pipe_state |= PIPE_DIRECTOK;
220 
221 	/*
222 	 * Select the direct-map features to use for this pipe.  Since the
223 	 * sysctl's can change on the fly we record the settings when the
224 	 * pipe is created.
225 	 *
226 	 * Generally speaking the system will default to what we consider
227 	 * to be the best-balanced and most stable option.  Right now this
228 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
229 	 * moment.
230 	 */
231 	wpipe->pipe_feature = PIPE_COPY;
232 	if (pipe_dwrite_enable) {
233 		switch(pipe_dwrite_sfbuf) {
234 		case 0:
235 			wpipe->pipe_feature = PIPE_KMEM;
236 			break;
237 		case 1:
238 			wpipe->pipe_feature = PIPE_SFBUF1;
239 			break;
240 		case 2:
241 		case 3:
242 			wpipe->pipe_feature = PIPE_SFBUF2;
243 			break;
244 		}
245 	}
246 	rpipe->pipe_feature = wpipe->pipe_feature;
247 
248 	error = falloc(p, &rf, &fd1);
249 	if (error) {
250 		pipeclose(rpipe);
251 		pipeclose(wpipe);
252 		return (error);
253 	}
254 	uap->sysmsg_fds[0] = fd1;
255 
256 	/*
257 	 * Warning: once we've gotten past allocation of the fd for the
258 	 * read-side, we can only drop the read side via fdrop() in order
259 	 * to avoid races against processes which manage to dup() the read
260 	 * side while we are blocked trying to allocate the write side.
261 	 */
262 	rf->f_flag = FREAD | FWRITE;
263 	rf->f_type = DTYPE_PIPE;
264 	rf->f_data = (caddr_t)rpipe;
265 	rf->f_ops = &pipeops;
266 	error = falloc(p, &wf, &fd2);
267 	if (error) {
268 		if (fdp->fd_ofiles[fd1] == rf) {
269 			fdp->fd_ofiles[fd1] = NULL;
270 			fdrop(rf, td);
271 		}
272 		fdrop(rf, td);
273 		/* rpipe has been closed by fdrop(). */
274 		pipeclose(wpipe);
275 		return (error);
276 	}
277 	wf->f_flag = FREAD | FWRITE;
278 	wf->f_type = DTYPE_PIPE;
279 	wf->f_data = (caddr_t)wpipe;
280 	wf->f_ops = &pipeops;
281 	uap->sysmsg_fds[1] = fd2;
282 
283 	rpipe->pipe_peer = wpipe;
284 	wpipe->pipe_peer = rpipe;
285 	fdrop(rf, td);
286 	fdrop(wf, td);
287 
288 	return (0);
289 }
290 
291 /*
292  * Allocate kva for pipe circular buffer, the space is pageable
293  * This routine will 'realloc' the size of a pipe safely, if it fails
294  * it will retain the old buffer.
295  * If it fails it will return ENOMEM.
296  */
297 static int
298 pipespace(struct pipe *cpipe, int size)
299 {
300 	struct vm_object *object;
301 	caddr_t buffer;
302 	int npages, error;
303 
304 	npages = round_page(size) / PAGE_SIZE;
305 	object = cpipe->pipe_buffer.object;
306 
307 	/*
308 	 * [re]create the object if necessary and reserve space for it
309 	 * in the kernel_map.  The object and memory are pageable.  On
310 	 * success, free the old resources before assigning the new
311 	 * ones.
312 	 */
313 	if (object == NULL || object->size != npages) {
314 		object = vm_object_allocate(OBJT_DEFAULT, npages);
315 		buffer = (caddr_t) vm_map_min(kernel_map);
316 
317 		error = vm_map_find(kernel_map, object, 0,
318 			(vm_offset_t *) &buffer, size, 1,
319 			VM_PROT_ALL, VM_PROT_ALL, 0);
320 
321 		if (error != KERN_SUCCESS) {
322 			vm_object_deallocate(object);
323 			return (ENOMEM);
324 		}
325 		pipe_free_kmem(cpipe);
326 		cpipe->pipe_buffer.object = object;
327 		cpipe->pipe_buffer.buffer = buffer;
328 		cpipe->pipe_buffer.size = size;
329 		++pipe_bkmem_alloc;
330 	} else {
331 		++pipe_bcache_alloc;
332 	}
333 	cpipe->pipe_buffer.in = 0;
334 	cpipe->pipe_buffer.out = 0;
335 	cpipe->pipe_buffer.cnt = 0;
336 	return (0);
337 }
338 
339 /*
340  * Initialize and allocate VM and memory for pipe, pulling the pipe from
341  * our per-cpu cache if possible.  For now make sure it is sized for the
342  * smaller PIPE_SIZE default.
