xref: /dragonfly/sys/kern/sys_pipe.c (revision dca3c15d)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/poll.h>
40 #include <sys/select.h>
41 #include <sys/signalvar.h>
42 #include <sys/sysproto.h>
43 #include <sys/pipe.h>
44 #include <sys/vnode.h>
45 #include <sys/uio.h>
46 #include <sys/event.h>
47 #include <sys/globaldata.h>
48 #include <sys/module.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/socket.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <sys/lock.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_extern.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_zone.h>
63 
64 #include <sys/file2.h>
65 #include <sys/signal2.h>
66 
67 #include <machine/cpufunc.h>
68 
69 /*
70  * interfaces to the outside world
71  */
72 static int pipe_read (struct file *fp, struct uio *uio,
73 		struct ucred *cred, int flags);
74 static int pipe_write (struct file *fp, struct uio *uio,
75 		struct ucred *cred, int flags);
76 static int pipe_close (struct file *fp);
77 static int pipe_shutdown (struct file *fp, int how);
78 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
79 static int pipe_kqfilter (struct file *fp, struct knote *kn);
80 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
81 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
82 		struct ucred *cred, struct sysmsg *msg);
83 
84 static struct fileops pipeops = {
85 	.fo_read = pipe_read,
86 	.fo_write = pipe_write,
87 	.fo_ioctl = pipe_ioctl,
88 	.fo_poll = pipe_poll,
89 	.fo_kqfilter = pipe_kqfilter,
90 	.fo_stat = pipe_stat,
91 	.fo_close = pipe_close,
92 	.fo_shutdown = pipe_shutdown
93 };
94 
95 static void	filt_pipedetach(struct knote *kn);
96 static int	filt_piperead(struct knote *kn, long hint);
97 static int	filt_pipewrite(struct knote *kn, long hint);
98 
99 static struct filterops pipe_rfiltops =
100 	{ 1, NULL, filt_pipedetach, filt_piperead };
101 static struct filterops pipe_wfiltops =
102 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
103 
104 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
105 
106 /*
107  * Default pipe buffer size(s), this can be kind-of large now because pipe
108  * space is pageable.  The pipe code will try to maintain locality of
109  * reference for performance reasons, so small amounts of outstanding I/O
110  * will not wipe the cache.
111  */
112 #define MINPIPESIZE (PIPE_SIZE/3)
113 #define MAXPIPESIZE (2*PIPE_SIZE/3)
114 
115 /*
116  * Limit the number of "big" pipes
117  */
118 #define LIMITBIGPIPES	64
119 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
120 
121 static int pipe_maxbig = LIMITBIGPIPES;
122 static int pipe_maxcache = PIPEQ_MAX_CACHE;
123 static int pipe_bigcount;
124 static int pipe_nbig;
125 static int pipe_bcache_alloc;
126 static int pipe_bkmem_alloc;
127 static int pipe_rblocked_count;
128 static int pipe_wblocked_count;
129 
130 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
131 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
132         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
133 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
134         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
135 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
136         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
137 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
138         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
139 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
140         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
141 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
142         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
143 #ifdef SMP
144 static int pipe_delay = 5000;	/* 5uS default */
145 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
146         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
147 static int pipe_mpsafe = 1;
148 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
149         CTLFLAG_RW, &pipe_mpsafe, 0, "");
150 #endif
151 #if !defined(NO_PIPE_SYSCTL_STATS)
152 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
153         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
154 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
155         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
156 #endif
157 
158 static void pipeclose (struct pipe *cpipe);
159 static void pipe_free_kmem (struct pipe *cpipe);
160 static int pipe_create (struct pipe **cpipep);
161 static __inline void pipeselwakeup (struct pipe *cpipe);
162 static int pipespace (struct pipe *cpipe, int size);
163 
164 static __inline int
165 pipeseltest(struct pipe *cpipe)
166 {
167 	return ((cpipe->pipe_state & PIPE_SEL) ||
168 		((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) ||
169 		SLIST_FIRST(&cpipe->pipe_sel.si_note));
170 }
171 
172 static __inline void
173 pipeselwakeup(struct pipe *cpipe)
174 {
175 	if (cpipe->pipe_state & PIPE_SEL) {
176 		get_mplock();
177 		cpipe->pipe_state &= ~PIPE_SEL;
178 		selwakeup(&cpipe->pipe_sel);
179 		rel_mplock();
180 	}
181 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
182 		get_mplock();
183 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
184 		rel_mplock();
185 	}
186 	if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
187 		get_mplock();
188 		KNOTE(&cpipe->pipe_sel.si_note, 0);
189 		rel_mplock();
190 	}
191 }
192 
193 /*
194  * These routines are called before and after a UIO.  The UIO
195  * may block, causing our held tokens to be lost temporarily.
196  *
197  * We use these routines to serialize reads against other reads
198  * and writes against other writes.
199  *
200  * The read token is held on entry so *ipp does not race.
