xref: /dragonfly/sys/kern/sys_pipe.c (revision f746689a)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 #include <sys/socket.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_zone.h>
87 
88 #include <sys/file2.h>
89 
90 #include <machine/cpufunc.h>
91 
92 /*
93  * interfaces to the outside world
94  */
95 static int pipe_read (struct file *fp, struct uio *uio,
96 		struct ucred *cred, int flags);
97 static int pipe_write (struct file *fp, struct uio *uio,
98 		struct ucred *cred, int flags);
99 static int pipe_close (struct file *fp);
100 static int pipe_shutdown (struct file *fp, int how);
101 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
102 static int pipe_kqfilter (struct file *fp, struct knote *kn);
103 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
104 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct ucred *cred);
105 
106 static struct fileops pipeops = {
107 	.fo_read = pipe_read,
108 	.fo_write = pipe_write,
109 	.fo_ioctl = pipe_ioctl,
110 	.fo_poll = pipe_poll,
111 	.fo_kqfilter = pipe_kqfilter,
112 	.fo_stat = pipe_stat,
113 	.fo_close = pipe_close,
114 	.fo_shutdown = pipe_shutdown
115 };
116 
117 static void	filt_pipedetach(struct knote *kn);
118 static int	filt_piperead(struct knote *kn, long hint);
119 static int	filt_pipewrite(struct knote *kn, long hint);
120 
121 static struct filterops pipe_rfiltops =
122 	{ 1, NULL, filt_pipedetach, filt_piperead };
123 static struct filterops pipe_wfiltops =
124 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
125 
126 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
127 
128 /*
129  * Default pipe buffer size(s), this can be kind-of large now because pipe
130  * space is pageable.  The pipe code will try to maintain locality of
131  * reference for performance reasons, so small amounts of outstanding I/O
132  * will not wipe the cache.
133  */
134 #define MINPIPESIZE (PIPE_SIZE/3)
135 #define MAXPIPESIZE (2*PIPE_SIZE/3)
136 
137 /*
138  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
139  * is there so that on large systems, we don't exhaust it.
140  */
141 #define MAXPIPEKVA (8*1024*1024)
142 
143 /*
144  * Limit for direct transfers, we cannot, of course limit
145  * the amount of kva for pipes in general though.
146  */
147 #define LIMITPIPEKVA (16*1024*1024)
148 
149 /*
150  * Limit the number of "big" pipes
151  */
152 #define LIMITBIGPIPES	32
153 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
154 
155 static int pipe_maxbig = LIMITBIGPIPES;
156 static int pipe_maxcache = PIPEQ_MAX_CACHE;
157 static int pipe_bigcount;
158 static int pipe_nbig;
159 static int pipe_bcache_alloc;
160 static int pipe_bkmem_alloc;
161 /*
162  * There's a bug in the sfbuf-based direct write code, not yet located.
163  * Disable it for now.
164  */
165 static int pipe_dwrite_enable = 0;	/* 0:copy, 1:kmem/sfbuf 2:force */
166 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
167 					/* 3:sfbuf_dmap w/ forced invlpg */
168 
169 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
170 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
171         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
172 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
173         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
174 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
175         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
176 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
177         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
178 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
179         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
180 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
181         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
182 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
183 #if !defined(NO_PIPE_SYSCTL_STATS)
184 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
185         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
186 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
187         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
188 #endif
189 
190 static void pipeclose (struct pipe *cpipe);
191 static void pipe_free_kmem (struct pipe *cpipe);
192 static int pipe_create (struct pipe **cpipep);
193 static __inline int pipelock (struct pipe *cpipe, int catch);
194 static __inline void pipeunlock (struct pipe *cpipe);
195 static __inline void pipeselwakeup (struct pipe *cpipe);
196 #ifndef PIPE_NODIRECT
197 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
198 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
199 static void pipe_clone_write_buffer (struct pipe *wpipe);
200 #endif
201 static int pipespace (struct pipe *cpipe, int size);
202 
203 /*
204  * The pipe system call for the DTYPE_PIPE type of pipes
205  *
206  * pipe_ARgs(int dummy)
207  */
208 
209 /* ARGSUSED */
210 int
211 sys_pipe(struct pipe_args *uap)
212 {
213 	struct thread *td = curthread;
214 	struct proc *p = td->td_proc;
215 	struct file *rf, *wf;
216 	struct pipe *rpipe, *wpipe;
217 	int fd1, fd2, error;
218 
219 	KKASSERT(p);
220 
221 	rpipe = wpipe = NULL;
222 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
223 		pipeclose(rpipe);
224 		pipeclose(wpipe);
225 		return (ENFILE);
226 	}
227 
228 	rpipe->pipe_state |= PIPE_DIRECTOK;
229 	wpipe->pipe_state |= PIPE_DIRECTOK;
230 
231 	/*
232 	 * Select the direct-map features to use for this pipe.  Since the
233 	 * sysctl's can change on the fly we record the settings when the
234 	 * pipe is created.
