xref: /dragonfly/sys/kern/sys_pipe.c (revision 896f2e3a)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  */
21 
22 /*
23  * This file contains a high-performance replacement for the socket-based
24  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
25  * all features of sockets, but does do everything that pipes normally
26  * do.
27  */
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/proc.h>
32 #include <sys/fcntl.h>
33 #include <sys/file.h>
34 #include <sys/filedesc.h>
35 #include <sys/filio.h>
36 #include <sys/ttycom.h>
37 #include <sys/stat.h>
38 #include <sys/signalvar.h>
39 #include <sys/sysproto.h>
40 #include <sys/pipe.h>
41 #include <sys/vnode.h>
42 #include <sys/uio.h>
43 #include <sys/event.h>
44 #include <sys/globaldata.h>
45 #include <sys/module.h>
46 #include <sys/malloc.h>
47 #include <sys/sysctl.h>
48 #include <sys/socket.h>
49 
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <sys/lock.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_extern.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_page.h>
59 #include <vm/vm_zone.h>
60 
61 #include <sys/file2.h>
62 #include <sys/signal2.h>
63 
64 #include <machine/cpufunc.h>
65 
66 /*
67  * interfaces to the outside world
68  */
69 static int pipe_read (struct file *fp, struct uio *uio,
70 		struct ucred *cred, int flags);
71 static int pipe_write (struct file *fp, struct uio *uio,
72 		struct ucred *cred, int flags);
73 static int pipe_close (struct file *fp);
74 static int pipe_shutdown (struct file *fp, int how);
75 static int pipe_kqfilter (struct file *fp, struct knote *kn);
76 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
77 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
78 		struct ucred *cred, struct sysmsg *msg);
79 
80 static struct fileops pipeops = {
81 	.fo_read = pipe_read,
82 	.fo_write = pipe_write,
83 	.fo_ioctl = pipe_ioctl,
84 	.fo_kqfilter = pipe_kqfilter,
85 	.fo_stat = pipe_stat,
86 	.fo_close = pipe_close,
87 	.fo_shutdown = pipe_shutdown
88 };
89 
90 static void	filt_pipedetach(struct knote *kn);
91 static int	filt_piperead(struct knote *kn, long hint);
92 static int	filt_pipewrite(struct knote *kn, long hint);
93 
94 static struct filterops pipe_rfiltops =
95 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_pipedetach, filt_piperead };
96 static struct filterops pipe_wfiltops =
97 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_pipedetach, filt_pipewrite };
98 
99 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
100 
101 /*
102  * Default pipe buffer size(s), this can be kind-of large now because pipe
103  * space is pageable.  The pipe code will try to maintain locality of
104  * reference for performance reasons, so small amounts of outstanding I/O
105  * will not wipe the cache.
106  */
107 #define MINPIPESIZE (PIPE_SIZE/3)
108 #define MAXPIPESIZE (2*PIPE_SIZE/3)
109 
110 /*
111  * Limit the number of "big" pipes
112  */
113 #define LIMITBIGPIPES	64
114 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
115 
116 static int pipe_maxbig = LIMITBIGPIPES;
117 static int pipe_maxcache = PIPEQ_MAX_CACHE;
118 static int pipe_bigcount;
119 static int pipe_nbig;
120 static int pipe_bcache_alloc;
121 static int pipe_bkmem_alloc;
122 static int pipe_rblocked_count;
123 static int pipe_wblocked_count;
124 
125 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
126 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
127         CTLFLAG_RD, &pipe_nbig, 0, "number of big pipes allocated");
128 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
129         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
130 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
131         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
132 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
133         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
134 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
135         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
136 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
137         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
138 static int pipe_delay = 5000;	/* 5uS default */
139 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
140         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
141 #if !defined(NO_PIPE_SYSCTL_STATS)
142 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
143         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
144 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
145         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
146 #endif
147 
148 /*
149  * Auto-size pipe cache to reduce kmem allocations and frees.
150  */
151 static
152 void
153 pipeinit(void *dummy)
154 {
155 	size_t mbytes = kmem_lim_size();
156 
157 	if (pipe_maxbig == LIMITBIGPIPES) {
158 		if (mbytes >= 7 * 1024)
159 			pipe_maxbig *= 2;
160 		if (mbytes >= 15 * 1024)
161 			pipe_maxbig *= 2;
162 	}
163 	if (pipe_maxcache == PIPEQ_MAX_CACHE) {
164 		if (mbytes >= 7 * 1024)
165 			pipe_maxcache *= 2;
166 		if (mbytes >= 15 * 1024)
167 			pipe_maxcache *= 2;
168 	}
169 }
170 SYSINIT(kmem, SI_BOOT2_MACHDEP, SI_ORDER_ANY, pipeinit, NULL);
171 
172 static void pipeclose (struct pipe *cpipe);
173 static void pipe_free_kmem (struct pipe *cpipe);
174 static int pipe_create (struct pipe **cpipep);
175 static int pipespace (struct pipe *cpipe, int size);
176 
177 static __inline void
178 pipewakeup(struct pipe *cpipe, int dosigio)
179 {
180 	if (dosigio && (cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
181 		lwkt_gettoken(&sigio_token);
182 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
183 		lwkt_reltoken(&sigio_token);
184 	}
185 	KNOTE(&cpipe->pipe_kq.ki_note, 0);
186 }
187 
188 /*
189  * These routines are called before and after a UIO.  The UIO
190  * may block, causing our held tokens to be lost temporarily.
191  *
192  * We use these routines to serialize reads against other reads
193  * and writes against other writes.