201  */
202 static __inline int
203 pipe_start_uio(struct pipe *cpipe, int *ipp)
204 {
205 	int error;
206 
207 	while (*ipp) {
208 		*ipp = -1;
209 		error = tsleep(ipp, PCATCH, "pipexx", 0);
210 		if (error)
211 			return (error);
212 	}
213 	*ipp = 1;
214 	return (0);
215 }
216 
217 static __inline void
218 pipe_end_uio(struct pipe *cpipe, int *ipp)
219 {
220 	if (*ipp < 0) {
221 		*ipp = 0;
222 		wakeup(ipp);
223 	} else {
224 		KKASSERT(*ipp > 0);
225 		*ipp = 0;
226 	}
227 }
228 
229 static __inline void
230 pipe_get_mplock(int *save)
231 {
232 #ifdef SMP
233 	if (pipe_mpsafe == 0) {
234 		get_mplock();
235 		*save = 1;
236 	} else
237 #endif
238 	{
239 		*save = 0;
240 	}
241 }
242 
243 static __inline void
244 pipe_rel_mplock(int *save)
245 {
246 #ifdef SMP
247 	if (*save)
248 		rel_mplock();
249 #endif
250 }
251 
252 
253 /*
254  * The pipe system call for the DTYPE_PIPE type of pipes
255  *
256  * pipe_ARgs(int dummy)
257  */
258 
259 /* ARGSUSED */
260 int
261 sys_pipe(struct pipe_args *uap)
262 {
263 	struct thread *td = curthread;
264 	struct proc *p = td->td_proc;
265 	struct file *rf, *wf;
266 	struct pipe *rpipe, *wpipe;
267 	int fd1, fd2, error;
268 
269 	KKASSERT(p);
270 
271 	rpipe = wpipe = NULL;
272 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
273 		pipeclose(rpipe);
274 		pipeclose(wpipe);
275 		return (ENFILE);
276 	}
277 
278 	error = falloc(p, &rf, &fd1);
279 	if (error) {
280 		pipeclose(rpipe);
281 		pipeclose(wpipe);
282 		return (error);
283 	}
284 	uap->sysmsg_fds[0] = fd1;
285 
286 	/*
287 	 * Warning: once we've gotten past allocation of the fd for the
288 	 * read-side, we can only drop the read side via fdrop() in order
289 	 * to avoid races against processes which manage to dup() the read
290 	 * side while we are blocked trying to allocate the write side.
291 	 */
292 	rf->f_type = DTYPE_PIPE;
293 	rf->f_flag = FREAD | FWRITE;
294 	rf->f_ops = &pipeops;
295 	rf->f_data = rpipe;
296 	error = falloc(p, &wf, &fd2);
297 	if (error) {
298 		fsetfd(p, NULL, fd1);
299 		fdrop(rf);
300 		/* rpipe has been closed by fdrop(). */
301 		pipeclose(wpipe);
302 		return (error);
303 	}
304 	wf->f_type = DTYPE_PIPE;
305 	wf->f_flag = FREAD | FWRITE;
306 	wf->f_ops = &pipeops;
307 	wf->f_data = wpipe;
308 	uap->sysmsg_fds[1] = fd2;
309 
310 	rpipe->pipe_slock = kmalloc(sizeof(struct lock),
311 				    M_PIPE, M_WAITOK|M_ZERO);
312 	wpipe->pipe_slock = rpipe->pipe_slock;
313 	rpipe->pipe_peer = wpipe;
314 	wpipe->pipe_peer = rpipe;
315 	lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
316 
317 	/*
318 	 * Once activated the peer relationship remains valid until
319 	 * both sides are closed.
320 	 */
321 	fsetfd(p, rf, fd1);
322 	fsetfd(p, wf, fd2);
323 	fdrop(rf);
324 	fdrop(wf);
325 
326 	return (0);
327 }
328 
329 /*
330  * Allocate kva for pipe circular buffer, the space is pageable
331  * This routine will 'realloc' the size of a pipe safely, if it fails
332  * it will retain the old buffer.
333  * If it fails it will return ENOMEM.
334  */
335 static int
336 pipespace(struct pipe *cpipe, int size)
337 {
338 	struct vm_object *object;
339 	caddr_t buffer;
340 	int npages, error;
341 
342 	npages = round_page(size) / PAGE_SIZE;
343 	object = cpipe->pipe_buffer.object;
344 
345 	/*
346 	 * [re]create the object if necessary and reserve space for it
347 	 * in the kernel_map.  The object and memory are pageable.  On
348 	 * success, free the old resources before assigning the new
349 	 * ones.
350 	 */
351 	if (object == NULL || object->size != npages) {
352 		get_mplock();
353 		object = vm_object_allocate(OBJT_DEFAULT, npages);
354 		buffer = (caddr_t)vm_map_min(&kernel_map);
355 
356 		error = vm_map_find(&kernel_map, object, 0,
357 				    (vm_offset_t *)&buffer, size,
358 				    1,
359 				    VM_MAPTYPE_NORMAL,
360 				    VM_PROT_ALL, VM_PROT_ALL,
361 				    0);
362 
363 		if (error != KERN_SUCCESS) {
364 			vm_object_deallocate(object);
365 			rel_mplock();
366 			return (ENOMEM);
367 		}
368 		pipe_free_kmem(cpipe);
369 		rel_mplock();
370 		cpipe->pipe_buffer.object = object;
371 		cpipe->pipe_buffer.buffer = buffer;
372 		cpipe->pipe_buffer.size = size;
373 		++pipe_bkmem_alloc;
374 	} else {
375 		++pipe_bcache_alloc;
376 	}
377 	cpipe->pipe_buffer.rindex = 0;
378 	cpipe->pipe_buffer.windex = 0;
379 	return (0);
380 }
381 
382 /*
383  * Initialize and allocate VM and memory for pipe, pulling the pipe from
384  * our per-cpu cache if possible.  For now make sure it is sized for the
385  * smaller PIPE_SIZE default.