343  */
344 static int
345 pipe_create(cpipep)
346 	struct pipe **cpipep;
347 {
348 	globaldata_t gd = mycpu;
349 	struct pipe *cpipe;
350 	int error;
351 
352 	if ((cpipe = gd->gd_pipeq) != NULL) {
353 		gd->gd_pipeq = cpipe->pipe_peer;
354 		--gd->gd_pipeqcount;
355 		cpipe->pipe_peer = NULL;
356 	} else {
357 		cpipe = malloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
358 	}
359 	*cpipep = cpipe;
360 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
361 		return (error);
362 	vfs_timestamp(&cpipe->pipe_ctime);
363 	cpipe->pipe_atime = cpipe->pipe_ctime;
364 	cpipe->pipe_mtime = cpipe->pipe_ctime;
365 	return (0);
366 }
367 
368 
369 /*
370  * lock a pipe for I/O, blocking other access
371  */
372 static __inline int
373 pipelock(cpipe, catch)
374 	struct pipe *cpipe;
375 	int catch;
376 {
377 	int error;
378 
379 	while (cpipe->pipe_state & PIPE_LOCK) {
380 		cpipe->pipe_state |= PIPE_LWANT;
381 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
382 		if (error != 0)
383 			return (error);
384 	}
385 	cpipe->pipe_state |= PIPE_LOCK;
386 	return (0);
387 }
388 
389 /*
390  * unlock a pipe I/O lock
391  */
392 static __inline void
393 pipeunlock(cpipe)
394 	struct pipe *cpipe;
395 {
396 
397 	cpipe->pipe_state &= ~PIPE_LOCK;
398 	if (cpipe->pipe_state & PIPE_LWANT) {
399 		cpipe->pipe_state &= ~PIPE_LWANT;
400 		wakeup(cpipe);
401 	}
402 }
403 
404 static __inline void
405 pipeselwakeup(cpipe)
406 	struct pipe *cpipe;
407 {
408 
409 	if (cpipe->pipe_state & PIPE_SEL) {
410 		cpipe->pipe_state &= ~PIPE_SEL;
411 		selwakeup(&cpipe->pipe_sel);
412 	}
413 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
414 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
415 	KNOTE(&cpipe->pipe_sel.si_note, 0);
416 }
417 
418 /* ARGSUSED */
419 static int
420 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred,
421 	int flags, struct thread *td)
422 {
423 	struct pipe *rpipe = (struct pipe *) fp->f_data;
424 	int error;
425 	int nread = 0;
426 	u_int size;
427 
428 	++rpipe->pipe_busy;
429 	error = pipelock(rpipe, 1);
430 	if (error)
431 		goto unlocked_error;
432 
433 	while (uio->uio_resid) {
434 		caddr_t va;
435 
436 		if (rpipe->pipe_buffer.cnt > 0) {
437 			/*
438 			 * normal pipe buffer receive
439 			 */
440 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
441 			if (size > rpipe->pipe_buffer.cnt)
442 				size = rpipe->pipe_buffer.cnt;
443 			if (size > (u_int) uio->uio_resid)
444 				size = (u_int) uio->uio_resid;
445 
446 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
447 					size, uio);
448 			if (error)
449 				break;
450 
451 			rpipe->pipe_buffer.out += size;
452 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
453 				rpipe->pipe_buffer.out = 0;
454 
455 			rpipe->pipe_buffer.cnt -= size;
456 
457 			/*
458 			 * If there is no more to read in the pipe, reset
459 			 * its pointers to the beginning.  This improves
460 			 * cache hit stats.
461 			 */
462 			if (rpipe->pipe_buffer.cnt == 0) {
463 				rpipe->pipe_buffer.in = 0;
464 				rpipe->pipe_buffer.out = 0;
465 			}
466 			nread += size;
467 #ifndef PIPE_NODIRECT
468 		} else if (rpipe->pipe_kva &&
469 			   rpipe->pipe_feature == PIPE_KMEM &&
470 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
471 			       == PIPE_DIRECTW
472 		) {
473 			/*
474 			 * Direct copy using source-side kva mapping
475 			 */
476 			size = rpipe->pipe_map.xio_bytes -
477 				rpipe->pipe_buffer.out;
478 			if (size > (u_int)uio->uio_resid)
479 				size = (u_int)uio->uio_resid;
480 			va = (caddr_t)rpipe->pipe_kva +
481 				xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
482 			error = uiomove(va, size, uio);
483 			if (error)
484 				break;
485 			nread += size;
486 			rpipe->pipe_buffer.out += size;
487 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
488 				rpipe->pipe_state |= PIPE_DIRECTIP;
489 				rpipe->pipe_state &= ~PIPE_DIRECTW;
490 				wakeup(rpipe);
491 			}
492 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
493 			   rpipe->pipe_kva &&
494 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
495 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
496 			       == PIPE_DIRECTW
497 		) {
498 			/*
499 			 * Direct copy, bypassing a kernel buffer.  We cannot
500 			 * mess with the direct-write buffer until
501 			 * PIPE_DIRECTIP is cleared.  In order to prevent
502 			 * the pipe_write code from racing itself in
503 			 * direct_write, we set DIRECTIP when we clear
504 			 * DIRECTW after we have exhausted the buffer.