235 	 *
236 	 * Generally speaking the system will default to what we consider
237 	 * to be the best-balanced and most stable option.  Right now this
238 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
239 	 * moment.
240 	 */
241 	wpipe->pipe_feature = PIPE_COPY;
242 	if (pipe_dwrite_enable) {
243 		switch(pipe_dwrite_sfbuf) {
244 		case 0:
245 			wpipe->pipe_feature = PIPE_KMEM;
246 			break;
247 		case 1:
248 			wpipe->pipe_feature = PIPE_SFBUF1;
249 			break;
250 		case 2:
251 		case 3:
252 			wpipe->pipe_feature = PIPE_SFBUF2;
253 			break;
254 		}
255 	}
256 	rpipe->pipe_feature = wpipe->pipe_feature;
257 
258 	error = falloc(p, &rf, &fd1);
259 	if (error) {
260 		pipeclose(rpipe);
261 		pipeclose(wpipe);
262 		return (error);
263 	}
264 	uap->sysmsg_fds[0] = fd1;
265 
266 	/*
267 	 * Warning: once we've gotten past allocation of the fd for the
268 	 * read-side, we can only drop the read side via fdrop() in order
269 	 * to avoid races against processes which manage to dup() the read
270 	 * side while we are blocked trying to allocate the write side.
271 	 */
272 	rf->f_type = DTYPE_PIPE;
273 	rf->f_flag = FREAD | FWRITE;
274 	rf->f_ops = &pipeops;
275 	rf->f_data = rpipe;
276 	error = falloc(p, &wf, &fd2);
277 	if (error) {
278 		fsetfd(p, NULL, fd1);
279 		fdrop(rf);
280 		/* rpipe has been closed by fdrop(). */
281 		pipeclose(wpipe);
282 		return (error);
283 	}
284 	wf->f_type = DTYPE_PIPE;
285 	wf->f_flag = FREAD | FWRITE;
286 	wf->f_ops = &pipeops;
287 	wf->f_data = wpipe;
288 	uap->sysmsg_fds[1] = fd2;
289 
290 	rpipe->pipe_peer = wpipe;
291 	wpipe->pipe_peer = rpipe;
292 
293 	fsetfd(p, rf, fd1);
294 	fsetfd(p, wf, fd2);
295 	fdrop(rf);
296 	fdrop(wf);
297 
298 	return (0);
299 }
300 
301 /*
302  * Allocate kva for pipe circular buffer, the space is pageable
303  * This routine will 'realloc' the size of a pipe safely, if it fails
304  * it will retain the old buffer.
305  * If it fails it will return ENOMEM.
306  */
307 static int
308 pipespace(struct pipe *cpipe, int size)
309 {
310 	struct vm_object *object;
311 	caddr_t buffer;
312 	int npages, error;
313 
314 	npages = round_page(size) / PAGE_SIZE;
315 	object = cpipe->pipe_buffer.object;
316 
317 	/*
318 	 * [re]create the object if necessary and reserve space for it
319 	 * in the kernel_map.  The object and memory are pageable.  On
320 	 * success, free the old resources before assigning the new
321 	 * ones.