386  */
387 static int
388 pipe_create(struct pipe **cpipep)
389 {
390 	globaldata_t gd = mycpu;
391 	struct pipe *cpipe;
392 	int error;
393 
394 	if ((cpipe = gd->gd_pipeq) != NULL) {
395 		gd->gd_pipeq = cpipe->pipe_peer;
396 		--gd->gd_pipeqcount;
397 		cpipe->pipe_peer = NULL;
398 		cpipe->pipe_wantwcnt = 0;
399 	} else {
400 		cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
401 	}
402 	*cpipep = cpipe;
403 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
404 		return (error);
405 	vfs_timestamp(&cpipe->pipe_ctime);
406 	cpipe->pipe_atime = cpipe->pipe_ctime;
407 	cpipe->pipe_mtime = cpipe->pipe_ctime;
408 	lwkt_token_init(&cpipe->pipe_rlock);
409 	lwkt_token_init(&cpipe->pipe_wlock);
410 	return (0);
411 }
412 
413 /*
414  * MPALMOSTSAFE (acquires mplock)
415  */
416 static int
417 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
418 {
419 	struct pipe *rpipe;
420 	int error;
421 	size_t nread = 0;
422 	int nbio;
423 	u_int size;	/* total bytes available */
424 	u_int nsize;	/* total bytes to read */
425 	u_int rindex;	/* contiguous bytes available */
426 	int notify_writer;
427 	lwkt_tokref rlock;
428 	lwkt_tokref wlock;
429 	int mpsave;
430 	int bigread;
431 	int bigcount;
432 
433 	if (uio->uio_resid == 0)
434 		return(0);
435 
436 	/*
437 	 * Setup locks, calculate nbio
438 	 */
439 	pipe_get_mplock(&mpsave);
440 	rpipe = (struct pipe *)fp->f_data;
441 	lwkt_gettoken(&rlock, &rpipe->pipe_rlock);
442 
443 	if (fflags & O_FBLOCKING)
444 		nbio = 0;
445 	else if (fflags & O_FNONBLOCKING)
446 		nbio = 1;
447 	else if (fp->f_flag & O_NONBLOCK)
448 		nbio = 1;
449 	else
450 		nbio = 0;
451 
452 	/*
453 	 * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
454 	 * pipe_buffer.size can change out from under us when the number
455 	 * of bytes in the buffer are zero due to the write-side doing a
456 	 * pipespace().
457 	 */
458 	error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
459 	if (error) {
460 		pipe_rel_mplock(&mpsave);
461 		lwkt_reltoken(&rlock);
462 		return (error);
463 	}
464 	notify_writer = 0;
465 
466 	bigread = (uio->uio_resid > 10 * 1024 * 1024);
467 	bigcount = 10;
468 
469 	while (uio->uio_resid) {
470 		/*
471 		 * Don't hog the cpu.
472 		 */
473 		if (bigread && --bigcount == 0) {
474 			lwkt_user_yield();
475 			bigcount = 10;
476 			if (CURSIG(curthread->td_lwp)) {
477 				error = EINTR;
478 				break;
479 			}
480 		}
481 
482 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
483 		cpu_lfence();
484 		if (size) {
485 			rindex = rpipe->pipe_buffer.rindex &
486 				 (rpipe->pipe_buffer.size - 1);
487 			nsize = size;
488 			if (nsize > rpipe->pipe_buffer.size - rindex)
489 				nsize = rpipe->pipe_buffer.size - rindex;
490 			nsize = szmin(nsize, uio->uio_resid);
491 
492 			error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
493 					nsize, uio);
494 			if (error)
495 				break;
496 			cpu_mfence();
497 			rpipe->pipe_buffer.rindex += nsize;
498 			nread += nsize;
499 
500 			/*
501 			 * If the FIFO is still over half full just continue
502 			 * and do not try to notify the writer yet.
503 			 */
504 			if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
505 				notify_writer = 0;
506 				continue;
507 			}
508 
509 			/*
510 			 * When the FIFO is less then half full notify any
511 			 * waiting writer.  WANTW can be checked while
512 			 * holding just the rlock.
513 			 */
514 			notify_writer = 1;
515 			if ((rpipe->pipe_state & PIPE_WANTW) == 0)
516 				continue;
517 		}
518 
519 		/*
520 		 * If the "write-side" was blocked we wake it up.  This code
521 		 * is reached either when the buffer is completely emptied
522 		 * or if it becomes more then half-empty.
523 		 *
524 		 * Pipe_state can only be modified if both the rlock and
525 		 * wlock are held.
526 		 */
527 		if (rpipe->pipe_state & PIPE_WANTW) {
528 			lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
529 			if (rpipe->pipe_state & PIPE_WANTW) {
530 				notify_writer = 0;
531 				rpipe->pipe_state &= ~PIPE_WANTW;
532 				lwkt_reltoken(&wlock);
533 				wakeup(rpipe);
534 			} else {
535 				lwkt_reltoken(&wlock);
536 			}
537 		}
538 
539 		/*
540 		 * Pick up our copy loop again if the writer sent data to
541 		 * us while we were messing around.
542 		 *
543 		 * On a SMP box poll up to pipe_delay nanoseconds for new
544 		 * data.  Typically a value of 2000 to 4000 is sufficient
545 		 * to eradicate most IPIs/tsleeps/wakeups when a pipe
546 		 * is used for synchronous communications with small packets,
547 		 * and 8000 or so (8uS) will pipeline large buffer xfers
548 		 * between cpus over a pipe.
549 		 *
550 		 * For synchronous communications a hit means doing a
551 		 * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
552 		 * where as miss requiring a tsleep/wakeup sequence
553 		 * will take 7uS or more.
554 		 */
555 		if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
556 			continue;
557 
558 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
559 		if (pipe_delay) {
560 			int64_t tsc_target;
561 			int good = 0;
562 
563 			tsc_target = tsc_get_target(pipe_delay);
564 			while (tsc_test_target(tsc_target) == 0) {
565 				if (rpipe->pipe_buffer.windex !=
566 				    rpipe->pipe_buffer.rindex) {
567 					good = 1;
568 					break;
569 				}
570 			}
571 			if (good)
572 				continue;
573 		}
574 #endif
575 
576 		/*
577 		 * Detect EOF condition, do not set error.
578 		 */
579 		if (rpipe->pipe_state & PIPE_REOF)
580 			break;
581 
582 		/*
583 		 * Break if some data was read, or if this was a non-blocking
584 		 * read.
585 		 */
586 		if (nread > 0)
587 			break;
588 
589 		if (nbio) {
590 			error = EAGAIN;
591 			break;
592 		}
593 
594 		/*
595 		 * Last chance, interlock with WANTR.
596 		 */
597 		lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
598 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
599 		if (size) {
600 			lwkt_reltoken(&wlock);
601 			continue;
602 		}
603 
604 		/*
605 		 * Retest EOF - acquiring a new token can temporarily release
606 		 * tokens already held.