505 			 */
506 			if (pipe_dwrite_sfbuf == 3)
507 				rpipe->pipe_kvamask = 0;
508 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
509 				    rpipe->pipe_map.xio_npages,
510 				    &rpipe->pipe_kvamask);
511 			size = rpipe->pipe_map.xio_bytes -
512 				rpipe->pipe_buffer.out;
513 			if (size > (u_int)uio->uio_resid)
514 				size = (u_int)uio->uio_resid;
515 			va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
516 			error = uiomove(va, size, uio);
517 			if (error)
518 				break;
519 			nread += size;
520 			rpipe->pipe_buffer.out += size;
521 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
522 				rpipe->pipe_state |= PIPE_DIRECTIP;
523 				rpipe->pipe_state &= ~PIPE_DIRECTW;
524 				wakeup(rpipe);
525 			}
526 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
527 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
528 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
529 				== PIPE_DIRECTW
530 		) {
531 			/*
532 			 * Direct copy, bypassing a kernel buffer.  We cannot
533 			 * mess with the direct-write buffer until
534 			 * PIPE_DIRECTIP is cleared.  In order to prevent
535 			 * the pipe_write code from racing itself in
536 			 * direct_write, we set DIRECTIP when we clear
537 			 * DIRECTW after we have exhausted the buffer.
538 			 */
539 			error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
540 			if (error)
541 				break;
542 			nread += size;
543 			rpipe->pipe_buffer.out += size;
544 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
545 				rpipe->pipe_state |= PIPE_DIRECTIP;
546 				rpipe->pipe_state &= ~PIPE_DIRECTW;
547 				wakeup(rpipe);
548 			}
549 #endif
550 		} else {
551 			/*
552 			 * detect EOF condition
553 			 * read returns 0 on EOF, no need to set error
554 			 */
555 			if (rpipe->pipe_state & PIPE_EOF)
556 				break;
557 
558 			/*
559 			 * If the "write-side" has been blocked, wake it up now.
560 			 */
561 			if (rpipe->pipe_state & PIPE_WANTW) {
562 				rpipe->pipe_state &= ~PIPE_WANTW;
563 				wakeup(rpipe);
564 			}
565 
566 			/*
567 			 * Break if some data was read.
568 			 */
569 			if (nread > 0)
570 				break;
571 
572 			/*
573 			 * Unlock the pipe buffer for our remaining
574 			 * processing.  We will either break out with an
575 			 * error or we will sleep and relock to loop.
576 			 */
577 			pipeunlock(rpipe);
578 
579 			/*
580 			 * Handle non-blocking mode operation or
581 			 * wait for more data.
582 			 */
583 			if (fp->f_flag & FNONBLOCK) {
584 				error = EAGAIN;
585 			} else {
586 				rpipe->pipe_state |= PIPE_WANTR;
587 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
588 				    "piperd", 0)) == 0) {
589 					error = pipelock(rpipe, 1);
590 				}
591 			}
592 			if (error)
593 				goto unlocked_error;
594 		}
595 	}
596 	pipeunlock(rpipe);
597 
598 	if (error == 0)
599 		vfs_timestamp(&rpipe->pipe_atime);
600 unlocked_error:
601 	--rpipe->pipe_busy;
602 
603 	/*
604 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
605 	 */
606 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
607 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
608 		wakeup(rpipe);
609 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
610 		/*
611 		 * Handle write blocking hysteresis.
612 		 */
613 		if (rpipe->pipe_state & PIPE_WANTW) {
614 			rpipe->pipe_state &= ~PIPE_WANTW;
615 			wakeup(rpipe);
616 		}
617 	}
618 
619 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
620 		pipeselwakeup(rpipe);
621 	return (error);
622 }
623 
624 #ifndef PIPE_NODIRECT
625 /*
626  * Map the sending processes' buffer into kernel space and wire it.
627  * This is similar to a physical write operation.
628  */
629 static int
630 pipe_build_write_buffer(wpipe, uio)
631 	struct pipe *wpipe;
632 	struct uio *uio;
633 {
634 	int error;
635 	u_int size;
636 
637 	size = (u_int) uio->uio_iov->iov_len;
638 	if (size > wpipe->pipe_buffer.size)
639 		size = wpipe->pipe_buffer.size;
640 
641 	error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
642 				size, XIOF_READ);
643 	wpipe->pipe_buffer.out = 0;
644 	if (error)
645 		return(error);
646 
647 	/*
648 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
649 	 * map the pages on the target while KMEM maps the pages now.
