xref: /dragonfly/sys/kern/sys_pipe.c (revision 4caa7869)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.13 2003/11/03 17:11:21 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/proc.h>
56 #include <sys/fcntl.h>
57 #include <sys/file.h>
58 #include <sys/filedesc.h>
59 #include <sys/filio.h>
60 #include <sys/ttycom.h>
61 #include <sys/stat.h>
62 #include <sys/poll.h>
63 #include <sys/select.h>
64 #include <sys/signalvar.h>
65 #include <sys/sysproto.h>
66 #include <sys/pipe.h>
67 #include <sys/vnode.h>
68 #include <sys/uio.h>
69 #include <sys/event.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <sys/lock.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_zone.h>
81 
82 #include <sys/file2.h>
83 
84 /*
85  * Use this define if you want to disable *fancy* VM things.  Expect an
86  * approx 30% decrease in transfer rate.  This could be useful for
87  * NetBSD or OpenBSD.
88  */
89 /* #define PIPE_NODIRECT */
90 
91 /*
92  * interfaces to the outside world
93  */
94 static int pipe_read (struct file *fp, struct uio *uio,
95 		struct ucred *cred, int flags, struct thread *td);
96 static int pipe_write (struct file *fp, struct uio *uio,
97 		struct ucred *cred, int flags, struct thread *td);
98 static int pipe_close (struct file *fp, struct thread *td);
99 static int pipe_poll (struct file *fp, int events, struct ucred *cred,
100 		struct thread *td);
101 static int pipe_kqfilter (struct file *fp, struct knote *kn);
102 static int pipe_stat (struct file *fp, struct stat *sb, struct thread *td);
103 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct thread *td);
104 
105 static struct fileops pipeops = {
106 	NULL,	/* port */
107 	0,	/* autoq */
108 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
109 	pipe_stat, pipe_close
110 };
111 
112 static void	filt_pipedetach(struct knote *kn);
113 static int	filt_piperead(struct knote *kn, long hint);
114 static int	filt_pipewrite(struct knote *kn, long hint);
115 
116 static struct filterops pipe_rfiltops =
117 	{ 1, NULL, filt_pipedetach, filt_piperead };
118 static struct filterops pipe_wfiltops =
119 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
120 
121 
122 /*
123  * Default pipe buffer size(s), this can be kind-of large now because pipe
124  * space is pageable.  The pipe code will try to maintain locality of
125  * reference for performance reasons, so small amounts of outstanding I/O
126  * will not wipe the cache.
127  */
128 #define MINPIPESIZE (PIPE_SIZE/3)
129 #define MAXPIPESIZE (2*PIPE_SIZE/3)
130 
131 /*
132  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
133  * is there so that on large systems, we don't exhaust it.
134  */
135 #define MAXPIPEKVA (8*1024*1024)
136 
137 /*
138  * Limit for direct transfers, we cannot, of course limit
139  * the amount of kva for pipes in general though.
140  */
141 #define LIMITPIPEKVA (16*1024*1024)
142 
143 /*
144  * Limit the number of "big" pipes
145  */
146 #define LIMITBIGPIPES	32
147 static int nbigpipe;
148 
149 static int amountpipekva;
150 
151 static void pipeclose (struct pipe *cpipe);
152 static void pipe_free_kmem (struct pipe *cpipe);
153 static int pipe_create (struct pipe **cpipep);
154 static __inline int pipelock (struct pipe *cpipe, int catch);
155 static __inline void pipeunlock (struct pipe *cpipe);
156 static __inline void pipeselwakeup (struct pipe *cpipe);
157 #ifndef PIPE_NODIRECT
158 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
159 static void pipe_destroy_write_buffer (struct pipe *wpipe);
160 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
161 static void pipe_clone_write_buffer (struct pipe *wpipe);
162 #endif
163 static int pipespace (struct pipe *cpipe, int size);
164 
165 static vm_zone_t pipe_zone;
166 
167 /*
168  * The pipe system call for the DTYPE_PIPE type of pipes
169  *
170  * pipe_ARgs(int dummy)
171  */
172 
173 /* ARGSUSED */
174 int
175 pipe(struct pipe_args *uap)
176 {
177 	struct thread *td = curthread;
178 	struct proc *p = td->td_proc;
179 	struct filedesc *fdp;
180 	struct file *rf, *wf;
181 	struct pipe *rpipe, *wpipe;
182 	int fd1, fd2, error;
183 
184 	KKASSERT(p);
185 	fdp = p->p_fd;
186 
187 	if (pipe_zone == NULL)
188 		pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
189 
190 	rpipe = wpipe = NULL;
191 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
192 		pipeclose(rpipe);
193 		pipeclose(wpipe);
194 		return (ENFILE);
195 	}
196 
197 	rpipe->pipe_state |= PIPE_DIRECTOK;
198 	wpipe->pipe_state |= PIPE_DIRECTOK;
199 
200 	error = falloc(p, &rf, &fd1);
201 	if (error) {
202 		pipeclose(rpipe);
203 		pipeclose(wpipe);
204 		return (error);
205 	}
206 	fhold(rf);
207 	uap->sysmsg_fds[0] = fd1;
208 
209 	/*
210 	 * Warning: once we've gotten past allocation of the fd for the
211 	 * read-side, we can only drop the read side via fdrop() in order
212 	 * to avoid races against processes which manage to dup() the read
213 	 * side while we are blocked trying to allocate the write side.