607 		 */
608 		if (rpipe->pipe_state & PIPE_REOF) {
609 			lwkt_reltoken(&wlock);
610 			break;
611 		}
612 
613 		/*
614 		 * If there is no more to read in the pipe, reset its
615 		 * pointers to the beginning.  This improves cache hit
616 		 * stats.
617 		 *
618 		 * We need both locks to modify both pointers, and there
619 		 * must also not be a write in progress or the uiomove()
620 		 * in the write might block and temporarily release
621 		 * its wlock, then reacquire and update windex.  We are
622 		 * only serialized against reads, not writes.
623 		 *
624 		 * XXX should we even bother resetting the indices?  It
625 		 *     might actually be more cache efficient not to.
626 		 */
627 		if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
628 		    rpipe->pipe_wip == 0) {
629 			rpipe->pipe_buffer.rindex = 0;
630 			rpipe->pipe_buffer.windex = 0;
631 		}
632 
633 		/*
634 		 * Wait for more data.
635 		 *
636 		 * Pipe_state can only be set if both the rlock and wlock
637 		 * are held.
638 		 */
639 		rpipe->pipe_state |= PIPE_WANTR;
640 		tsleep_interlock(rpipe, PCATCH);
641 		lwkt_reltoken(&wlock);
642 		error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
643 		++pipe_rblocked_count;
644 		if (error)
645 			break;
646 	}
647 	pipe_end_uio(rpipe, &rpipe->pipe_rip);
648 
649 	/*
650 	 * Uptime last access time
651 	 */
652 	if (error == 0 && nread)
653 		vfs_timestamp(&rpipe->pipe_atime);
654 
655 	/*
656 	 * If we drained the FIFO more then half way then handle
657 	 * write blocking hysteresis.
658 	 *
659 	 * Note that PIPE_WANTW cannot be set by the writer without
660 	 * it holding both rlock and wlock, so we can test it
661 	 * while holding just rlock.
662 	 */
663 	if (notify_writer) {
664 		if (rpipe->pipe_state & PIPE_WANTW) {
665 			lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
666 			if (rpipe->pipe_state & PIPE_WANTW) {
667 				rpipe->pipe_state &= ~PIPE_WANTW;
668 				lwkt_reltoken(&wlock);
669 				wakeup(rpipe);
670 			} else {
671 				lwkt_reltoken(&wlock);
672 			}
673 		}
674 		if (pipeseltest(rpipe)) {
675 			lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
676 			pipeselwakeup(rpipe);
677 			lwkt_reltoken(&wlock);
678 		}
679 	}
680 	/*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
681 	lwkt_reltoken(&rlock);
682 
683 	pipe_rel_mplock(&mpsave);
684 	return (error);
685 }
686 
687 /*
688  * MPALMOSTSAFE - acquires mplock
689  */
690 static int
691 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
692 {
693 	int error;
694 	int orig_resid;
695 	int nbio;
696 	struct pipe *wpipe, *rpipe;
697 	lwkt_tokref rlock;
698 	lwkt_tokref wlock;
699 	u_int windex;
700 	u_int space;
701 	u_int wcount;
702 	int mpsave;
703 	int bigwrite;
704 	int bigcount;
705 
706 	pipe_get_mplock(&mpsave);
707 
708 	/*
709 	 * Writes go to the peer.  The peer will always exist.
710 	 */
711 	rpipe = (struct pipe *) fp->f_data;
712 	wpipe = rpipe->pipe_peer;
713 	lwkt_gettoken(&wlock, &wpipe->pipe_wlock);
714 	if (wpipe->pipe_state & PIPE_WEOF) {
715 		pipe_rel_mplock(&mpsave);
716 		lwkt_reltoken(&wlock);
717 		return (EPIPE);
718 	}
719 
720 	/*
721 	 * Degenerate case (EPIPE takes prec)
722 	 */
723 	if (uio->uio_resid == 0) {
724 		pipe_rel_mplock(&mpsave);
725 		lwkt_reltoken(&wlock);
726 		return(0);
727 	}
728 
729 	/*
730 	 * Writes are serialized (start_uio must be called with wlock)
731 	 */
732 	error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
733 	if (error) {
734 		pipe_rel_mplock(&mpsave);
735 		lwkt_reltoken(&wlock);
736 		return (error);
737 	}
738 
739 	if (fflags & O_FBLOCKING)
740 		nbio = 0;
741 	else if (fflags & O_FNONBLOCKING)
742 		nbio = 1;
743 	else if (fp->f_flag & O_NONBLOCK)
744 		nbio = 1;
745 	else
746 		nbio = 0;
747 
748 	/*
749 	 * If it is advantageous to resize the pipe buffer, do
750 	 * so.  We are write-serialized so we can block safely.
751 	 */
752 	if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
753 	    (pipe_nbig < pipe_maxbig) &&
754 	    wpipe->pipe_wantwcnt > 4 &&
755 	    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
756 		/*
757 		 * Recheck after lock.
758 		 */
759 		lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
760 		if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
761 		    (pipe_nbig < pipe_maxbig) &&
762 		    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
763 			atomic_add_int(&pipe_nbig, 1);
764 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
765 				++pipe_bigcount;
766 			else
767 				atomic_subtract_int(&pipe_nbig, 1);
768 		}
769 		lwkt_reltoken(&rlock);
770 	}
771 
772 	orig_resid = uio->uio_resid;
773 	wcount = 0;
774 
775 	bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
776 	bigcount = 10;
777 
778 	while (uio->uio_resid) {
779 		if (wpipe->pipe_state & PIPE_WEOF) {
780 			error = EPIPE;
781 			break;
782 		}
783 
784 		/*
785 		 * Don't hog the cpu.