194  *
195  * The read token is held on entry so *ipp does not race.
196  */
197 static __inline int
198 pipe_start_uio(struct pipe *cpipe, int *ipp)
199 {
200 	int error;
201 
202 	while (*ipp) {
203 		*ipp = -1;
204 		error = tsleep(ipp, PCATCH, "pipexx", 0);
205 		if (error)
206 			return (error);
207 	}
208 	*ipp = 1;
209 	return (0);
210 }
211 
212 static __inline void
213 pipe_end_uio(struct pipe *cpipe, int *ipp)
214 {
215 	if (*ipp < 0) {
216 		*ipp = 0;
217 		wakeup(ipp);
218 	} else {
219 		KKASSERT(*ipp > 0);
220 		*ipp = 0;
221 	}
222 }
223 
224 /*
225  * The pipe system call for the DTYPE_PIPE type of pipes
226  *
227  * pipe_args(int dummy)
228  *
229  * MPSAFE
230  */
231 int
232 sys_pipe(struct pipe_args *uap)
233 {
234 	struct thread *td = curthread;
235 	struct filedesc *fdp = td->td_proc->p_fd;
236 	struct file *rf, *wf;
237 	struct pipe *rpipe, *wpipe;
238 	int fd1, fd2, error;
239 
240 	rpipe = wpipe = NULL;
241 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
242 		pipeclose(rpipe);
243 		pipeclose(wpipe);
244 		return (ENFILE);
245 	}
246 
247 	error = falloc(td->td_lwp, &rf, &fd1);
248 	if (error) {
249 		pipeclose(rpipe);
250 		pipeclose(wpipe);
251 		return (error);
252 	}
253 	uap->sysmsg_fds[0] = fd1;
254 
255 	/*
256 	 * Warning: once we've gotten past allocation of the fd for the
257 	 * read-side, we can only drop the read side via fdrop() in order
258 	 * to avoid races against processes which manage to dup() the read
259 	 * side while we are blocked trying to allocate the write side.
260 	 */
261 	rf->f_type = DTYPE_PIPE;
262 	rf->f_flag = FREAD | FWRITE;
263 	rf->f_ops = &pipeops;
264 	rf->f_data = rpipe;
265 	error = falloc(td->td_lwp, &wf, &fd2);
266 	if (error) {
267 		fsetfd(fdp, NULL, fd1);
268 		fdrop(rf);
269 		/* rpipe has been closed by fdrop(). */
270 		pipeclose(wpipe);
271 		return (error);
272 	}
273 	wf->f_type = DTYPE_PIPE;
274 	wf->f_flag = FREAD | FWRITE;
275 	wf->f_ops = &pipeops;
276 	wf->f_data = wpipe;
277 	uap->sysmsg_fds[1] = fd2;
278 
279 	rpipe->pipe_slock = kmalloc(sizeof(struct lock),
280 				    M_PIPE, M_WAITOK|M_ZERO);
281 	wpipe->pipe_slock = rpipe->pipe_slock;
282 	rpipe->pipe_peer = wpipe;
283 	wpipe->pipe_peer = rpipe;
284 	lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
285 
286 	/*
287 	 * Once activated the peer relationship remains valid until
288 	 * both sides are closed.
289 	 */
290 	fsetfd(fdp, rf, fd1);
291 	fsetfd(fdp, wf, fd2);
292 	fdrop(rf);
293 	fdrop(wf);
294 
295 	return (0);
296 }
297 
298 /*
299  * Allocate kva for pipe circular buffer, the space is pageable
300  * This routine will 'realloc' the size of a pipe safely, if it fails
301  * it will retain the old buffer.
302  * If it fails it will return ENOMEM.
303  */
304 static int
305 pipespace(struct pipe *cpipe, int size)
306 {
307 	struct vm_object *object;
308 	caddr_t buffer;
309 	int npages, error;
310 
311 	npages = round_page(size) / PAGE_SIZE;
312 	object = cpipe->pipe_buffer.object;
313 
314 	/*
315 	 * [re]create the object if necessary and reserve space for it
316 	 * in the kernel_map.  The object and memory are pageable.  On
317 	 * success, free the old resources before assigning the new
318 	 * ones.
319 	 */
320 	if (object == NULL || object->size != npages) {
321 		object = vm_object_allocate(OBJT_DEFAULT, npages);
322 		buffer = (caddr_t)vm_map_min(&kernel_map);
323 
324 		error = vm_map_find(&kernel_map, object, NULL,
325 				    0, (vm_offset_t *)&buffer, size,
326 				    PAGE_SIZE,
327 				    1, VM_MAPTYPE_NORMAL,
328 				    VM_PROT_ALL, VM_PROT_ALL, 0);
329 
330 		if (error != KERN_SUCCESS) {
331 			vm_object_deallocate(object);
332 			return (ENOMEM);
333 		}
334 		pipe_free_kmem(cpipe);
335 		cpipe->pipe_buffer.object = object;
336 		cpipe->pipe_buffer.buffer = buffer;
337 		cpipe->pipe_buffer.size = size;
338 		++pipe_bkmem_alloc;
339 	} else {
340 		++pipe_bcache_alloc;
341 	}
342 	cpipe->pipe_buffer.rindex = 0;
343 	cpipe->pipe_buffer.windex = 0;
344 	return (0);
345 }
346 
347 /*
348  * Initialize and allocate VM and memory for pipe, pulling the pipe from
349  * our per-cpu cache if possible.  For now make sure it is sized for the
350  * smaller PIPE_SIZE default.