214 	 */
215 	rf->f_flag = FREAD | FWRITE;
216 	rf->f_type = DTYPE_PIPE;
217 	rf->f_data = (caddr_t)rpipe;
218 	rf->f_ops = &pipeops;
219 	error = falloc(p, &wf, &fd2);
220 	if (error) {
221 		if (fdp->fd_ofiles[fd1] == rf) {
222 			fdp->fd_ofiles[fd1] = NULL;
223 			fdrop(rf, td);
224 		}
225 		fdrop(rf, td);
226 		/* rpipe has been closed by fdrop(). */
227 		pipeclose(wpipe);
228 		return (error);
229 	}
230 	wf->f_flag = FREAD | FWRITE;
231 	wf->f_type = DTYPE_PIPE;
232 	wf->f_data = (caddr_t)wpipe;
233 	wf->f_ops = &pipeops;
234 	uap->sysmsg_fds[1] = fd2;
235 
236 	rpipe->pipe_peer = wpipe;
237 	wpipe->pipe_peer = rpipe;
238 	fdrop(rf, td);
239 
240 	return (0);
241 }
242 
243 /*
244  * Allocate kva for pipe circular buffer, the space is pageable
245  * This routine will 'realloc' the size of a pipe safely, if it fails
246  * it will retain the old buffer.
247  * If it fails it will return ENOMEM.
248  */
249 static int
250 pipespace(cpipe, size)
251 	struct pipe *cpipe;
252 	int size;
253 {
254 	struct vm_object *object;
255 	caddr_t buffer;
256 	int npages, error;
257 
258 	npages = round_page(size)/PAGE_SIZE;
259 	/*
260 	 * Create an object, I don't like the idea of paging to/from
261 	 * kernel_object.
262 	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
263 	 */
264 	object = vm_object_allocate(OBJT_DEFAULT, npages);
265 	buffer = (caddr_t) vm_map_min(kernel_map);
266 
267 	/*
268 	 * Insert the object into the kernel map, and allocate kva for it.
269 	 * The map entry is, by default, pageable.
270 	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
271 	 */
272 	error = vm_map_find(kernel_map, object, 0,
273 		(vm_offset_t *) &buffer, size, 1,
274 		VM_PROT_ALL, VM_PROT_ALL, 0);
275 
276 	if (error != KERN_SUCCESS) {
277 		vm_object_deallocate(object);
278 		return (ENOMEM);
279 	}
280 
281 	/* free old resources if we're resizing */
282 	pipe_free_kmem(cpipe);
283 	cpipe->pipe_buffer.object = object;
284 	cpipe->pipe_buffer.buffer = buffer;
285 	cpipe->pipe_buffer.size = size;
286 	cpipe->pipe_buffer.in = 0;
287 	cpipe->pipe_buffer.out = 0;
288 	cpipe->pipe_buffer.cnt = 0;
289 	amountpipekva += cpipe->pipe_buffer.size;
290 	return (0);
291 }
292 
293 /*
294  * initialize and allocate VM and memory for pipe
295  */
296 static int
297 pipe_create(cpipep)
298 	struct pipe **cpipep;
299 {
300 	struct pipe *cpipe;
301 	int error;
302 
303 	*cpipep = zalloc(pipe_zone);
304 	if (*cpipep == NULL)
305 		return (ENOMEM);
306 
307 	cpipe = *cpipep;
308 
309 	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
310 	cpipe->pipe_buffer.object = NULL;
311 #ifndef PIPE_NODIRECT
312 	cpipe->pipe_map.kva = NULL;
313 #endif
314 	/*
315 	 * protect so pipeclose() doesn't follow a junk pointer
316 	 * if pipespace() fails.