322 	 */
323 	if (object == NULL || object->size != npages) {
324 		object = vm_object_allocate(OBJT_DEFAULT, npages);
325 		buffer = (caddr_t)vm_map_min(&kernel_map);
326 
327 		error = vm_map_find(&kernel_map, object, 0,
328 				    (vm_offset_t *)&buffer, size,
329 				    1,
330 				    VM_MAPTYPE_NORMAL,
331 				    VM_PROT_ALL, VM_PROT_ALL,
332 				    0);
333 
334 		if (error != KERN_SUCCESS) {
335 			vm_object_deallocate(object);
336 			return (ENOMEM);
337 		}
338 		pipe_free_kmem(cpipe);
339 		cpipe->pipe_buffer.object = object;
340 		cpipe->pipe_buffer.buffer = buffer;
341 		cpipe->pipe_buffer.size = size;
342 		++pipe_bkmem_alloc;
343 	} else {
344 		++pipe_bcache_alloc;
345 	}
346 	cpipe->pipe_buffer.in = 0;
347 	cpipe->pipe_buffer.out = 0;
348 	cpipe->pipe_buffer.cnt = 0;
349 	return (0);
350 }
351 
352 /*
353  * Initialize and allocate VM and memory for pipe, pulling the pipe from
354  * our per-cpu cache if possible.  For now make sure it is sized for the
355  * smaller PIPE_SIZE default.
356  */
357 static int
358 pipe_create(struct pipe **cpipep)
359 {
360 	globaldata_t gd = mycpu;
361 	struct pipe *cpipe;
362 	int error;
363 
364 	if ((cpipe = gd->gd_pipeq) != NULL) {
365 		gd->gd_pipeq = cpipe->pipe_peer;
366 		--gd->gd_pipeqcount;
367 		cpipe->pipe_peer = NULL;
368 	} else {
369 		cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
370 	}
371 	*cpipep = cpipe;
372 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
373 		return (error);
374 	vfs_timestamp(&cpipe->pipe_ctime);
375 	cpipe->pipe_atime = cpipe->pipe_ctime;
376 	cpipe->pipe_mtime = cpipe->pipe_ctime;
377 	return (0);
378 }
379 
380 
381 /*
382  * lock a pipe for I/O, blocking other access
383  */
384 static __inline int
385 pipelock(struct pipe *cpipe, int catch)
386 {
387 	int error;
388 
389 	while (cpipe->pipe_state & PIPE_LOCK) {
390 		cpipe->pipe_state |= PIPE_LWANT;
391 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
392 		if (error != 0)
393 			return (error);
394 	}
395 	cpipe->pipe_state |= PIPE_LOCK;
396 	return (0);
397 }
398 
399 /*
400  * unlock a pipe I/O lock
401  */
402 static __inline void
403 pipeunlock(struct pipe *cpipe)
404 {
405 
406 	cpipe->pipe_state &= ~PIPE_LOCK;
407 	if (cpipe->pipe_state & PIPE_LWANT) {
408 		cpipe->pipe_state &= ~PIPE_LWANT;
409 		wakeup(cpipe);
410 	}
411 }
412 
413 static __inline void
414 pipeselwakeup(struct pipe *cpipe)
415 {
416 
417 	if (cpipe->pipe_state & PIPE_SEL) {
418 		cpipe->pipe_state &= ~PIPE_SEL;
419 		selwakeup(&cpipe->pipe_sel);
420 	}
421 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
422 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
423 	KNOTE(&cpipe->pipe_sel.si_note, 0);
424 }
425 
426 /*
427  * MPALMOSTSAFE (acquires mplock)
428  */
429 static int
430 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
431 {
432 	struct pipe *rpipe;
433 	int error;
434 	int nread = 0;
435 	int nbio;
436 	u_int size;
437 
438 	get_mplock();
439 	rpipe = (struct pipe *) fp->f_data;
440 	++rpipe->pipe_busy;
441 	error = pipelock(rpipe, 1);
442 	if (error)
443 		goto unlocked_error;
444 
445 	if (fflags & O_FBLOCKING)
446 		nbio = 0;
447 	else if (fflags & O_FNONBLOCKING)
448 		nbio = 1;
449 	else if (fp->f_flag & O_NONBLOCK)
450 		nbio = 1;
451 	else
452 		nbio = 0;
453 
454 	while (uio->uio_resid) {
455 		caddr_t va;
456 
457 		if (rpipe->pipe_buffer.cnt > 0) {
458 			/*
459 			 * normal pipe buffer receive
460 			 */
461 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
462 			if (size > rpipe->pipe_buffer.cnt)
463 				size = rpipe->pipe_buffer.cnt;
464 			if (size > (u_int) uio->uio_resid)
465 				size = (u_int) uio->uio_resid;
466 
467 			error = uiomove(&rpipe->pipe_buffer.buffer
468 					  [rpipe->pipe_buffer.out],
469 					size, uio);
470 			if (error)
471 				break;
472 
473 			rpipe->pipe_buffer.out += size;
474 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
475 				rpipe->pipe_buffer.out = 0;
476 
477 			rpipe->pipe_buffer.cnt -= size;
478 
479 			/*
480 			 * If there is no more to read in the pipe, reset
481 			 * its pointers to the beginning.  This improves
482 			 * cache hit stats.