786 		 */
787 		if (bigwrite && --bigcount == 0) {
788 			lwkt_user_yield();
789 			bigcount = 10;
790 			if (CURSIG(curthread->td_lwp)) {
791 				error = EINTR;
792 				break;
793 			}
794 		}
795 
796 		windex = wpipe->pipe_buffer.windex &
797 			 (wpipe->pipe_buffer.size - 1);
798 		space = wpipe->pipe_buffer.size -
799 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
800 		cpu_lfence();
801 
802 		/* Writes of size <= PIPE_BUF must be atomic. */
803 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
804 			space = 0;
805 
806 		/*
807 		 * Write to fill, read size handles write hysteresis.  Also
808 		 * additional restrictions can cause select-based non-blocking
809 		 * writes to spin.
810 		 */
811 		if (space > 0) {
812 			u_int segsize;
813 
814 			/*
815 			 * Transfer size is minimum of uio transfer
816 			 * and free space in pipe buffer.
817 			 *
818 			 * Limit each uiocopy to no more then PIPE_SIZE
819 			 * so we can keep the gravy train going on a
820 			 * SMP box.  This doubles the performance for
821 			 * write sizes > 16K.  Otherwise large writes
822 			 * wind up doing an inefficient synchronous
823 			 * ping-pong.
824 			 */
825 			space = szmin(space, uio->uio_resid);
826 			if (space > PIPE_SIZE)
827 				space = PIPE_SIZE;
828 
829 			/*
830 			 * First segment to transfer is minimum of
831 			 * transfer size and contiguous space in
832 			 * pipe buffer.  If first segment to transfer
833 			 * is less than the transfer size, we've got
834 			 * a wraparound in the buffer.
835 			 */
836 			segsize = wpipe->pipe_buffer.size - windex;
837 			if (segsize > space)
838 				segsize = space;
839 
840 #ifdef SMP
841 			/*
842 			 * If this is the first loop and the reader is
843 			 * blocked, do a preemptive wakeup of the reader.
844 			 *
845 			 * On SMP the IPI latency plus the wlock interlock
846 			 * on the reader side is the fastest way to get the
847 			 * reader going.  (The scheduler will hard loop on
848 			 * lock tokens).
849 			 *
850 			 * NOTE: We can't clear WANTR here without acquiring
851 			 * the rlock, which we don't want to do here!
852 			 */
853 			if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
854 				wakeup(wpipe);
855 #endif
856 
857 			/*
858 			 * Transfer segment, which may include a wrap-around.
859 			 * Update windex to account for both all in one go
860 			 * so the reader can read() the data atomically.
861 			 */
862 			error = uiomove(&wpipe->pipe_buffer.buffer[windex],
863 					segsize, uio);
864 			if (error == 0 && segsize < space) {
865 				segsize = space - segsize;
866 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
867 						segsize, uio);
868 			}
869 			if (error)
870 				break;
871 			cpu_mfence();
872 			wpipe->pipe_buffer.windex += space;
873 			wcount += space;
874 			continue;
875 		}
876 
877 		/*
878 		 * We need both the rlock and the wlock to interlock against
879 		 * the EOF, WANTW, and size checks, and to modify pipe_state.
880 		 *
881 		 * These are token locks so we do not have to worry about
882 		 * deadlocks.
883 		 */
884 		lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
885 
886 		/*
887 		 * If the "read-side" has been blocked, wake it up now
888 		 * and yield to let it drain synchronously rather
889 		 * then block.
890 		 */
891 		if (wpipe->pipe_state & PIPE_WANTR) {
892 			wpipe->pipe_state &= ~PIPE_WANTR;
893 			wakeup(wpipe);
894 		}
895 
896 		/*
897 		 * don't block on non-blocking I/O
898 		 */
899 		if (nbio) {
900 			lwkt_reltoken(&rlock);
901 			error = EAGAIN;
902 			break;
903 		}
904 
905 		/*
906 		 * re-test whether we have to block in the writer after
907 		 * acquiring both locks, in case the reader opened up
908 		 * some space.
909 		 */
910 		space = wpipe->pipe_buffer.size -
911 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
912 		cpu_lfence();
913 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
914 			space = 0;
915 
916 		/*
917 		 * Retest EOF - acquiring a new token can temporarily release
918 		 * tokens already held.
919 		 */
920 		if (wpipe->pipe_state & PIPE_WEOF) {
921 			lwkt_reltoken(&rlock);
922 			error = EPIPE;
923 			break;
924 		}
925 
926 		/*
927 		 * We have no more space and have something to offer,
928 		 * wake up select/poll.
929 		 */
930 		if (space == 0) {
931 			wpipe->pipe_state |= PIPE_WANTW;
932 			++wpipe->pipe_wantwcnt;
933 			pipeselwakeup(wpipe);
934 			if (wpipe->pipe_state & PIPE_WANTW)
935 				error = tsleep(wpipe, PCATCH, "pipewr", 0);
936 			++pipe_wblocked_count;
937 		}
938 		lwkt_reltoken(&rlock);
939 
940 		/*
941 		 * Break out if we errored or the read side wants us to go
942 		 * away.
943 		 */
944 		if (error)
945 			break;
946 		if (wpipe->pipe_state & PIPE_WEOF) {
947 			error = EPIPE;
948 			break;
949 		}
950 	}
951 	pipe_end_uio(wpipe, &wpipe->pipe_wip);
952 
953 	/*
954 	 * If we have put any characters in the buffer, we wake up
955 	 * the reader.
956 	 *
957 	 * Both rlock and wlock are required to be able to modify pipe_state.
958 	 */
959 	if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
960 		if (wpipe->pipe_state & PIPE_WANTR) {
961 			lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
962 			if (wpipe->pipe_state & PIPE_WANTR) {
963 				wpipe->pipe_state &= ~PIPE_WANTR;
964 				lwkt_reltoken(&rlock);
965 				wakeup(wpipe);
966 			} else {
967 				lwkt_reltoken(&rlock);
968 			}
969 		}
970 		if (pipeseltest(wpipe)) {
971 			lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
972 			pipeselwakeup(wpipe);
973 			lwkt_reltoken(&rlock);
974 		}
975 	}
976 
977 	/*
978 	 * Don't return EPIPE if I/O was successful
979 	 */
980 	if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
981 	    (uio->uio_resid == 0) &&
982 	    (error == EPIPE)) {
983 		error = 0;
984 	}
985 
986 	if (error == 0)
987 		vfs_timestamp(&wpipe->pipe_mtime);
988 
989 	/*
990 	 * We have something to offer,
991 	 * wake up select/poll.