351  */
352 static int
353 pipe_create(struct pipe **cpipep)
354 {
355 	globaldata_t gd = mycpu;
356 	struct pipe *cpipe;
357 	int error;
358 
359 	if ((cpipe = gd->gd_pipeq) != NULL) {
360 		gd->gd_pipeq = cpipe->pipe_peer;
361 		--gd->gd_pipeqcount;
362 		cpipe->pipe_peer = NULL;
363 		cpipe->pipe_wantwcnt = 0;
364 	} else {
365 		cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
366 	}
367 	*cpipep = cpipe;
368 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
369 		return (error);
370 	vfs_timestamp(&cpipe->pipe_ctime);
371 	cpipe->pipe_atime = cpipe->pipe_ctime;
372 	cpipe->pipe_mtime = cpipe->pipe_ctime;
373 	lwkt_token_init(&cpipe->pipe_rlock, "piper");
374 	lwkt_token_init(&cpipe->pipe_wlock, "pipew");
375 	return (0);
376 }
377 
378 static int
379 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
380 {
381 	struct pipe *rpipe;
382 	struct pipe *wpipe;
383 	int error;
384 	size_t nread = 0;
385 	int nbio;
386 	u_int size;	/* total bytes available */
387 	u_int nsize;	/* total bytes to read */
388 	u_int rindex;	/* contiguous bytes available */
389 	int notify_writer;
390 	int bigread;
391 	int bigcount;
392 
393 	atomic_set_int(&curthread->td_mpflags, TDF_MP_BATCH_DEMARC);
394 
395 	if (uio->uio_resid == 0)
396 		return(0);
397 
398 	/*
399 	 * Setup locks, calculate nbio
400 	 */
401 	rpipe = (struct pipe *)fp->f_data;
402 	wpipe = rpipe->pipe_peer;
403 	lwkt_gettoken(&rpipe->pipe_rlock);
404 
405 	if (fflags & O_FBLOCKING)
406 		nbio = 0;
407 	else if (fflags & O_FNONBLOCKING)
408 		nbio = 1;
409 	else if (fp->f_flag & O_NONBLOCK)
410 		nbio = 1;
411 	else
412 		nbio = 0;
413 
414 	/*
415 	 * Reads are serialized.  Note however that pipe_buffer.buffer and
416 	 * pipe_buffer.size can change out from under us when the number
417 	 * of bytes in the buffer are zero due to the write-side doing a
418 	 * pipespace().
419 	 */
420 	error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
421 	if (error) {
422 		lwkt_reltoken(&rpipe->pipe_rlock);
423 		return (error);
424 	}
425 	notify_writer = 0;
426 
427 	bigread = (uio->uio_resid > 10 * 1024 * 1024);
428 	bigcount = 10;
429 
430 	while (uio->uio_resid) {
431 		/*
432 		 * Don't hog the cpu.
433 		 */
434 		if (bigread && --bigcount == 0) {
435 			lwkt_user_yield();
436 			bigcount = 10;
437 			if (CURSIG(curthread->td_lwp)) {
438 				error = EINTR;
439 				break;
440 			}
441 		}
442 
443 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
444 		cpu_lfence();
445 		if (size) {
446 			rindex = rpipe->pipe_buffer.rindex &
447 				 (rpipe->pipe_buffer.size - 1);
448 			nsize = size;
449 			if (nsize > rpipe->pipe_buffer.size - rindex)
450 				nsize = rpipe->pipe_buffer.size - rindex;
451 			nsize = szmin(nsize, uio->uio_resid);
452 
453 			error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
454 					nsize, uio);
455 			if (error)
456 				break;
457 			cpu_mfence();
458 			rpipe->pipe_buffer.rindex += nsize;
459 			nread += nsize;
460 
461 			/*
462 			 * If the FIFO is still over half full just continue
463 			 * and do not try to notify the writer yet.
464 			 */
465 			if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
466 				notify_writer = 0;
467 				continue;
468 			}
469 
470 			/*
471 			 * When the FIFO is less then half full notify any
472 			 * waiting writer.  WANTW can be checked while
473 			 * holding just the rlock.
474 			 */
475 			notify_writer = 1;
476 			if ((rpipe->pipe_state & PIPE_WANTW) == 0)
477 				continue;
478 		}
479 
480 		/*
481 		 * If the "write-side" was blocked we wake it up.  This code
482 		 * is reached either when the buffer is completely emptied
483 		 * or if it becomes more then half-empty.
484 		 *
485 		 * Pipe_state can only be modified if both the rlock and
486 		 * wlock are held.
487 		 */
488 		if (rpipe->pipe_state & PIPE_WANTW) {
489 			lwkt_gettoken(&rpipe->pipe_wlock);
490 			if (rpipe->pipe_state & PIPE_WANTW) {
491 				rpipe->pipe_state &= ~PIPE_WANTW;
492 				lwkt_reltoken(&rpipe->pipe_wlock);
493 				wakeup(rpipe);
494 			} else {
495 				lwkt_reltoken(&rpipe->pipe_wlock);
496 			}
497 		}
498 
499 		/*
500 		 * Pick up our copy loop again if the writer sent data to
501 		 * us while we were messing around.
502 		 *
503 		 * On a SMP box poll up to pipe_delay nanoseconds for new
504 		 * data.  Typically a value of 2000 to 4000 is sufficient
505 		 * to eradicate most IPIs/tsleeps/wakeups when a pipe
506 		 * is used for synchronous communications with small packets,
507 		 * and 8000 or so (8uS) will pipeline large buffer xfers
508 		 * between cpus over a pipe.