650 	 */
651 	switch(wpipe->pipe_feature) {
652 	case PIPE_KMEM:
653 	case PIPE_SFBUF2:
654 		if (wpipe->pipe_kva == NULL) {
655 			wpipe->pipe_kva =
656 			    kmem_alloc_nofault(kernel_map, XIO_INTERNAL_SIZE);
657 			wpipe->pipe_kvamask = 0;
658 		}
659 		if (wpipe->pipe_feature == PIPE_KMEM) {
660 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
661 				    wpipe->pipe_map.xio_npages);
662 		}
663 		break;
664 	default:
665 		break;
666 	}
667 
668 	/*
669 	 * And update the uio data.  The XIO might have loaded fewer bytes
670 	 * then requested so reload 'size'.
671 	 */
672 	size = wpipe->pipe_map.xio_bytes;
673 	uio->uio_iov->iov_len -= size;
674 	uio->uio_iov->iov_base += size;
675 	if (uio->uio_iov->iov_len == 0)
676 		uio->uio_iov++;
677 	uio->uio_resid -= size;
678 	uio->uio_offset += size;
679 	return (0);
680 }
681 
682 /*
683  * In the case of a signal, the writing process might go away.  This
684  * code copies the data into the circular buffer so that the source
685  * pages can be freed without loss of data.
686  *
687  * Note that in direct mode pipe_buffer.out is used to track the
688  * XIO offset.  We are converting the direct mode into buffered mode
689  * which changes the meaning of pipe_buffer.out.
690  */
691 static void
692 pipe_clone_write_buffer(wpipe)
693 	struct pipe *wpipe;
694 {
695 	int size;
696 	int offset;
697 
698 	offset = wpipe->pipe_buffer.out;
699 	size = wpipe->pipe_map.xio_bytes - offset;
700 
701 	KKASSERT(size <= wpipe->pipe_buffer.size);
702 
703 	wpipe->pipe_buffer.in = size;
704 	wpipe->pipe_buffer.out = 0;
705 	wpipe->pipe_buffer.cnt = size;
706 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
707 
708 	xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
709 	xio_release(&wpipe->pipe_map);
710 	if (wpipe->pipe_kva) {
711 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
712 		kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
713 		wpipe->pipe_kva = NULL;
714 	}
715 }
716 
717 /*
718  * This implements the pipe buffer write mechanism.  Note that only
719  * a direct write OR a normal pipe write can be pending at any given time.
720  * If there are any characters in the pipe buffer, the direct write will
721  * be deferred until the receiving process grabs all of the bytes from
722  * the pipe buffer.  Then the direct mapping write is set-up.
723  */
724 static int
725 pipe_direct_write(wpipe, uio)
726 	struct pipe *wpipe;
727 	struct uio *uio;
728 {
729 	int error;
730 
731 retry:
732 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
733 		if (wpipe->pipe_state & PIPE_WANTR) {
734 			wpipe->pipe_state &= ~PIPE_WANTR;
735 			wakeup(wpipe);
736 		}
737 		wpipe->pipe_state |= PIPE_WANTW;
738 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
739 		if (error)
740 			goto error2;
741 		if (wpipe->pipe_state & PIPE_EOF) {
742 			error = EPIPE;
743 			goto error2;
744 		}
745 	}
746 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
747 	if (wpipe->pipe_buffer.cnt > 0) {
748 		if (wpipe->pipe_state & PIPE_WANTR) {
749 			wpipe->pipe_state &= ~PIPE_WANTR;
750 			wakeup(wpipe);
751 		}
752 
753 		wpipe->pipe_state |= PIPE_WANTW;
754 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
755 		if (error)
756 			goto error2;
757 		if (wpipe->pipe_state & PIPE_EOF) {
758 			error = EPIPE;
759 			goto error2;
760 		}
761 		goto retry;
762 	}
763 
764 	/*
765 	 * Build our direct-write buffer
766 	 */
767 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
768 	error = pipe_build_write_buffer(wpipe, uio);
769 	if (error)
770 		goto error1;
771 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
772 
773 	/*
774 	 * Wait until the receiver has snarfed the data.  Since we are likely
775 	 * going to sleep we optimize the case and yield synchronously,
776 	 * possibly avoiding the tsleep().