992 	 */
993 	/*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
994 	lwkt_reltoken(&wlock);
995 	pipe_rel_mplock(&mpsave);
996 	return (error);
997 }
998 
999 /*
1000  * MPALMOSTSAFE - acquires mplock
1001  *
1002  * we implement a very minimal set of ioctls for compatibility with sockets.
1003  */
1004 int
1005 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
1006 	   struct ucred *cred, struct sysmsg *msg)
1007 {
1008 	struct pipe *mpipe;
1009 	lwkt_tokref rlock;
1010 	lwkt_tokref wlock;
1011 	int error;
1012 	int mpsave;
1013 
1014 	pipe_get_mplock(&mpsave);
1015 	mpipe = (struct pipe *)fp->f_data;
1016 
1017 	lwkt_gettoken(&rlock, &mpipe->pipe_rlock);
1018 	lwkt_gettoken(&wlock, &mpipe->pipe_wlock);
1019 
1020 	switch (cmd) {
1021 	case FIOASYNC:
1022 		if (*(int *)data) {
1023 			mpipe->pipe_state |= PIPE_ASYNC;
1024 		} else {
1025 			mpipe->pipe_state &= ~PIPE_ASYNC;
1026 		}
1027 		error = 0;
1028 		break;
1029 	case FIONREAD:
1030 		*(int *)data = mpipe->pipe_buffer.windex -
1031 				mpipe->pipe_buffer.rindex;
1032 		error = 0;
1033 		break;
1034 	case FIOSETOWN:
1035 		get_mplock();
1036 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1037 		rel_mplock();
1038 		break;
1039 	case FIOGETOWN:
1040 		*(int *)data = fgetown(mpipe->pipe_sigio);
1041 		error = 0;
1042 		break;
1043 	case TIOCSPGRP:
1044 		/* This is deprecated, FIOSETOWN should be used instead. */
1045 		get_mplock();
1046 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1047 		rel_mplock();
1048 		break;
1049 
1050 	case TIOCGPGRP:
1051 		/* This is deprecated, FIOGETOWN should be used instead. */
1052 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1053 		error = 0;
1054 		break;
1055 	default:
1056 		error = ENOTTY;
1057 		break;
1058 	}
1059 	lwkt_reltoken(&rlock);
1060 	lwkt_reltoken(&wlock);
1061 	pipe_rel_mplock(&mpsave);
1062 
1063 	return (error);
1064 }
1065 
1066 /*
1067  * MPALMOSTSAFE - acquires mplock
1068  *
1069  * poll for events (helper)
1070  */
1071 static int
1072 pipe_poll_events(struct pipe *rpipe, struct pipe *wpipe, int events)
1073 {
1074 	int revents = 0;
1075 	u_int space;
1076 
1077 	if (events & (POLLIN | POLLRDNORM)) {
1078 		if ((rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex) ||
1079 		    (rpipe->pipe_state & PIPE_REOF)) {
1080 			revents |= events & (POLLIN | POLLRDNORM);
1081 		}
1082 	}
1083 
1084 	if (events & (POLLOUT | POLLWRNORM)) {
1085 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_WEOF)) {
1086 			revents |= events & (POLLOUT | POLLWRNORM);
1087 		} else {
1088 			space = wpipe->pipe_buffer.windex -
1089 				wpipe->pipe_buffer.rindex;
1090 			space = wpipe->pipe_buffer.size - space;
1091 			if (space >= PIPE_BUF)
1092 				revents |= events & (POLLOUT | POLLWRNORM);
1093 		}
1094 	}
1095 
1096 	if ((rpipe->pipe_state & PIPE_REOF) ||
1097 	    (wpipe == NULL) ||
1098 	    (wpipe->pipe_state & PIPE_WEOF)) {
1099 		revents |= POLLHUP;
1100 	}
1101 	return (revents);
1102 }
1103 
1104 /*
1105  * Poll for events from file pointer.
1106  */
1107 int
1108 pipe_poll(struct file *fp, int events, struct ucred *cred)
1109 {
1110 	lwkt_tokref rpipe_rlock;
1111 	lwkt_tokref rpipe_wlock;
1112 	lwkt_tokref wpipe_rlock;
1113 	lwkt_tokref wpipe_wlock;
1114 	struct pipe *rpipe;
1115 	struct pipe *wpipe;
1116 	int revents = 0;
1117 	int mpsave;
1118 
1119 	pipe_get_mplock(&mpsave);
1120 	rpipe = (struct pipe *)fp->f_data;
1121 	wpipe = rpipe->pipe_peer;
1122 
1123 	revents = pipe_poll_events(rpipe, wpipe, events);
1124 	if (revents == 0) {
1125 		if (events & (POLLIN | POLLRDNORM)) {
1126 			lwkt_gettoken(&rpipe_rlock, &rpipe->pipe_rlock);
1127 			lwkt_gettoken(&rpipe_wlock, &rpipe->pipe_wlock);
1128 		}
1129 		if (events & (POLLOUT | POLLWRNORM)) {
1130 			lwkt_gettoken(&wpipe_rlock, &wpipe->pipe_rlock);
1131 			lwkt_gettoken(&wpipe_wlock, &wpipe->pipe_wlock);
1132 		}
1133 		revents = pipe_poll_events(rpipe, wpipe, events);
1134 		if (revents == 0) {
1135 			if (events & (POLLIN | POLLRDNORM)) {
1136 				selrecord(curthread, &rpipe->pipe_sel);
1137 				rpipe->pipe_state |= PIPE_SEL;
1138 			}
1139 
1140 			if (events & (POLLOUT | POLLWRNORM)) {
1141 				selrecord(curthread, &wpipe->pipe_sel);
1142 				wpipe->pipe_state |= PIPE_SEL;
1143 			}
1144 		}
1145 		if (events & (POLLIN | POLLRDNORM)) {
1146 			lwkt_reltoken(&rpipe_rlock);
1147 			lwkt_reltoken(&rpipe_wlock);
1148 		}
1149 		if (events & (POLLOUT | POLLWRNORM)) {
1150 			lwkt_reltoken(&wpipe_rlock);
1151 			lwkt_reltoken(&wpipe_wlock);
1152 		}
1153 	}
1154 	pipe_rel_mplock(&mpsave);
1155 	return (revents);
1156 }
1157 
1158 /*
1159  * MPSAFE
1160  */
1161 static int
1162 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1163 {
1164 	struct pipe *pipe;
1165 	int mpsave;
1166 
1167 	pipe_get_mplock(&mpsave);
1168 	pipe = (struct pipe *)fp->f_data;
1169 
1170 	bzero((caddr_t)ub, sizeof(*ub));
1171 	ub->st_mode = S_IFIFO;
1172 	ub->st_blksize = pipe->pipe_buffer.size;
1173 	ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1174 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1175 	ub->st_atimespec = pipe->pipe_atime;
1176 	ub->st_mtimespec = pipe->pipe_mtime;
1177 	ub->st_ctimespec = pipe->pipe_ctime;
1178 	/*
1179 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1180 	 * st_flags, st_gen.