317 	 */
318 	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
319 	cpipe->pipe_state = 0;
320 	cpipe->pipe_peer = NULL;
321 	cpipe->pipe_busy = 0;
322 
323 #ifndef PIPE_NODIRECT
324 	/*
325 	 * pipe data structure initializations to support direct pipe I/O
326 	 */
327 	cpipe->pipe_map.cnt = 0;
328 	cpipe->pipe_map.kva = 0;
329 	cpipe->pipe_map.pos = 0;
330 	cpipe->pipe_map.npages = 0;
331 	/* cpipe->pipe_map.ms[] = invalid */
332 #endif
333 
334 	error = pipespace(cpipe, PIPE_SIZE);
335 	if (error)
336 		return (error);
337 
338 	vfs_timestamp(&cpipe->pipe_ctime);
339 	cpipe->pipe_atime = cpipe->pipe_ctime;
340 	cpipe->pipe_mtime = cpipe->pipe_ctime;
341 
342 	return (0);
343 }
344 
345 
346 /*
347  * lock a pipe for I/O, blocking other access
348  */
349 static __inline int
350 pipelock(cpipe, catch)
351 	struct pipe *cpipe;
352 	int catch;
353 {
354 	int error;
355 
356 	while (cpipe->pipe_state & PIPE_LOCK) {
357 		cpipe->pipe_state |= PIPE_LWANT;
358 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
359 		if (error != 0)
360 			return (error);
361 	}
362 	cpipe->pipe_state |= PIPE_LOCK;
363 	return (0);
364 }
365 
366 /*
367  * unlock a pipe I/O lock
368  */
369 static __inline void
370 pipeunlock(cpipe)
371 	struct pipe *cpipe;
372 {
373 
374 	cpipe->pipe_state &= ~PIPE_LOCK;
375 	if (cpipe->pipe_state & PIPE_LWANT) {
376 		cpipe->pipe_state &= ~PIPE_LWANT;
377 		wakeup(cpipe);
378 	}
379 }
380 
381 static __inline void
382 pipeselwakeup(cpipe)
383 	struct pipe *cpipe;
384 {
385 
386 	if (cpipe->pipe_state & PIPE_SEL) {
387 		cpipe->pipe_state &= ~PIPE_SEL;
388 		selwakeup(&cpipe->pipe_sel);
389 	}
390 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
391 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
392 	KNOTE(&cpipe->pipe_sel.si_note, 0);
393 }
394 
395 /* ARGSUSED */
396 static int
397 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred,
398 	int flags, struct thread *td)
399 {
400 	struct pipe *rpipe = (struct pipe *) fp->f_data;
401 	int error;
402 	int nread = 0;
403 	u_int size;
404 
405 	++rpipe->pipe_busy;
406 	error = pipelock(rpipe, 1);
407 	if (error)
408 		goto unlocked_error;
409 
410 	while (uio->uio_resid) {
411 		/*
412 		 * normal pipe buffer receive
413 		 */
414 		if (rpipe->pipe_buffer.cnt > 0) {
415 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
416 			if (size > rpipe->pipe_buffer.cnt)
417 				size = rpipe->pipe_buffer.cnt;
418 			if (size > (u_int) uio->uio_resid)
419 				size = (u_int) uio->uio_resid;
420 
421 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
422 					size, uio);
423 			if (error)
424 				break;
425 
426 			rpipe->pipe_buffer.out += size;
427 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
428 				rpipe->pipe_buffer.out = 0;
429 
430 			rpipe->pipe_buffer.cnt -= size;
431 
432 			/*
433 			 * If there is no more to read in the pipe, reset
434 			 * its pointers to the beginning.  This improves
435 			 * cache hit stats.
436 			 */
437 			if (rpipe->pipe_buffer.cnt == 0) {
438 				rpipe->pipe_buffer.in = 0;
439 				rpipe->pipe_buffer.out = 0;
440 			}
441 			nread += size;
442 #ifndef PIPE_NODIRECT
443 		/*
444 		 * Direct copy, bypassing a kernel buffer.
445 		 */
446 		} else if ((size = rpipe->pipe_map.cnt) &&
447 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
448 			caddr_t	va;
449 			if (size > (u_int) uio->uio_resid)
450 				size = (u_int) uio->uio_resid;
451 
452 			va = (caddr_t) rpipe->pipe_map.kva +
453 			    rpipe->pipe_map.pos;
454 			error = uiomove(va, size, uio);
455 			if (error)
456 				break;
457 			nread += size;
458 			rpipe->pipe_map.pos += size;
459 			rpipe->pipe_map.cnt -= size;
460 			if (rpipe->pipe_map.cnt == 0) {
461 				rpipe->pipe_state &= ~PIPE_DIRECTW;
462 				wakeup(rpipe);
463 			}
464 #endif
465 		} else {
466 			/*
467 			 * detect EOF condition
468 			 * read returns 0 on EOF, no need to set error
469 			 */
470 			if (rpipe->pipe_state & PIPE_EOF)
471 				break;
472 
473 			/*
474 			 * If the "write-side" has been blocked, wake it up now.
475 			 */
476 			if (rpipe->pipe_state & PIPE_WANTW) {
477 				rpipe->pipe_state &= ~PIPE_WANTW;
478 				wakeup(rpipe);
479 			}
480 
481 			/*
482 			 * Break if some data was read.
483 			 */
484 			if (nread > 0)
485 				break;
486 
487 			/*
488 			 * Unlock the pipe buffer for our remaining processing.  We
489 			 * will either break out with an error or we will sleep and
490 			 * relock to loop.
491 			 */
492 			pipeunlock(rpipe);
493 
494 			/*
495 			 * Handle non-blocking mode operation or
496 			 * wait for more data.