777 	 */
778 	error = 0;
779 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
780 		if (wpipe->pipe_state & PIPE_EOF) {
781 			pipelock(wpipe, 0);
782 			xio_release(&wpipe->pipe_map);
783 			if (wpipe->pipe_kva) {
784 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
785 				kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
786 				wpipe->pipe_kva = NULL;
787 			}
788 			pipeunlock(wpipe);
789 			pipeselwakeup(wpipe);
790 			error = EPIPE;
791 			goto error1;
792 		}
793 		if (wpipe->pipe_state & PIPE_WANTR) {
794 			wpipe->pipe_state &= ~PIPE_WANTR;
795 			wakeup(wpipe);
796 		}
797 		pipeselwakeup(wpipe);
798 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
799 	}
800 	pipelock(wpipe,0);
801 	if (wpipe->pipe_state & PIPE_DIRECTW) {
802 		/*
803 		 * this bit of trickery substitutes a kernel buffer for
804 		 * the process that might be going away.
805 		 */
806 		pipe_clone_write_buffer(wpipe);
807 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
808 	} else {
809 		/*
810 		 * note: The pipe_kva mapping is not qremove'd here.  For
811 		 * legacy PIPE_KMEM mode this constitutes an improvement
812 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
813 		 * mode the kva mapping must not be removed to get the
814 		 * caching benefit.
815 		 *
816 		 * For testing purposes we will give the original algorithm
817 		 * the benefit of the doubt 'what it could have been', and
818 		 * keep the optimization.
819 		 */
820 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
821 		xio_release(&wpipe->pipe_map);
822 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
823 	}
824 	pipeunlock(wpipe);
825 	return (error);
826 
827 	/*
828 	 * Direct-write error, clear the direct write flags.
829 	 */
830 error1:
831 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
832 	/* fallthrough */
833 
834 	/*
835 	 * General error, wakeup the other side if it happens to be sleeping.
836 	 */
837 error2:
838 	wakeup(wpipe);
839 	return (error);
840 }
841 #endif
842 
843 static int
844 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred,
845 	int flags, struct thread *td)
846 {
847 	int error = 0;
848 	int orig_resid;
849 	struct pipe *wpipe, *rpipe;
850 
851 	rpipe = (struct pipe *) fp->f_data;
852 	wpipe = rpipe->pipe_peer;
853 
854 	/*
855 	 * detect loss of pipe read side, issue SIGPIPE if lost.
856 	 */
857 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
858 		return (EPIPE);
859 	}
860 	++wpipe->pipe_busy;
861 
862 	/*
863 	 * If it is advantageous to resize the pipe buffer, do
864 	 * so.
865 	 */
866 	if ((uio->uio_resid > PIPE_SIZE) &&
867 		(pipe_nbig < pipe_maxbig) &&
868 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
869 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
870 		(wpipe->pipe_buffer.cnt == 0)) {
871 
872 		if ((error = pipelock(wpipe,1)) == 0) {
873 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
874 				pipe_nbig++;
875 			pipeunlock(wpipe);
876 		}
877 	}
878 
879 	/*
880 	 * If an early error occured unbusy and return, waking up any pending
881 	 * readers.
882 	 */
883 	if (error) {
884 		--wpipe->pipe_busy;
885 		if ((wpipe->pipe_busy == 0) &&
886 		    (wpipe->pipe_state & PIPE_WANT)) {
887 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
888 			wakeup(wpipe);
889 		}
890 		return(error);
891 	}
892 
893 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
894 
895 	orig_resid = uio->uio_resid;
896 
897 	while (uio->uio_resid) {
898 		int space;
899 
900 #ifndef PIPE_NODIRECT
901 		/*
902 		 * If the transfer is large, we can gain performance if
903 		 * we do process-to-process copies directly.
904 		 * If the write is non-blocking, we don't use the
905 		 * direct write mechanism.
906 		 *
907 		 * The direct write mechanism will detect the reader going
908 		 * away on us.
909 		 */
910 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
911 		    pipe_dwrite_enable > 1) &&
912 		    (fp->f_flag & FNONBLOCK) == 0 &&
913 		    pipe_dwrite_enable) {
914 			error = pipe_direct_write( wpipe, uio);
915 			if (error)
916 				break;
917 			continue;
918 		}
919 #endif
920 
921 		/*
922 		 * Pipe buffered writes cannot be coincidental with
923 		 * direct writes.  We wait until the currently executing
924 		 * direct write is completed before we start filling the
925 		 * pipe buffer.  We break out if a signal occurs or the
926 		 * reader goes away.
927 		 */
928 	retrywrite:
929 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
930 			if (wpipe->pipe_state & PIPE_WANTR) {
931 				wpipe->pipe_state &= ~PIPE_WANTR;
932 				wakeup(wpipe);
933 			}
934 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
935 			if (wpipe->pipe_state & PIPE_EOF)
936 				break;
937 			if (error)
938 				break;
939 		}
940 		if (wpipe->pipe_state & PIPE_EOF) {
941 			error = EPIPE;
942 			break;
943 		}
944 
945 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
946 
947 		/* Writes of size <= PIPE_BUF must be atomic. */
948 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
949 			space = 0;
950 
951 		/*
952 		 * Write to fill, read size handles write hysteresis.  Also
953 		 * additional restrictions can cause select-based non-blocking
954 		 * writes to spin.