483 			 */
484 			if (rpipe->pipe_buffer.cnt == 0) {
485 				rpipe->pipe_buffer.in = 0;
486 				rpipe->pipe_buffer.out = 0;
487 			}
488 			nread += size;
489 #ifndef PIPE_NODIRECT
490 		} else if (rpipe->pipe_kva &&
491 			   rpipe->pipe_feature == PIPE_KMEM &&
492 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
493 			       == PIPE_DIRECTW
494 		) {
495 			/*
496 			 * Direct copy using source-side kva mapping
497 			 */
498 			size = rpipe->pipe_map.xio_bytes -
499 				rpipe->pipe_buffer.out;
500 			if (size > (u_int)uio->uio_resid)
501 				size = (u_int)uio->uio_resid;
502 			va = (caddr_t)rpipe->pipe_kva +
503 				xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
504 			error = uiomove(va, size, uio);
505 			if (error)
506 				break;
507 			nread += size;
508 			rpipe->pipe_buffer.out += size;
509 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
510 				rpipe->pipe_state |= PIPE_DIRECTIP;
511 				rpipe->pipe_state &= ~PIPE_DIRECTW;
512 				/* reset out index for copy mode */
513 				rpipe->pipe_buffer.out = 0;
514 				wakeup(rpipe);
515 			}
516 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
517 			   rpipe->pipe_kva &&
518 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
519 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
520 			       == PIPE_DIRECTW
521 		) {
522 			/*
523 			 * Direct copy, bypassing a kernel buffer.  We cannot
524 			 * mess with the direct-write buffer until
525 			 * PIPE_DIRECTIP is cleared.  In order to prevent
526 			 * the pipe_write code from racing itself in
527 			 * direct_write, we set DIRECTIP when we clear
528 			 * DIRECTW after we have exhausted the buffer.
529 			 */
530 			if (pipe_dwrite_sfbuf == 3)
531 				rpipe->pipe_kvamask = 0;
532 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
533 				    rpipe->pipe_map.xio_npages,
534 				    &rpipe->pipe_kvamask);
535 			size = rpipe->pipe_map.xio_bytes -
536 				rpipe->pipe_buffer.out;
537 			if (size > (u_int)uio->uio_resid)
538 				size = (u_int)uio->uio_resid;
539 			va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
540 			error = uiomove(va, size, uio);
541 			if (error)
542 				break;
543 			nread += size;
544 			rpipe->pipe_buffer.out += size;
545 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
546 				rpipe->pipe_state |= PIPE_DIRECTIP;
547 				rpipe->pipe_state &= ~PIPE_DIRECTW;
548 				/* reset out index for copy mode */
549 				rpipe->pipe_buffer.out = 0;
550 				wakeup(rpipe);
551 			}
552 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
553 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
554 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
555 				== PIPE_DIRECTW
556 		) {
557 			/*
558 			 * Direct copy, bypassing a kernel buffer.  We cannot
559 			 * mess with the direct-write buffer until
560 			 * PIPE_DIRECTIP is cleared.  In order to prevent
561 			 * the pipe_write code from racing itself in
562 			 * direct_write, we set DIRECTIP when we clear
563 			 * DIRECTW after we have exhausted the buffer.