497 			 */
498 			if (fp->f_flag & FNONBLOCK) {
499 				error = EAGAIN;
500 			} else {
501 				rpipe->pipe_state |= PIPE_WANTR;
502 				if ((error = tsleep(rpipe, PCATCH,
503 				    "piperd", 0)) == 0) {
504 					error = pipelock(rpipe, 1);
505 				}
506 			}
507 			if (error)
508 				goto unlocked_error;
509 		}
510 	}
511 	pipeunlock(rpipe);
512 
513 	if (error == 0)
514 		vfs_timestamp(&rpipe->pipe_atime);
515 unlocked_error:
516 	--rpipe->pipe_busy;
517 
518 	/*
519 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
520 	 */
521 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
522 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
523 		wakeup(rpipe);
524 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
525 		/*
526 		 * Handle write blocking hysteresis.
527 		 */
528 		if (rpipe->pipe_state & PIPE_WANTW) {
529 			rpipe->pipe_state &= ~PIPE_WANTW;
530 			wakeup(rpipe);
531 		}
532 	}
533 
534 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
535 		pipeselwakeup(rpipe);
536 
537 	return (error);
538 }
539 
540 #ifndef PIPE_NODIRECT
541 /*
542  * Map the sending processes' buffer into kernel space and wire it.
543  * This is similar to a physical write operation.
544  */
545 static int
546 pipe_build_write_buffer(wpipe, uio)
547 	struct pipe *wpipe;
548 	struct uio *uio;
549 {
550 	u_int size;
551 	int i;
552 	vm_offset_t addr, endaddr;
553 	vm_paddr_t paddr;
554 
555 	size = (u_int) uio->uio_iov->iov_len;
556 	if (size > wpipe->pipe_buffer.size)
557 		size = wpipe->pipe_buffer.size;
558 
559 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
560 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
561 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
562 		vm_page_t m;
563 
564 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
565 		    (paddr = pmap_kextract(addr)) == 0) {
566 			int j;
567 
568 			for (j = 0; j < i; j++)
569 				vm_page_unhold(wpipe->pipe_map.ms[j]);
570 			return (EFAULT);
571 		}
572 
573 		m = PHYS_TO_VM_PAGE(paddr);
574 		vm_page_hold(m);
575 		wpipe->pipe_map.ms[i] = m;
576 	}
577 
578 /*
579  * set up the control block
580  */
581 	wpipe->pipe_map.npages = i;
582 	wpipe->pipe_map.pos =
583 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
584 	wpipe->pipe_map.cnt = size;
585 
586 /*
587  * and map the buffer
588  */
589 	if (wpipe->pipe_map.kva == 0) {
590 		/*
591 		 * We need to allocate space for an extra page because the
592 		 * address range might (will) span pages at times.
593 		 */
594 		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
595 			wpipe->pipe_buffer.size + PAGE_SIZE);
596 		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
597 	}
598 	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
599 		wpipe->pipe_map.npages);
600 
601 /*
602  * and update the uio data
603  */
604 
605 	uio->uio_iov->iov_len -= size;
606 	uio->uio_iov->iov_base += size;
607 	if (uio->uio_iov->iov_len == 0)
608 		uio->uio_iov++;
609 	uio->uio_resid -= size;
610 	uio->uio_offset += size;
611 	return (0);
612 }
613 
614 /*
615  * unmap and unwire the process buffer
616  */
617 static void
618 pipe_destroy_write_buffer(wpipe)
619 	struct pipe *wpipe;
620 {
621 	int i;
622 
623 	if (wpipe->pipe_map.kva) {
624 		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
625 
626 		if (amountpipekva > MAXPIPEKVA) {
627 			vm_offset_t kva = wpipe->pipe_map.kva;
628 			wpipe->pipe_map.kva = 0;
629 			kmem_free(kernel_map, kva,
630 				wpipe->pipe_buffer.size + PAGE_SIZE);
631 			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
632 		}
633 	}
634 	for (i = 0; i < wpipe->pipe_map.npages; i++)
635 		vm_page_unhold(wpipe->pipe_map.ms[i]);
636 	wpipe->pipe_map.npages = 0;
637 }
638 
639 /*
640  * In the case of a signal, the writing process might go away.  This
641  * code copies the data into the circular buffer so that the source
642  * pages can be freed without loss of data.
643  */
644 static void
645 pipe_clone_write_buffer(wpipe)
646 	struct pipe *wpipe;
647 {
648 	int size;
649 	int pos;
650 
651 	size = wpipe->pipe_map.cnt;
652 	pos = wpipe->pipe_map.pos;
653 	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
654 	    (caddr_t) wpipe->pipe_buffer.buffer, size);
655 
656 	wpipe->pipe_buffer.in = size;
657 	wpipe->pipe_buffer.out = 0;
658 	wpipe->pipe_buffer.cnt = size;
659 	wpipe->pipe_state &= ~PIPE_DIRECTW;
660 
661 	pipe_destroy_write_buffer(wpipe);
662 }
663 
664 /*
665  * This implements the pipe buffer write mechanism.  Note that only
666  * a direct write OR a normal pipe write can be pending at any given time.