955 		 */
956 		if (space > 0) {
957 			if ((error = pipelock(wpipe,1)) == 0) {
958 				int size;	/* Transfer size */
959 				int segsize;	/* first segment to transfer */
960 
961 				/*
962 				 * It is possible for a direct write to
963 				 * slip in on us... handle it here...
964 				 */
965 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
966 					pipeunlock(wpipe);
967 					goto retrywrite;
968 				}
969 				/*
970 				 * If a process blocked in uiomove, our
971 				 * value for space might be bad.
972 				 *
973 				 * XXX will we be ok if the reader has gone
974 				 * away here?
975 				 */
976 				if (space > wpipe->pipe_buffer.size -
977 				    wpipe->pipe_buffer.cnt) {
978 					pipeunlock(wpipe);
979 					goto retrywrite;
980 				}
981 
982 				/*
983 				 * Transfer size is minimum of uio transfer
984 				 * and free space in pipe buffer.
985 				 */
986 				if (space > uio->uio_resid)
987 					size = uio->uio_resid;
988 				else
989 					size = space;
990 				/*
991 				 * First segment to transfer is minimum of
992 				 * transfer size and contiguous space in
993 				 * pipe buffer.  If first segment to transfer
994 				 * is less than the transfer size, we've got
995 				 * a wraparound in the buffer.
996 				 */
997 				segsize = wpipe->pipe_buffer.size -
998 					wpipe->pipe_buffer.in;
999 				if (segsize > size)
1000 					segsize = size;
1001 
1002 				/* Transfer first segment */
1003 
1004 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1005 						segsize, uio);
1006 
1007 				if (error == 0 && segsize < size) {
1008 					/*
1009 					 * Transfer remaining part now, to
1010 					 * support atomic writes.  Wraparound
1011 					 * happened.
1012 					 */
1013 					if (wpipe->pipe_buffer.in + segsize !=
1014 					    wpipe->pipe_buffer.size)
1015 						panic("Expected pipe buffer wraparound disappeared");
1016 
1017 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1018 							size - segsize, uio);
1019 				}
1020 				if (error == 0) {
1021 					wpipe->pipe_buffer.in += size;
1022 					if (wpipe->pipe_buffer.in >=
1023 					    wpipe->pipe_buffer.size) {
1024 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1025 							panic("Expected wraparound bad");
1026 						wpipe->pipe_buffer.in = size - segsize;
1027 					}
1028 
1029 					wpipe->pipe_buffer.cnt += size;
1030 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1031 						panic("Pipe buffer overflow");
1032 
1033 				}
1034 				pipeunlock(wpipe);
1035 			}
1036 			if (error)
1037 				break;
1038 
1039 		} else {
1040 			/*
1041 			 * If the "read-side" has been blocked, wake it up now
1042 			 * and yield to let it drain synchronously rather
1043 			 * then block.
1044 			 */
1045 			if (wpipe->pipe_state & PIPE_WANTR) {
1046 				wpipe->pipe_state &= ~PIPE_WANTR;
1047 				wakeup(wpipe);
1048 			}
1049 
1050 			/*
1051 			 * don't block on non-blocking I/O
1052 			 */
1053 			if (fp->f_flag & FNONBLOCK) {
1054 				error = EAGAIN;
1055 				break;
1056 			}
1057 
1058 			/*
1059 			 * We have no more space and have something to offer,
1060 			 * wake up select/poll.
1061 			 */
1062 			pipeselwakeup(wpipe);
1063 
1064 			wpipe->pipe_state |= PIPE_WANTW;
1065 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1066 			if (error != 0)
1067 				break;
1068 			/*
1069 			 * If read side wants to go away, we just issue a signal
1070 			 * to ourselves.
1071 			 */
1072 			if (wpipe->pipe_state & PIPE_EOF) {
1073 				error = EPIPE;
1074 				break;
1075 			}
1076 		}
1077 	}
1078 
1079 	--wpipe->pipe_busy;
1080 
1081 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1082 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1083 		wakeup(wpipe);
1084 	} else if (wpipe->pipe_buffer.cnt > 0) {
1085 		/*
1086 		 * If we have put any characters in the buffer, we wake up
1087 		 * the reader.
1088 		 */
1089 		if (wpipe->pipe_state & PIPE_WANTR) {
1090 			wpipe->pipe_state &= ~PIPE_WANTR;
1091 			wakeup(wpipe);
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * Don't return EPIPE if I/O was successful
1097 	 */
1098 	if ((wpipe->pipe_buffer.cnt == 0) &&
1099 	    (uio->uio_resid == 0) &&
1100 	    (error == EPIPE)) {
1101 		error = 0;
1102 	}
1103 
1104 	if (error == 0)
1105 		vfs_timestamp(&wpipe->pipe_mtime);
1106 
1107 	/*
1108 	 * We have something to offer,
1109 	 * wake up select/poll.