1181 	 * XXX (st_dev, st_ino) should be unique.
1182 	 */
1183 	pipe_rel_mplock(&mpsave);
1184 	return (0);
1185 }
1186 
1187 /*
1188  * MPALMOSTSAFE - acquires mplock
1189  */
1190 static int
1191 pipe_close(struct file *fp)
1192 {
1193 	struct pipe *cpipe;
1194 
1195 	get_mplock();
1196 	cpipe = (struct pipe *)fp->f_data;
1197 	fp->f_ops = &badfileops;
1198 	fp->f_data = NULL;
1199 	funsetown(cpipe->pipe_sigio);
1200 	pipeclose(cpipe);
1201 	rel_mplock();
1202 	return (0);
1203 }
1204 
1205 /*
1206  * Shutdown one or both directions of a full-duplex pipe.
1207  *
1208  * MPALMOSTSAFE - acquires mplock
1209  */
1210 static int
1211 pipe_shutdown(struct file *fp, int how)
1212 {
1213 	struct pipe *rpipe;
1214 	struct pipe *wpipe;
1215 	int error = EPIPE;
1216 	lwkt_tokref rpipe_rlock;
1217 	lwkt_tokref rpipe_wlock;
1218 	lwkt_tokref wpipe_rlock;
1219 	lwkt_tokref wpipe_wlock;
1220 	int mpsave;
1221 
1222 	pipe_get_mplock(&mpsave);
1223 	rpipe = (struct pipe *)fp->f_data;
1224 	wpipe = rpipe->pipe_peer;
1225 
1226 	/*
1227 	 * We modify pipe_state on both pipes, which means we need
1228 	 * all four tokens!
1229 	 */
1230 	lwkt_gettoken(&rpipe_rlock, &rpipe->pipe_rlock);
1231 	lwkt_gettoken(&rpipe_wlock, &rpipe->pipe_wlock);
1232 	lwkt_gettoken(&wpipe_rlock, &wpipe->pipe_rlock);
1233 	lwkt_gettoken(&wpipe_wlock, &wpipe->pipe_wlock);
1234 
1235 	switch(how) {
1236 	case SHUT_RDWR:
1237 	case SHUT_RD:
1238 		rpipe->pipe_state |= PIPE_REOF;		/* my reads */
1239 		rpipe->pipe_state |= PIPE_WEOF;		/* peer writes */
1240 		if (rpipe->pipe_state & PIPE_WANTR) {
1241 			rpipe->pipe_state &= ~PIPE_WANTR;
1242 			wakeup(rpipe);
1243 		}
1244 		if (rpipe->pipe_state & PIPE_WANTW) {
1245 			rpipe->pipe_state &= ~PIPE_WANTW;
1246 			wakeup(rpipe);
1247 		}
1248 		error = 0;
1249 		if (how == SHUT_RD)
1250 			break;
1251 		/* fall through */
1252 	case SHUT_WR:
1253 		wpipe->pipe_state |= PIPE_REOF;		/* peer reads */
1254 		wpipe->pipe_state |= PIPE_WEOF;		/* my writes */
1255 		if (wpipe->pipe_state & PIPE_WANTR) {
1256 			wpipe->pipe_state &= ~PIPE_WANTR;
1257 			wakeup(wpipe);
1258 		}
1259 		if (wpipe->pipe_state & PIPE_WANTW) {
1260 			wpipe->pipe_state &= ~PIPE_WANTW;
1261 			wakeup(wpipe);
1262 		}
1263 		error = 0;
1264 		break;
1265 	}
1266 	pipeselwakeup(rpipe);
1267 	pipeselwakeup(wpipe);
1268 
1269 	lwkt_reltoken(&rpipe_rlock);
1270 	lwkt_reltoken(&rpipe_wlock);
1271 	lwkt_reltoken(&wpipe_rlock);
1272 	lwkt_reltoken(&wpipe_wlock);
1273 
1274 	pipe_rel_mplock(&mpsave);
1275 	return (error);
1276 }
1277 
1278 static void
1279 pipe_free_kmem(struct pipe *cpipe)
1280 {
1281 	if (cpipe->pipe_buffer.buffer != NULL) {
1282 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1283 			atomic_subtract_int(&pipe_nbig, 1);
1284 		kmem_free(&kernel_map,
1285 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1286 			cpipe->pipe_buffer.size);
1287 		cpipe->pipe_buffer.buffer = NULL;
1288 		cpipe->pipe_buffer.object = NULL;
1289 	}
1290 }
1291 
1292 /*
1293  * Close the pipe.  The slock must be held to interlock against simultanious
1294  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1295  */
1296 static void
1297 pipeclose(struct pipe *cpipe)
1298 {
1299 	globaldata_t gd;
1300 	struct pipe *ppipe;
1301 	lwkt_tokref cpipe_rlock;
1302 	lwkt_tokref cpipe_wlock;
1303 	lwkt_tokref ppipe_rlock;
1304 	lwkt_tokref ppipe_wlock;
1305 
1306 	if (cpipe == NULL)
1307 		return;
1308 
1309 	/*
1310 	 * The slock may not have been allocated yet (close during
1311 	 * initialization)
1312 	 *
1313 	 * We need both the read and write tokens to modify pipe_state.