667  * If there are any characters in the pipe buffer, the direct write will
668  * be deferred until the receiving process grabs all of the bytes from
669  * the pipe buffer.  Then the direct mapping write is set-up.
670  */
671 static int
672 pipe_direct_write(wpipe, uio)
673 	struct pipe *wpipe;
674 	struct uio *uio;
675 {
676 	int error;
677 
678 retry:
679 	while (wpipe->pipe_state & PIPE_DIRECTW) {
680 		if (wpipe->pipe_state & PIPE_WANTR) {
681 			wpipe->pipe_state &= ~PIPE_WANTR;
682 			wakeup(wpipe);
683 		}
684 		wpipe->pipe_state |= PIPE_WANTW;
685 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
686 		if (error)
687 			goto error1;
688 		if (wpipe->pipe_state & PIPE_EOF) {
689 			error = EPIPE;
690 			goto error1;
691 		}
692 	}
693 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
694 	if (wpipe->pipe_buffer.cnt > 0) {
695 		if (wpipe->pipe_state & PIPE_WANTR) {
696 			wpipe->pipe_state &= ~PIPE_WANTR;
697 			wakeup(wpipe);
698 		}
699 
700 		wpipe->pipe_state |= PIPE_WANTW;
701 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
702 		if (error)
703 			goto error1;
704 		if (wpipe->pipe_state & PIPE_EOF) {
705 			error = EPIPE;
706 			goto error1;
707 		}
708 		goto retry;
709 	}
710 
711 	wpipe->pipe_state |= PIPE_DIRECTW;
712 
713 	error = pipe_build_write_buffer(wpipe, uio);
714 	if (error) {
715 		wpipe->pipe_state &= ~PIPE_DIRECTW;
716 		goto error1;
717 	}
718 
719 	error = 0;
720 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
721 		if (wpipe->pipe_state & PIPE_EOF) {
722 			pipelock(wpipe, 0);
723 			pipe_destroy_write_buffer(wpipe);
724 			pipeunlock(wpipe);
725 			pipeselwakeup(wpipe);
726 			error = EPIPE;
727 			goto error1;
728 		}
729 		if (wpipe->pipe_state & PIPE_WANTR) {
730 			wpipe->pipe_state &= ~PIPE_WANTR;
731 			wakeup(wpipe);
732 		}
733 		pipeselwakeup(wpipe);
734 		error = tsleep(wpipe, PCATCH, "pipdwt", 0);
735 	}
736 
737 	pipelock(wpipe,0);
738 	if (wpipe->pipe_state & PIPE_DIRECTW) {
739 		/*
740 		 * this bit of trickery substitutes a kernel buffer for
741 		 * the process that might be going away.
742 		 */
743 		pipe_clone_write_buffer(wpipe);
744 	} else {
745 		pipe_destroy_write_buffer(wpipe);
746 	}
747 	pipeunlock(wpipe);
748 	return (error);
749 
750 error1:
751 	wakeup(wpipe);
752 	return (error);
753 }
754 #endif
755 
756 static int
757 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred,
758 	int flags, struct thread *td)
759 {
760 	int error = 0;
761 	int orig_resid;
762 	struct pipe *wpipe, *rpipe;
763 
764 	rpipe = (struct pipe *) fp->f_data;
765 	wpipe = rpipe->pipe_peer;
766 
767 	/*
768 	 * detect loss of pipe read side, issue SIGPIPE if lost.
769 	 */
770 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
771 		return (EPIPE);
772 	}
773 	++wpipe->pipe_busy;
774 
775 	/*
776 	 * If it is advantageous to resize the pipe buffer, do
777 	 * so.
778 	 */
779 	if ((uio->uio_resid > PIPE_SIZE) &&
780 		(nbigpipe < LIMITBIGPIPES) &&
781 		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
782 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
783 		(wpipe->pipe_buffer.cnt == 0)) {
784 
785 		if ((error = pipelock(wpipe,1)) == 0) {
786 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
787 				nbigpipe++;
788 			pipeunlock(wpipe);
789 		}
790 	}
791 
792 	/*
793 	 * If an early error occured unbusy and return, waking up any pending
794 	 * readers.
795 	 */
796 	if (error) {
797 		--wpipe->pipe_busy;
798 		if ((wpipe->pipe_busy == 0) &&
799 		    (wpipe->pipe_state & PIPE_WANT)) {
800 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
801 			wakeup(wpipe);
802 		}
803 		return(error);
804 	}
805 
806 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
807 
808 	orig_resid = uio->uio_resid;
809 
810 	while (uio->uio_resid) {
811 		int space;
812 
813 #ifndef PIPE_NODIRECT
814 		/*
815 		 * If the transfer is large, we can gain performance if
816 		 * we do process-to-process copies directly.
817 		 * If the write is non-blocking, we don't use the
818 		 * direct write mechanism.