1110 	 */
1111 	if (wpipe->pipe_buffer.cnt)
1112 		pipeselwakeup(wpipe);
1113 
1114 	return (error);
1115 }
1116 
1117 /*
1118  * we implement a very minimal set of ioctls for compatibility with sockets.
1119  */
1120 int
1121 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td)
1122 {
1123 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1124 
1125 	switch (cmd) {
1126 
1127 	case FIONBIO:
1128 		return (0);
1129 
1130 	case FIOASYNC:
1131 		if (*(int *)data) {
1132 			mpipe->pipe_state |= PIPE_ASYNC;
1133 		} else {
1134 			mpipe->pipe_state &= ~PIPE_ASYNC;
1135 		}
1136 		return (0);
1137 
1138 	case FIONREAD:
1139 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1140 			*(int *)data = mpipe->pipe_map.xio_bytes -
1141 					mpipe->pipe_buffer.out;
1142 		} else {
1143 			*(int *)data = mpipe->pipe_buffer.cnt;
1144 		}
1145 		return (0);
1146 
1147 	case FIOSETOWN:
1148 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1149 
1150 	case FIOGETOWN:
1151 		*(int *)data = fgetown(mpipe->pipe_sigio);
1152 		return (0);
1153 
1154 	/* This is deprecated, FIOSETOWN should be used instead. */
1155 	case TIOCSPGRP:
1156 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1157 
1158 	/* This is deprecated, FIOGETOWN should be used instead. */
1159 	case TIOCGPGRP:
1160 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1161 		return (0);
1162 
1163 	}
1164 	return (ENOTTY);
1165 }
1166 
1167 int
1168 pipe_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1169 {
1170 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1171 	struct pipe *wpipe;
1172 	int revents = 0;
1173 
1174 	wpipe = rpipe->pipe_peer;
1175 	if (events & (POLLIN | POLLRDNORM))
1176 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1177 		    (rpipe->pipe_buffer.cnt > 0) ||
1178 		    (rpipe->pipe_state & PIPE_EOF))
1179 			revents |= events & (POLLIN | POLLRDNORM);
1180 
1181 	if (events & (POLLOUT | POLLWRNORM))
1182 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1183 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1184 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1185 			revents |= events & (POLLOUT | POLLWRNORM);
1186 
1187 	if ((rpipe->pipe_state & PIPE_EOF) ||
1188 	    (wpipe == NULL) ||
1189 	    (wpipe->pipe_state & PIPE_EOF))
1190 		revents |= POLLHUP;
1191 
1192 	if (revents == 0) {
1193 		if (events & (POLLIN | POLLRDNORM)) {
1194 			selrecord(td, &rpipe->pipe_sel);
1195 			rpipe->pipe_state |= PIPE_SEL;
1196 		}
1197 
1198 		if (events & (POLLOUT | POLLWRNORM)) {
1199 			selrecord(td, &wpipe->pipe_sel);
1200 			wpipe->pipe_state |= PIPE_SEL;
1201 		}
1202 	}
1203 
1204 	return (revents);
1205 }
1206 
1207 static int
1208 pipe_stat(struct file *fp, struct stat *ub, struct thread *td)
1209 {
1210 	struct pipe *pipe = (struct pipe *)fp->f_data;
1211 
1212 	bzero((caddr_t)ub, sizeof(*ub));
1213 	ub->st_mode = S_IFIFO;
1214 	ub->st_blksize = pipe->pipe_buffer.size;
1215 	ub->st_size = pipe->pipe_buffer.cnt;
1216 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1217 		ub->st_size = pipe->pipe_map.xio_bytes -
1218 				pipe->pipe_buffer.out;
1219 	}
1220 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1221 	ub->st_atimespec = pipe->pipe_atime;
1222 	ub->st_mtimespec = pipe->pipe_mtime;
1223 	ub->st_ctimespec = pipe->pipe_ctime;
1224 	/*
1225 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1226 	 * st_flags, st_gen.
1227 	 * XXX (st_dev, st_ino) should be unique.