1314 	 */
1315 	if (cpipe->pipe_slock)
1316 		lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1317 	lwkt_gettoken(&cpipe_rlock, &cpipe->pipe_rlock);
1318 	lwkt_gettoken(&cpipe_wlock, &cpipe->pipe_wlock);
1319 
1320 	/*
1321 	 * Set our state, wakeup anyone waiting in select, and
1322 	 * wakeup anyone blocked on our pipe.
1323 	 */
1324 	cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1325 	pipeselwakeup(cpipe);
1326 	if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1327 		cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1328 		wakeup(cpipe);
1329 	}
1330 
1331 	/*
1332 	 * Disconnect from peer.
1333 	 */
1334 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1335 		lwkt_gettoken(&ppipe_rlock, &ppipe->pipe_rlock);
1336 		lwkt_gettoken(&ppipe_wlock, &ppipe->pipe_wlock);
1337 		ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1338 		pipeselwakeup(ppipe);
1339 		if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1340 			ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1341 			wakeup(ppipe);
1342 		}
1343 		if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1344 			get_mplock();
1345 			KNOTE(&ppipe->pipe_sel.si_note, 0);
1346 			rel_mplock();
1347 		}
1348 		lwkt_reltoken(&ppipe_rlock);
1349 		lwkt_reltoken(&ppipe_wlock);
1350 	}
1351 
1352 	/*
1353 	 * If the peer is also closed we can free resources for both
1354 	 * sides, otherwise we leave our side intact to deal with any
1355 	 * races (since we only have the slock).
1356 	 */
1357 	if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1358 		cpipe->pipe_peer = NULL;
1359 		ppipe->pipe_peer = NULL;
1360 		ppipe->pipe_slock = NULL;	/* we will free the slock */
1361 		pipeclose(ppipe);
1362 		ppipe = NULL;
1363 	}
1364 
1365 	lwkt_reltoken(&cpipe_rlock);
1366 	lwkt_reltoken(&cpipe_wlock);
1367 	if (cpipe->pipe_slock)
1368 		lockmgr(cpipe->pipe_slock, LK_RELEASE);
1369 
1370 	/*
1371 	 * If we disassociated from our peer we can free resources
1372 	 */
1373 	if (ppipe == NULL) {
1374 		gd = mycpu;
1375 		if (cpipe->pipe_slock) {
1376 			kfree(cpipe->pipe_slock, M_PIPE);
1377 			cpipe->pipe_slock = NULL;
1378 		}
1379 		if (gd->gd_pipeqcount >= pipe_maxcache ||
1380 		    cpipe->pipe_buffer.size != PIPE_SIZE
1381 		) {
1382 			pipe_free_kmem(cpipe);
1383 			kfree(cpipe, M_PIPE);
1384 		} else {
1385 			cpipe->pipe_state = 0;
1386 			cpipe->pipe_peer = gd->gd_pipeq;
1387 			gd->gd_pipeq = cpipe;
1388 			++gd->gd_pipeqcount;
1389 		}
1390 	}
1391 }
1392 
1393 /*
1394  * MPALMOSTSAFE - acquires mplock
1395  */
1396 static int
1397 pipe_kqfilter(struct file *fp, struct knote *kn)
1398 {
1399 	struct pipe *cpipe;
1400 
1401 	get_mplock();
1402 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1403 
1404 	switch (kn->kn_filter) {
1405 	case EVFILT_READ:
1406 		kn->kn_fop = &pipe_rfiltops;
1407 		break;
1408 	case EVFILT_WRITE:
1409 		kn->kn_fop = &pipe_wfiltops;
1410 		cpipe = cpipe->pipe_peer;
1411 		if (cpipe == NULL) {
1412 			/* other end of pipe has been closed */
1413 			rel_mplock();
1414 			return (EPIPE);
1415 		}
1416 		break;
1417 	default:
1418 		return (1);
1419 	}
1420 	kn->kn_hook = (caddr_t)cpipe;
1421 
1422 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1423 	rel_mplock();
1424 	return (0);
1425 }
1426 
1427 static void
1428 filt_pipedetach(struct knote *kn)
1429 {
1430 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1431 
1432 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1433 }
1434 
1435 /*ARGSUSED*/
1436 static int
1437 filt_piperead(struct knote *kn, long hint)
1438 {
1439 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1440 
1441 	kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1442 
1443 	/* XXX RACE */
1444 	if (rpipe->pipe_state & PIPE_REOF) {
1445 		kn->kn_flags |= EV_EOF;
1446 		return (1);
1447 	}
1448 	return (kn->kn_data > 0);
1449 }
1450 
1451 /*ARGSUSED*/
1452 static int
1453 filt_pipewrite(struct knote *kn, long hint)
1454 {
1455 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1456 	struct pipe *wpipe = rpipe->pipe_peer;
1457 	u_int32_t space;
1458 
1459 	/* XXX RACE */
1460 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1461 		kn->kn_data = 0;
1462 		kn->kn_flags |= EV_EOF;
1463 		return (1);
1464 	}
1465 	space = wpipe->pipe_buffer.windex -
1466 		wpipe->pipe_buffer.rindex;
1467 	space = wpipe->pipe_buffer.size - space;
1468 	kn->kn_data = space;
1469 	return (kn->kn_data >= PIPE_BUF);
1470 }
1471