509 		 *
510 		 * For synchronous communications a hit means doing a
511 		 * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
512 		 * where as miss requiring a tsleep/wakeup sequence
513 		 * will take 7uS or more.
514 		 */
515 		if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
516 			continue;
517 
518 #ifdef _RDTSC_SUPPORTED_
519 		if (pipe_delay) {
520 			int64_t tsc_target;
521 			int good = 0;
522 
523 			tsc_target = tsc_get_target(pipe_delay);
524 			while (tsc_test_target(tsc_target) == 0) {
525 				if (rpipe->pipe_buffer.windex !=
526 				    rpipe->pipe_buffer.rindex) {
527 					good = 1;
528 					break;
529 				}
530 			}
531 			if (good)
532 				continue;
533 		}
534 #endif
535 
536 		/*
537 		 * Detect EOF condition, do not set error.
538 		 */
539 		if (rpipe->pipe_state & PIPE_REOF)
540 			break;
541 
542 		/*
543 		 * Break if some data was read, or if this was a non-blocking
544 		 * read.
545 		 */
546 		if (nread > 0)
547 			break;
548 
549 		if (nbio) {
550 			error = EAGAIN;
551 			break;
552 		}
553 
554 		/*
555 		 * Last chance, interlock with WANTR.
556 		 */
557 		lwkt_gettoken(&rpipe->pipe_wlock);
558 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
559 		if (size) {
560 			lwkt_reltoken(&rpipe->pipe_wlock);
561 			continue;
562 		}
563 
564 		/*
565 		 * Retest EOF - acquiring a new token can temporarily release
566 		 * tokens already held.
567 		 */
568 		if (rpipe->pipe_state & PIPE_REOF) {
569 			lwkt_reltoken(&rpipe->pipe_wlock);
570 			break;
571 		}
572 
573 		/*
574 		 * If there is no more to read in the pipe, reset its
575 		 * pointers to the beginning.  This improves cache hit
576 		 * stats.
577 		 *
578 		 * We need both locks to modify both pointers, and there
579 		 * must also not be a write in progress or the uiomove()
580 		 * in the write might block and temporarily release
581 		 * its wlock, then reacquire and update windex.  We are
582 		 * only serialized against reads, not writes.
583 		 *
584 		 * XXX should we even bother resetting the indices?  It
585 		 *     might actually be more cache efficient not to.
586 		 */
587 		if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
588 		    rpipe->pipe_wip == 0) {
589 			rpipe->pipe_buffer.rindex = 0;
590 			rpipe->pipe_buffer.windex = 0;
591 		}
592 
593 		/*
594 		 * Wait for more data.
595 		 *
596 		 * Pipe_state can only be set if both the rlock and wlock
597 		 * are held.
598 		 */
599 		rpipe->pipe_state |= PIPE_WANTR;
600 		tsleep_interlock(rpipe, PCATCH);
601 		lwkt_reltoken(&rpipe->pipe_wlock);
602 		error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
603 		++pipe_rblocked_count;
604 		if (error)
605 			break;
606 	}
607 	pipe_end_uio(rpipe, &rpipe->pipe_rip);
608 
609 	/*
610 	 * Uptime last access time
611 	 */
612 	if (error == 0 && nread)
613 		vfs_timestamp(&rpipe->pipe_atime);
614 
615 	/*
616 	 * If we drained the FIFO more then half way then handle
617 	 * write blocking hysteresis.
618 	 *
619 	 * Note that PIPE_WANTW cannot be set by the writer without
620 	 * it holding both rlock and wlock, so we can test it
621 	 * while holding just rlock.
622 	 */
623 	if (notify_writer) {
624 		/*
625 		 * Synchronous blocking is done on the pipe involved
626 		 */
627 		if (rpipe->pipe_state & PIPE_WANTW) {
628 			lwkt_gettoken(&rpipe->pipe_wlock);
629 			if (rpipe->pipe_state & PIPE_WANTW) {
630 				rpipe->pipe_state &= ~PIPE_WANTW;
631 				lwkt_reltoken(&rpipe->pipe_wlock);
632 				wakeup(rpipe);
633 			} else {
634 				lwkt_reltoken(&rpipe->pipe_wlock);
635 			}
636 		}
637 
638 		/*
639 		 * But we may also have to deal with a kqueue which is
640 		 * stored on the same pipe as its descriptor, so a
641 		 * EVFILT_WRITE event waiting for our side to drain will
642 		 * be on the other side.
643 		 */
644 		lwkt_gettoken(&wpipe->pipe_wlock);
645 		pipewakeup(wpipe, 0);
646 		lwkt_reltoken(&wpipe->pipe_wlock);
647 	}
648 	/*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
649 	lwkt_reltoken(&rpipe->pipe_rlock);
650 
651 	return (error);
652 }
653 
654 static int
655 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
656 {
657 	int error;
658 	int orig_resid;
659 	int nbio;
660 	struct pipe *wpipe;
661 	struct pipe *rpipe;
662 	u_int windex;
663 	u_int space;
664 	u_int wcount;
665 	int bigwrite;
666 	int bigcount;
667 
668 	/*
669 	 * Writes go to the peer.  The peer will always exist.