1228 	 */
1229 	return (0);
1230 }
1231 
1232 /* ARGSUSED */
1233 static int
1234 pipe_close(struct file *fp, struct thread *td)
1235 {
1236 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1237 
1238 	fp->f_ops = &badfileops;
1239 	fp->f_data = NULL;
1240 	funsetown(cpipe->pipe_sigio);
1241 	pipeclose(cpipe);
1242 	return (0);
1243 }
1244 
1245 static void
1246 pipe_free_kmem(struct pipe *cpipe)
1247 {
1248 	if (cpipe->pipe_buffer.buffer != NULL) {
1249 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1250 			--pipe_nbig;
1251 		kmem_free(kernel_map,
1252 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1253 			cpipe->pipe_buffer.size);
1254 		cpipe->pipe_buffer.buffer = NULL;
1255 		cpipe->pipe_buffer.object = NULL;
1256 	}
1257 #ifndef PIPE_NODIRECT
1258 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1259 		cpipe->pipe_map.xio_offset == 0 &&
1260 		cpipe->pipe_map.xio_npages == 0);
1261 #endif
1262 }
1263 
1264 /*
1265  * shutdown the pipe
1266  */
1267 static void
1268 pipeclose(struct pipe *cpipe)
1269 {
1270 	globaldata_t gd;
1271 	struct pipe *ppipe;
1272 
1273 	if (cpipe == NULL)
1274 		return;
1275 
1276 	pipeselwakeup(cpipe);
1277 
1278 	/*
1279 	 * If the other side is blocked, wake it up saying that
1280 	 * we want to close it down.
1281 	 */
1282 	while (cpipe->pipe_busy) {
1283 		wakeup(cpipe);
1284 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1285 		tsleep(cpipe, 0, "pipecl", 0);
1286 	}
1287 
1288 	/*
1289 	 * Disconnect from peer
1290 	 */
1291 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1292 		pipeselwakeup(ppipe);
1293 
1294 		ppipe->pipe_state |= PIPE_EOF;
1295 		wakeup(ppipe);
1296 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1297 		ppipe->pipe_peer = NULL;
1298 	}
1299 
1300 	if (cpipe->pipe_kva) {
1301 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1302 		kmem_free(kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1303 		cpipe->pipe_kva = NULL;
1304 	}
1305 
1306 	/*
1307 	 * free or cache resources
1308 	 */
1309 	gd = mycpu;
1310 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1311 	    cpipe->pipe_buffer.size != PIPE_SIZE
1312 	) {
1313 		pipe_free_kmem(cpipe);
1314 		free(cpipe, M_PIPE);
1315 	} else {
1316 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1317 			cpipe->pipe_map.xio_bytes == 0 &&
1318 			cpipe->pipe_map.xio_offset == 0);
1319 		cpipe->pipe_state = 0;
1320 		cpipe->pipe_busy = 0;
1321 		cpipe->pipe_peer = gd->gd_pipeq;
1322 		gd->gd_pipeq = cpipe;
1323 		++gd->gd_pipeqcount;
1324 	}
1325 }
1326 
1327 /*ARGSUSED*/
1328 static int
1329 pipe_kqfilter(struct file *fp, struct knote *kn)
1330 {
1331 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1332 
1333 	switch (kn->kn_filter) {
1334 	case EVFILT_READ:
1335 		kn->kn_fop = &pipe_rfiltops;
1336 		break;
1337 	case EVFILT_WRITE:
1338 		kn->kn_fop = &pipe_wfiltops;
1339 		cpipe = cpipe->pipe_peer;
1340 		if (cpipe == NULL)
1341 			/* other end of pipe has been closed */
1342 			return (EPIPE);
1343 		break;
1344 	default:
1345 		return (1);
1346 	}
1347 	kn->kn_hook = (caddr_t)cpipe;
1348 
1349 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1350 	return (0);
1351 }
1352 
1353 static void
1354 filt_pipedetach(struct knote *kn)
1355 {
1356 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1357 
1358 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1359 }
1360 
1361 /*ARGSUSED*/
1362 static int
1363 filt_piperead(struct knote *kn, long hint)
1364 {
1365 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1366 	struct pipe *wpipe = rpipe->pipe_peer;
1367 
1368 	kn->kn_data = rpipe->pipe_buffer.cnt;
1369 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1370 		kn->kn_data = rpipe->pipe_map.xio_bytes -
1371 				rpipe->pipe_buffer.out;
1372 	}
1373 
1374 	if ((rpipe->pipe_state & PIPE_EOF) ||
1375 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1376 		kn->kn_flags |= EV_EOF;
1377 		return (1);
1378 	}
1379 	return (kn->kn_data > 0);
1380 }
1381 
1382 /*ARGSUSED*/
1383 static int
1384 filt_pipewrite(struct knote *kn, long hint)
1385 {
1386 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1387 	struct pipe *wpipe = rpipe->pipe_peer;
1388 
1389 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1390 		kn->kn_data = 0;
1391 		kn->kn_flags |= EV_EOF;
1392 		return (1);
1393 	}
1394 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1395 	if (wpipe->pipe_state & PIPE_DIRECTW)
1396 		kn->kn_data = 0;
1397 
1398 	return (kn->kn_data >= PIPE_BUF);
1399 }
1400