819 		 *
820 		 * The direct write mechanism will detect the reader going
821 		 * away on us.
822 		 */
823 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
824 		    (fp->f_flag & FNONBLOCK) == 0 &&
825 			(wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
826 			(uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
827 			error = pipe_direct_write( wpipe, uio);
828 			if (error)
829 				break;
830 			continue;
831 		}
832 #endif
833 
834 		/*
835 		 * Pipe buffered writes cannot be coincidental with
836 		 * direct writes.  We wait until the currently executing
837 		 * direct write is completed before we start filling the
838 		 * pipe buffer.  We break out if a signal occurs or the
839 		 * reader goes away.
840 		 */
841 	retrywrite:
842 		while (wpipe->pipe_state & PIPE_DIRECTW) {
843 			if (wpipe->pipe_state & PIPE_WANTR) {
844 				wpipe->pipe_state &= ~PIPE_WANTR;
845 				wakeup(wpipe);
846 			}
847 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
848 			if (wpipe->pipe_state & PIPE_EOF)
849 				break;
850 			if (error)
851 				break;
852 		}
853 		if (wpipe->pipe_state & PIPE_EOF) {
854 			error = EPIPE;
855 			break;
856 		}
857 
858 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
859 
860 		/* Writes of size <= PIPE_BUF must be atomic. */
861 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
862 			space = 0;
863 
864 		if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
865 			if ((error = pipelock(wpipe,1)) == 0) {
866 				int size;	/* Transfer size */
867 				int segsize;	/* first segment to transfer */
868 
869 				/*
870 				 * It is possible for a direct write to
871 				 * slip in on us... handle it here...
872 				 */
873 				if (wpipe->pipe_state & PIPE_DIRECTW) {
874 					pipeunlock(wpipe);
875 					goto retrywrite;
876 				}
877 				/*
878 				 * If a process blocked in uiomove, our
879 				 * value for space might be bad.
880 				 *
881 				 * XXX will we be ok if the reader has gone
882 				 * away here?
883 				 */
884 				if (space > wpipe->pipe_buffer.size -
885 				    wpipe->pipe_buffer.cnt) {
886 					pipeunlock(wpipe);
887 					goto retrywrite;
888 				}
889 
890 				/*
891 				 * Transfer size is minimum of uio transfer
892 				 * and free space in pipe buffer.
893 				 */
894 				if (space > uio->uio_resid)
895 					size = uio->uio_resid;
896 				else
897 					size = space;
898 				/*
899 				 * First segment to transfer is minimum of
900 				 * transfer size and contiguous space in
901 				 * pipe buffer.  If first segment to transfer
902 				 * is less than the transfer size, we've got
903 				 * a wraparound in the buffer.
904 				 */
905 				segsize = wpipe->pipe_buffer.size -
906 					wpipe->pipe_buffer.in;
907 				if (segsize > size)
908 					segsize = size;
909 
910 				/* Transfer first segment */
911 
912 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
913 						segsize, uio);
914 
915 				if (error == 0 && segsize < size) {
916 					/*
917 					 * Transfer remaining part now, to
918 					 * support atomic writes.  Wraparound
919 					 * happened.
920 					 */
921 					if (wpipe->pipe_buffer.in + segsize !=
922 					    wpipe->pipe_buffer.size)
923 						panic("Expected pipe buffer wraparound disappeared");
924 
925 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
926 							size - segsize, uio);
927 				}
928 				if (error == 0) {
929 					wpipe->pipe_buffer.in += size;
930 					if (wpipe->pipe_buffer.in >=
931 					    wpipe->pipe_buffer.size) {
932 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
933 							panic("Expected wraparound bad");
934 						wpipe->pipe_buffer.in = size - segsize;
935 					}
936 
937 					wpipe->pipe_buffer.cnt += size;
938 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
939 						panic("Pipe buffer overflow");
940 
941 				}
942 				pipeunlock(wpipe);
943 			}
944 			if (error)
945 				break;
946 
947 		} else {
948 			/*
949 			 * If the "read-side" has been blocked, wake it up now.
950 			 */
951 			if (wpipe->pipe_state & PIPE_WANTR) {
952 				wpipe->pipe_state &= ~PIPE_WANTR;
953 				wakeup(wpipe);
954 			}
955 
956 			/*
957 			 * don't block on non-blocking I/O
958 			 */
959 			if (fp->f_flag & FNONBLOCK) {
960 				error = EAGAIN;
961 				break;
962 			}
963 
964 			/*
965 			 * We have no more space and have something to offer,
966 			 * wake up select/poll.
967 			 */
968 			pipeselwakeup(wpipe);
969 
970 			wpipe->pipe_state |= PIPE_WANTW;
971 			error = tsleep(wpipe, PCATCH, "pipewr", 0);
972 			if (error != 0)
973 				break;
974 			/*
975 			 * If read side wants to go away, we just issue a signal
976 			 * to ourselves.