670 	 */
671 	rpipe = (struct pipe *) fp->f_data;
672 	wpipe = rpipe->pipe_peer;
673 	lwkt_gettoken(&wpipe->pipe_wlock);
674 	if (wpipe->pipe_state & PIPE_WEOF) {
675 		lwkt_reltoken(&wpipe->pipe_wlock);
676 		return (EPIPE);
677 	}
678 
679 	/*
680 	 * Degenerate case (EPIPE takes prec)
681 	 */
682 	if (uio->uio_resid == 0) {
683 		lwkt_reltoken(&wpipe->pipe_wlock);
684 		return(0);
685 	}
686 
687 	/*
688 	 * Writes are serialized (start_uio must be called with wlock)
689 	 */
690 	error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
691 	if (error) {
692 		lwkt_reltoken(&wpipe->pipe_wlock);
693 		return (error);
694 	}
695 
696 	if (fflags & O_FBLOCKING)
697 		nbio = 0;
698 	else if (fflags & O_FNONBLOCKING)
699 		nbio = 1;
700 	else if (fp->f_flag & O_NONBLOCK)
701 		nbio = 1;
702 	else
703 		nbio = 0;
704 
705 	/*
706 	 * If it is advantageous to resize the pipe buffer, do
707 	 * so.  We are write-serialized so we can block safely.
708 	 */
709 	if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
710 	    (pipe_nbig < pipe_maxbig) &&
711 	    wpipe->pipe_wantwcnt > 4 &&
712 	    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
713 		/*
714 		 * Recheck after lock.
715 		 */
716 		lwkt_gettoken(&wpipe->pipe_rlock);
717 		if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
718 		    (pipe_nbig < pipe_maxbig) &&
719 		    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
720 			atomic_add_int(&pipe_nbig, 1);
721 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
722 				++pipe_bigcount;
723 			else
724 				atomic_subtract_int(&pipe_nbig, 1);
725 		}
726 		lwkt_reltoken(&wpipe->pipe_rlock);
727 	}
728 
729 	orig_resid = uio->uio_resid;
730 	wcount = 0;
731 
732 	bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
733 	bigcount = 10;
734 
735 	while (uio->uio_resid) {
736 		if (wpipe->pipe_state & PIPE_WEOF) {
737 			error = EPIPE;
738 			break;
739 		}
740 
741 		/*
742 		 * Don't hog the cpu.
743 		 */
744 		if (bigwrite && --bigcount == 0) {
745 			lwkt_user_yield();
746 			bigcount = 10;
747 			if (CURSIG(curthread->td_lwp)) {
748 				error = EINTR;
749 				break;
750 			}
751 		}
752 
753 		windex = wpipe->pipe_buffer.windex &
754 			 (wpipe->pipe_buffer.size - 1);
755 		space = wpipe->pipe_buffer.size -
756 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
757 		cpu_lfence();
758 
759 		/* Writes of size <= PIPE_BUF must be atomic. */
760 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
761 			space = 0;
762 
763 		/*
764 		 * Write to fill, read size handles write hysteresis.  Also
765 		 * additional restrictions can cause select-based non-blocking
766 		 * writes to spin.
767 		 */
768 		if (space > 0) {
769 			u_int segsize;
770 
771 			/*
772 			 * Transfer size is minimum of uio transfer
773 			 * and free space in pipe buffer.
774 			 *
775 			 * Limit each uiocopy to no more then PIPE_SIZE
776 			 * so we can keep the gravy train going on a
777 			 * SMP box.  This doubles the performance for
778 			 * write sizes > 16K.  Otherwise large writes
779 			 * wind up doing an inefficient synchronous
780 			 * ping-pong.
781 			 */
782 			space = szmin(space, uio->uio_resid);
783 			if (space > PIPE_SIZE)
784 				space = PIPE_SIZE;
785 
786 			/*
787 			 * First segment to transfer is minimum of
788 			 * transfer size and contiguous space in
789 			 * pipe buffer.  If first segment to transfer
790 			 * is less than the transfer size, we've got
791 			 * a wraparound in the buffer.
792 			 */
793 			segsize = wpipe->pipe_buffer.size - windex;
794 			if (segsize > space)
795 				segsize = space;
796 
797 			/*
798 			 * If this is the first loop and the reader is
799 			 * blocked, do a preemptive wakeup of the reader.
800 			 *
801 			 * On SMP the IPI latency plus the wlock interlock
802 			 * on the reader side is the fastest way to get the
803 			 * reader going.  (The scheduler will hard loop on
804 			 * lock tokens).
805 			 *
806 			 * NOTE: We can't clear WANTR here without acquiring
807 			 * the rlock, which we don't want to do here!
808 			 */
809 			if ((wpipe->pipe_state & PIPE_WANTR))
810 				wakeup(wpipe);
811 
812 			/*
813 			 * Transfer segment, which may include a wrap-around.
814 			 * Update windex to account for both all in one go
815 			 * so the reader can read() the data atomically.
816 			 */
817 			error = uiomove(&wpipe->pipe_buffer.buffer[windex],
818 					segsize, uio);
819 			if (error == 0 && segsize < space) {
820 				segsize = space - segsize;
821 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
822 						segsize, uio);
823 			}
824 			if (error)
825 				break;
826 			cpu_mfence();
827 			wpipe->pipe_buffer.windex += space;
828 			wcount += space;
829 			continue;
830 		}
831 
832 		/*
833 		 * We need both the rlock and the wlock to interlock against
834 		 * the EOF, WANTW, and size checks, and to modify pipe_state.
835 		 *
836 		 * These are token locks so we do not have to worry about
837 		 * deadlocks.
838 		 */
839 		lwkt_gettoken(&wpipe->pipe_rlock);
840 
841 		/*
842 		 * If the "read-side" has been blocked, wake it up now
843 		 * and yield to let it drain synchronously rather
844 		 * then block.
845 		 */
846 		if (wpipe->pipe_state & PIPE_WANTR) {
847 			wpipe->pipe_state &= ~PIPE_WANTR;
848 			wakeup(wpipe);
849 		}
850 
851 		/*
852 		 * don't block on non-blocking I/O
853 		 */
854 		if (nbio) {
855 			lwkt_reltoken(&wpipe->pipe_rlock);
856 			error = EAGAIN;
857 			break;
858 		}
859 
860 		/*
861 		 * re-test whether we have to block in the writer after
862 		 * acquiring both locks, in case the reader opened up
863 		 * some space.
864 		 */
865 		space = wpipe->pipe_buffer.size -
866 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
867 		cpu_lfence();
868 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
869 			space = 0;
870 
871 		/*
872 		 * Retest EOF - acquiring a new token can temporarily release
873 		 * tokens already held.
874 		 */
875 		if (wpipe->pipe_state & PIPE_WEOF) {
876 			lwkt_reltoken(&wpipe->pipe_rlock);
877 			error = EPIPE;
878 			break;
879 		}
880 
881 		/*
882 		 * We have no more space and have something to offer,
883 		 * wake up select/poll/kq.
884 		 */
885 		if (space == 0) {
886 			wpipe->pipe_state |= PIPE_WANTW;
887 			++wpipe->pipe_wantwcnt;
888 			pipewakeup(wpipe, 1);
889 			if (wpipe->pipe_state & PIPE_WANTW)
890 				error = tsleep(wpipe, PCATCH, "pipewr", 0);
891 			++pipe_wblocked_count;
892 		}
893 		lwkt_reltoken(&wpipe->pipe_rlock);
894 
895 		/*
896 		 * Break out if we errored or the read side wants us to go
897 		 * away.
898 		 */
899 		if (error)
900 			break;
901 		if (wpipe->pipe_state & PIPE_WEOF) {
902 			error = EPIPE;
903 			break;
904 		}
905 	}
906 	pipe_end_uio(wpipe, &wpipe->pipe_wip);
907 
908 	/*
909 	 * If we have put any characters in the buffer, we wake up
910 	 * the reader.
911 	 *
912 	 * Both rlock and wlock are required to be able to modify pipe_state.
913 	 */
914 	if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
915 		if (wpipe->pipe_state & PIPE_WANTR) {
916 			lwkt_gettoken(&wpipe->pipe_rlock);
917 			if (wpipe->pipe_state & PIPE_WANTR) {
918 				wpipe->pipe_state &= ~PIPE_WANTR;
919 				lwkt_reltoken(&wpipe->pipe_rlock);
920 				wakeup(wpipe);
921 			} else {
922 				lwkt_reltoken(&wpipe->pipe_rlock);
923 			}
924 		}
925 		lwkt_gettoken(&wpipe->pipe_rlock);
926 		pipewakeup(wpipe, 1);
927 		lwkt_reltoken(&wpipe->pipe_rlock);
928 	}
929 
930 	/*
931 	 * Don't return EPIPE if I/O was successful
932 	 */
933 	if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
934 	    (uio->uio_resid == 0) &&
935 	    (error == EPIPE)) {
936 		error = 0;
937 	}
938 
939 	if (error == 0)
940 		vfs_timestamp(&wpipe->pipe_mtime);
941 
942 	/*
943 	 * We have something to offer,
944 	 * wake up select/poll/kq.
945 	 */
946 	/*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
947 	lwkt_reltoken(&wpipe->pipe_wlock);
948 	return (error);
949 }
950 
951 /*
952  * we implement a very minimal set of ioctls for compatibility with sockets.
953  */
954 static int
955 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
956 	   struct ucred *cred, struct sysmsg *msg)
957 {
958 	struct pipe *mpipe;
959 	int error;
960 
961 	mpipe = (struct pipe *)fp->f_data;
962 
963 	lwkt_gettoken(&mpipe->pipe_rlock);
964 	lwkt_gettoken(&mpipe->pipe_wlock);
965 
966 	switch (cmd) {
967 	case FIOASYNC:
968 		if (*(int *)data) {
969 			mpipe->pipe_state |= PIPE_ASYNC;
970 		} else {
971 			mpipe->pipe_state &= ~PIPE_ASYNC;
972 		}
973 		error = 0;
974 		break;
975 	case FIONREAD:
976 		*(int *)data = mpipe->pipe_buffer.windex -
977 				mpipe->pipe_buffer.rindex;
978 		error = 0;
979 		break;
980 	case FIOSETOWN:
981 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
982 		break;
983 	case FIOGETOWN:
984 		*(int *)data = fgetown(&mpipe->pipe_sigio);
985 		error = 0;
986 		break;
987 	case TIOCSPGRP:
988 		/* This is deprecated, FIOSETOWN should be used instead. */
989 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
990 		break;
991 
992 	case TIOCGPGRP:
993 		/* This is deprecated, FIOGETOWN should be used instead. */
994 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
995 		error = 0;
996 		break;
997 	default:
998 		error = ENOTTY;
999 		break;
1000 	}
1001 	lwkt_reltoken(&mpipe->pipe_wlock);
1002 	lwkt_reltoken(&mpipe->pipe_rlock);
1003 
1004 	return (error);
1005 }
1006 
1007 /*
1008  * MPSAFE
1009  */
1010 static int
1011 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1012 {
1013 	struct pipe *pipe;
1014 
1015 	pipe = (struct pipe *)fp->f_data;
1016 
1017 	bzero((caddr_t)ub, sizeof(*ub));
1018 	ub->st_mode = S_IFIFO;
1019 	ub->st_blksize = pipe->pipe_buffer.size;
1020 	ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1021 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1022 	ub->st_atimespec = pipe->pipe_atime;
1023 	ub->st_mtimespec = pipe->pipe_mtime;
1024 	ub->st_ctimespec = pipe->pipe_ctime;
1025 	/*
1026 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1027 	 * st_flags, st_gen.