977 			 */
978 			if (wpipe->pipe_state & PIPE_EOF) {
979 				error = EPIPE;
980 				break;
981 			}
982 		}
983 	}
984 
985 	--wpipe->pipe_busy;
986 
987 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
988 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
989 		wakeup(wpipe);
990 	} else if (wpipe->pipe_buffer.cnt > 0) {
991 		/*
992 		 * If we have put any characters in the buffer, we wake up
993 		 * the reader.
994 		 */
995 		if (wpipe->pipe_state & PIPE_WANTR) {
996 			wpipe->pipe_state &= ~PIPE_WANTR;
997 			wakeup(wpipe);
998 		}
999 	}
1000 
1001 	/*
1002 	 * Don't return EPIPE if I/O was successful
1003 	 */
1004 	if ((wpipe->pipe_buffer.cnt == 0) &&
1005 	    (uio->uio_resid == 0) &&
1006 	    (error == EPIPE)) {
1007 		error = 0;
1008 	}
1009 
1010 	if (error == 0)
1011 		vfs_timestamp(&wpipe->pipe_mtime);
1012 
1013 	/*
1014 	 * We have something to offer,
1015 	 * wake up select/poll.
1016 	 */
1017 	if (wpipe->pipe_buffer.cnt)
1018 		pipeselwakeup(wpipe);
1019 
1020 	return (error);
1021 }
1022 
1023 /*
1024  * we implement a very minimal set of ioctls for compatibility with sockets.
1025  */
1026 int
1027 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td)
1028 {
1029 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1030 
1031 	switch (cmd) {
1032 
1033 	case FIONBIO:
1034 		return (0);
1035 
1036 	case FIOASYNC:
1037 		if (*(int *)data) {
1038 			mpipe->pipe_state |= PIPE_ASYNC;
1039 		} else {
1040 			mpipe->pipe_state &= ~PIPE_ASYNC;
1041 		}
1042 		return (0);
1043 
1044 	case FIONREAD:
1045 		if (mpipe->pipe_state & PIPE_DIRECTW)
1046 			*(int *)data = mpipe->pipe_map.cnt;
1047 		else
1048 			*(int *)data = mpipe->pipe_buffer.cnt;
1049 		return (0);
1050 
1051 	case FIOSETOWN:
1052 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1053 
1054 	case FIOGETOWN:
1055 		*(int *)data = fgetown(mpipe->pipe_sigio);
1056 		return (0);
1057 
1058 	/* This is deprecated, FIOSETOWN should be used instead. */
1059 	case TIOCSPGRP:
1060 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1061 
1062 	/* This is deprecated, FIOGETOWN should be used instead. */
1063 	case TIOCGPGRP:
1064 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1065 		return (0);
1066 
1067 	}
1068 	return (ENOTTY);
1069 }
1070 
1071 int
1072 pipe_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1073 {
1074 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1075 	struct pipe *wpipe;
1076 	int revents = 0;
1077 
1078 	wpipe = rpipe->pipe_peer;
1079 	if (events & (POLLIN | POLLRDNORM))
1080 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1081 		    (rpipe->pipe_buffer.cnt > 0) ||
1082 		    (rpipe->pipe_state & PIPE_EOF))
1083 			revents |= events & (POLLIN | POLLRDNORM);
1084 
1085 	if (events & (POLLOUT | POLLWRNORM))
1086 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1087 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1088 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1089 			revents |= events & (POLLOUT | POLLWRNORM);
1090 
1091 	if ((rpipe->pipe_state & PIPE_EOF) ||
1092 	    (wpipe == NULL) ||
1093 	    (wpipe->pipe_state & PIPE_EOF))
1094 		revents |= POLLHUP;
1095 
1096 	if (revents == 0) {
1097 		if (events & (POLLIN | POLLRDNORM)) {
1098 			selrecord(td, &rpipe->pipe_sel);
1099 			rpipe->pipe_state |= PIPE_SEL;
1100 		}
1101 
1102 		if (events & (POLLOUT | POLLWRNORM)) {
1103 			selrecord(td, &wpipe->pipe_sel);
1104 			wpipe->pipe_state |= PIPE_SEL;
1105 		}
1106 	}
1107 
1108 	return (revents);
1109 }
1110 
1111 static int
1112 pipe_stat(struct file *fp, struct stat *ub, struct thread *td)
1113 {
1114 	struct pipe *pipe = (struct pipe *)fp->f_data;
1115 
1116 	bzero((caddr_t)ub, sizeof(*ub));
1117 	ub->st_mode = S_IFIFO;
1118 	ub->st_blksize = pipe->pipe_buffer.size;
1119 	ub->st_size = pipe->pipe_buffer.cnt;
1120 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1121 	ub->st_atimespec = pipe->pipe_atime;
1122 	ub->st_mtimespec = pipe->pipe_mtime;
1123 	ub->st_ctimespec = pipe->pipe_ctime;
1124 	/*
1125 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1126 	 * st_flags, st_gen.
1127 	 * XXX (st_dev, st_ino) should be unique.
1128 	 */
1129 	return (0);
1130 }
1131 
1132 /* ARGSUSED */
1133 static int
1134 pipe_close(struct file *fp, struct thread *td)
1135 {
1136 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1137 
1138 	fp->f_ops = &badfileops;
1139 	fp->f_data = NULL;
1140 	funsetown(cpipe->pipe_sigio);
1141 	pipeclose(cpipe);
1142 	return (0);
1143 }
1144 
1145 static void
1146 pipe_free_kmem(struct pipe *cpipe)
1147 {
1148 
1149 	if (cpipe->pipe_buffer.buffer != NULL) {
1150 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1151 			--nbigpipe;
1152 		amountpipekva -= cpipe->pipe_buffer.size;
1153 		kmem_free(kernel_map,
1154 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1155 			cpipe->pipe_buffer.size);
1156 		cpipe->pipe_buffer.buffer = NULL;
1157 	}
1158 #ifndef PIPE_NODIRECT
1159 	if (cpipe->pipe_map.kva != NULL) {
1160 		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1161 		kmem_free(kernel_map,
1162 			cpipe->pipe_map.kva,
1163 			cpipe->pipe_buffer.size + PAGE_SIZE);
1164 		cpipe->pipe_map.cnt = 0;
1165 		cpipe->pipe_map.kva = 0;
1166 		cpipe->pipe_map.pos = 0;
1167 		cpipe->pipe_map.npages = 0;
1168 	}
1169 #endif
1170 }
1171 
1172 /*
1173  * shutdown the pipe
1174  */
1175 static void
1176 pipeclose(struct pipe *cpipe)
1177 {
1178 	struct pipe *ppipe;
1179 
1180 	if (cpipe) {
1181 
1182 		pipeselwakeup(cpipe);
1183 
1184 		/*
1185 		 * If the other side is blocked, wake it up saying that
1186 		 * we want to close it down.
1187 		 */
1188 		while (cpipe->pipe_busy) {
1189 			wakeup(cpipe);
1190 			cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1191 			tsleep(cpipe, 0, "pipecl", 0);
1192 		}
1193 
1194 		/*
1195 		 * Disconnect from peer
1196 		 */
1197 		if ((ppipe = cpipe->pipe_peer) != NULL) {
1198 			pipeselwakeup(ppipe);
1199 
1200 			ppipe->pipe_state |= PIPE_EOF;
1201 			wakeup(ppipe);
1202 			KNOTE(&ppipe->pipe_sel.si_note, 0);
1203 			ppipe->pipe_peer = NULL;
1204 		}
1205 		/*
1206 		 * free resources
1207 		 */
1208 		pipe_free_kmem(cpipe);
1209 		zfree(pipe_zone, cpipe);
1210 	}
1211 }
1212 
1213 /*ARGSUSED*/
1214 static int
1215 pipe_kqfilter(struct file *fp, struct knote *kn)
1216 {
1217 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1218 
1219 	switch (kn->kn_filter) {
1220 	case EVFILT_READ:
1221 		kn->kn_fop = &pipe_rfiltops;
1222 		break;
1223 	case EVFILT_WRITE:
1224 		kn->kn_fop = &pipe_wfiltops;
1225 		cpipe = cpipe->pipe_peer;
1226 		if (cpipe == NULL)
1227 			/* other end of pipe has been closed */
1228 			return (EPIPE);
1229 		break;
1230 	default:
1231 		return (1);
1232 	}
1233 	kn->kn_hook = (caddr_t)cpipe;
1234 
1235 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1236 	return (0);
1237 }
1238 
1239 static void
1240 filt_pipedetach(struct knote *kn)
1241 {
1242 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1243 
1244 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1245 }
1246 
1247 /*ARGSUSED*/
1248 static int
1249 filt_piperead(struct knote *kn, long hint)
1250 {
1251 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1252 	struct pipe *wpipe = rpipe->pipe_peer;
1253 
1254 	kn->kn_data = rpipe->pipe_buffer.cnt;
1255 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1256 		kn->kn_data = rpipe->pipe_map.cnt;
1257 
1258 	if ((rpipe->pipe_state & PIPE_EOF) ||
1259 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1260 		kn->kn_flags |= EV_EOF;
1261 		return (1);
1262 	}
1263 	return (kn->kn_data > 0);
1264 }
1265 
1266 /*ARGSUSED*/
1267 static int
1268 filt_pipewrite(struct knote *kn, long hint)
1269 {
1270 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1271 	struct pipe *wpipe = rpipe->pipe_peer;
1272 
1273 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1274 		kn->kn_data = 0;
1275 		kn->kn_flags |= EV_EOF;
1276 		return (1);
1277 	}
1278 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1279 	if (wpipe->pipe_state & PIPE_DIRECTW)
1280 		kn->kn_data = 0;
1281 
1282 	return (kn->kn_data >= PIPE_BUF);
1283 }
1284