1028 	 * XXX (st_dev, st_ino) should be unique.
1029 	 */
1030 	return (0);
1031 }
1032 
1033 static int
1034 pipe_close(struct file *fp)
1035 {
1036 	struct pipe *cpipe;
1037 
1038 	cpipe = (struct pipe *)fp->f_data;
1039 	fp->f_ops = &badfileops;
1040 	fp->f_data = NULL;
1041 	funsetown(&cpipe->pipe_sigio);
1042 	pipeclose(cpipe);
1043 	return (0);
1044 }
1045 
1046 /*
1047  * Shutdown one or both directions of a full-duplex pipe.
1048  */
1049 static int
1050 pipe_shutdown(struct file *fp, int how)
1051 {
1052 	struct pipe *rpipe;
1053 	struct pipe *wpipe;
1054 	int error = EPIPE;
1055 
1056 	rpipe = (struct pipe *)fp->f_data;
1057 	wpipe = rpipe->pipe_peer;
1058 
1059 	/*
1060 	 * We modify pipe_state on both pipes, which means we need
1061 	 * all four tokens!
1062 	 */
1063 	lwkt_gettoken(&rpipe->pipe_rlock);
1064 	lwkt_gettoken(&rpipe->pipe_wlock);
1065 	lwkt_gettoken(&wpipe->pipe_rlock);
1066 	lwkt_gettoken(&wpipe->pipe_wlock);
1067 
1068 	switch(how) {
1069 	case SHUT_RDWR:
1070 	case SHUT_RD:
1071 		rpipe->pipe_state |= PIPE_REOF;		/* my reads */
1072 		rpipe->pipe_state |= PIPE_WEOF;		/* peer writes */
1073 		if (rpipe->pipe_state & PIPE_WANTR) {
1074 			rpipe->pipe_state &= ~PIPE_WANTR;
1075 			wakeup(rpipe);
1076 		}
1077 		if (rpipe->pipe_state & PIPE_WANTW) {
1078 			rpipe->pipe_state &= ~PIPE_WANTW;
1079 			wakeup(rpipe);
1080 		}
1081 		error = 0;
1082 		if (how == SHUT_RD)
1083 			break;
1084 		/* fall through */
1085 	case SHUT_WR:
1086 		wpipe->pipe_state |= PIPE_REOF;		/* peer reads */
1087 		wpipe->pipe_state |= PIPE_WEOF;		/* my writes */
1088 		if (wpipe->pipe_state & PIPE_WANTR) {
1089 			wpipe->pipe_state &= ~PIPE_WANTR;
1090 			wakeup(wpipe);
1091 		}
1092 		if (wpipe->pipe_state & PIPE_WANTW) {
1093 			wpipe->pipe_state &= ~PIPE_WANTW;
1094 			wakeup(wpipe);
1095 		}
1096 		error = 0;
1097 		break;
1098 	}
1099 	pipewakeup(rpipe, 1);
1100 	pipewakeup(wpipe, 1);
1101 
1102 	lwkt_reltoken(&wpipe->pipe_wlock);
1103 	lwkt_reltoken(&wpipe->pipe_rlock);
1104 	lwkt_reltoken(&rpipe->pipe_wlock);
1105 	lwkt_reltoken(&rpipe->pipe_rlock);
1106 
1107 	return (error);
1108 }
1109 
1110 static void
1111 pipe_free_kmem(struct pipe *cpipe)
1112 {
1113 	if (cpipe->pipe_buffer.buffer != NULL) {
1114 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1115 			atomic_subtract_int(&pipe_nbig, 1);
1116 		kmem_free(&kernel_map,
1117 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1118 			cpipe->pipe_buffer.size);
1119 		cpipe->pipe_buffer.buffer = NULL;
1120 		cpipe->pipe_buffer.object = NULL;
1121 	}
1122 }
1123 
1124 /*
1125  * Close the pipe.  The slock must be held to interlock against simultanious
1126  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1127  */
1128 static void
1129 pipeclose(struct pipe *cpipe)
1130 {
1131 	globaldata_t gd;
1132 	struct pipe *ppipe;
1133 
1134 	if (cpipe == NULL)
1135 		return;
1136 
1137 	/*
1138 	 * The slock may not have been allocated yet (close during
1139 	 * initialization)
1140 	 *
1141 	 * We need both the read and write tokens to modify pipe_state.
1142 	 */
1143 	if (cpipe->pipe_slock)
1144 		lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1145 	lwkt_gettoken(&cpipe->pipe_rlock);
1146 	lwkt_gettoken(&cpipe->pipe_wlock);
1147 
1148 	/*
1149 	 * Set our state, wakeup anyone waiting in select/poll/kq, and
1150 	 * wakeup anyone blocked on our pipe.
1151 	 */
1152 	cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1153 	pipewakeup(cpipe, 1);
1154 	if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1155 		cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1156 		wakeup(cpipe);
1157 	}
1158 
1159 	/*
1160 	 * Disconnect from peer.
1161 	 */
1162 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1163 		lwkt_gettoken(&ppipe->pipe_rlock);
1164 		lwkt_gettoken(&ppipe->pipe_wlock);
1165 		ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1166 		pipewakeup(ppipe, 1);
1167 		if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1168 			ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1169 			wakeup(ppipe);
1170 		}
1171 		if (SLIST_FIRST(&ppipe->pipe_kq.ki_note))
1172 			KNOTE(&ppipe->pipe_kq.ki_note, 0);
1173 		lwkt_reltoken(&ppipe->pipe_wlock);
1174 		lwkt_reltoken(&ppipe->pipe_rlock);
1175 	}
1176 
1177 	/*
1178 	 * If the peer is also closed we can free resources for both
1179 	 * sides, otherwise we leave our side intact to deal with any
1180 	 * races (since we only have the slock).
1181 	 */
1182 	if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1183 		cpipe->pipe_peer = NULL;
1184 		ppipe->pipe_peer = NULL;
1185 		ppipe->pipe_slock = NULL;	/* we will free the slock */
1186 		pipeclose(ppipe);
1187 		ppipe = NULL;
1188 	}
1189 
1190 	lwkt_reltoken(&cpipe->pipe_wlock);
1191 	lwkt_reltoken(&cpipe->pipe_rlock);
1192 	if (cpipe->pipe_slock)
1193 		lockmgr(cpipe->pipe_slock, LK_RELEASE);
1194 
1195 	/*
1196 	 * If we disassociated from our peer we can free resources
1197 	 */
1198 	if (ppipe == NULL) {
1199 		gd = mycpu;
1200 		if (cpipe->pipe_slock) {
1201 			kfree(cpipe->pipe_slock, M_PIPE);
1202 			cpipe->pipe_slock = NULL;
1203 		}
1204 		if (gd->gd_pipeqcount >= pipe_maxcache ||
1205 		    cpipe->pipe_buffer.size != PIPE_SIZE
1206 		) {
1207 			pipe_free_kmem(cpipe);
1208 			kfree(cpipe, M_PIPE);
1209 		} else {
1210 			cpipe->pipe_state = 0;
1211 			cpipe->pipe_peer = gd->gd_pipeq;
1212 			gd->gd_pipeq = cpipe;
1213 			++gd->gd_pipeqcount;
1214 		}
1215 	}
1216 }
1217 
1218 static int
1219 pipe_kqfilter(struct file *fp, struct knote *kn)
1220 {
1221 	struct pipe *cpipe;
1222 
1223 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1224 
1225 	switch (kn->kn_filter) {
1226 	case EVFILT_READ:
1227 		kn->kn_fop = &pipe_rfiltops;
1228 		break;
1229 	case EVFILT_WRITE:
1230 		kn->kn_fop = &pipe_wfiltops;
1231 		if (cpipe->pipe_peer == NULL) {
1232 			/* other end of pipe has been closed */
1233 			return (EPIPE);
1234 		}
1235 		break;
1236 	default:
1237 		return (EOPNOTSUPP);
1238 	}
1239 	kn->kn_hook = (caddr_t)cpipe;
1240 
1241 	knote_insert(&cpipe->pipe_kq.ki_note, kn);
1242 
1243 	return (0);
1244 }
1245 
1246 static void
1247 filt_pipedetach(struct knote *kn)
1248 {
1249 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1250 
1251 	knote_remove(&cpipe->pipe_kq.ki_note, kn);
1252 }
1253 
1254 /*ARGSUSED*/
1255 static int
1256 filt_piperead(struct knote *kn, long hint)
1257 {
1258 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1259 	int ready = 0;
1260 
1261 	lwkt_gettoken(&rpipe->pipe_rlock);
1262 	lwkt_gettoken(&rpipe->pipe_wlock);
1263 
1264 	kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1265 
1266 	if (rpipe->pipe_state & PIPE_REOF) {
1267 		/*
1268 		 * Only set NODATA if all data has been exhausted
1269 		 */
1270 		if (kn->kn_data == 0)
1271 			kn->kn_flags |= EV_NODATA;
1272 		kn->kn_flags |= EV_EOF;
1273 		ready = 1;
1274 	}
1275 
1276 	lwkt_reltoken(&rpipe->pipe_wlock);
1277 	lwkt_reltoken(&rpipe->pipe_rlock);
1278 
1279 	if (!ready)
1280 		ready = kn->kn_data > 0;
1281 
1282 	return (ready);
1283 }
1284 
1285 /*ARGSUSED*/
1286 static int
1287 filt_pipewrite(struct knote *kn, long hint)
1288 {
1289 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1290 	struct pipe *wpipe = rpipe->pipe_peer;
1291 	int ready = 0;
1292 
1293 	kn->kn_data = 0;
1294 	if (wpipe == NULL) {
1295 		kn->kn_flags |= (EV_EOF | EV_NODATA);
1296 		return (1);
1297 	}
1298 
1299 	lwkt_gettoken(&wpipe->pipe_rlock);
1300 	lwkt_gettoken(&wpipe->pipe_wlock);
1301 
1302 	if (wpipe->pipe_state & PIPE_WEOF) {
1303 		kn->kn_flags |= (EV_EOF | EV_NODATA);
1304 		ready = 1;
1305 	}
1306 
1307 	if (!ready)
1308 		kn->kn_data = wpipe->pipe_buffer.size -
1309 			      (wpipe->pipe_buffer.windex -
1310 			       wpipe->pipe_buffer.rindex);
1311 
1312 	lwkt_reltoken(&wpipe->pipe_wlock);
1313 	lwkt_reltoken(&wpipe->pipe_rlock);
1314 
1315 	if (!ready)
1316 		ready = kn->kn_data >= PIPE_BUF;
1317 
1318 	return (ready);
1319 }
1320