564 			 */
565 			error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
566 			if (error)
567 				break;
568 			nread += size;
569 			rpipe->pipe_buffer.out += size;
570 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
571 				rpipe->pipe_state |= PIPE_DIRECTIP;
572 				rpipe->pipe_state &= ~PIPE_DIRECTW;
573 				/* reset out index for copy mode */
574 				rpipe->pipe_buffer.out = 0;
575 				wakeup(rpipe);
576 			}
577 #endif
578 		} else {
579 			/*
580 			 * detect EOF condition
581 			 * read returns 0 on EOF, no need to set error
582 			 */
583 			if (rpipe->pipe_state & PIPE_EOF)
584 				break;
585 
586 			/*
587 			 * If the "write-side" has been blocked, wake it up now.
588 			 */
589 			if (rpipe->pipe_state & PIPE_WANTW) {
590 				rpipe->pipe_state &= ~PIPE_WANTW;
591 				wakeup(rpipe);
592 			}
593 
594 			/*
595 			 * Break if some data was read.
596 			 */
597 			if (nread > 0)
598 				break;
599 
600 			/*
601 			 * Unlock the pipe buffer for our remaining
602 			 * processing.  We will either break out with an
603 			 * error or we will sleep and relock to loop.
604 			 */
605 			pipeunlock(rpipe);
606 
607 			/*
608 			 * Handle non-blocking mode operation or
609 			 * wait for more data.
610 			 */
611 			if (nbio) {
612 				error = EAGAIN;
613 			} else {
614 				rpipe->pipe_state |= PIPE_WANTR;
615 				if ((error = tsleep(rpipe, PCATCH,
616 						    "piperd", 0)) == 0) {
617 					error = pipelock(rpipe, 1);
618 				}
619 			}
620 			if (error)
621 				goto unlocked_error;
622 		}
623 	}
624 	pipeunlock(rpipe);
625 
626 	if (error == 0)
627 		vfs_timestamp(&rpipe->pipe_atime);
628 unlocked_error:
629 	--rpipe->pipe_busy;
630 
631 	/*
632 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
633 	 */
634 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
635 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
636 		wakeup(rpipe);
637 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
638 		/*
639 		 * Handle write blocking hysteresis.
640 		 */
641 		if (rpipe->pipe_state & PIPE_WANTW) {
642 			rpipe->pipe_state &= ~PIPE_WANTW;
643 			wakeup(rpipe);
644 		}
645 	}
646 
647 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
648 		pipeselwakeup(rpipe);
649 	rel_mplock();
650 	return (error);
651 }
652 
653 #ifndef PIPE_NODIRECT
654 /*
655  * Map the sending processes' buffer into kernel space and wire it.
656  * This is similar to a physical write operation.
657  */
658 static int
659 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
660 {
661 	int error;
662 	u_int size;
663 
664 	size = (u_int) uio->uio_iov->iov_len;
665 	if (size > wpipe->pipe_buffer.size)
666 		size = wpipe->pipe_buffer.size;
667 
668 	if (uio->uio_segflg == UIO_SYSSPACE) {
669 		error = xio_init_kbuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
670 					size);
671 	} else {
672 		error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
673 					size, XIOF_READ);
674 	}
675 	wpipe->pipe_buffer.out = 0;
676 	if (error)
677 		return(error);
678 
679 	/*
680 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
681 	 * map the pages on the target while KMEM maps the pages now.
682 	 */
683 	switch(wpipe->pipe_feature) {
684 	case PIPE_KMEM:
685 	case PIPE_SFBUF2:
686 		if (wpipe->pipe_kva == 0) {
687 			wpipe->pipe_kva =
688 			    kmem_alloc_nofault(&kernel_map, XIO_INTERNAL_SIZE);
689 			wpipe->pipe_kvamask = 0;
690 		}
691 		if (wpipe->pipe_feature == PIPE_KMEM) {
692 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
693 				    wpipe->pipe_map.xio_npages);
694 		}
695 		break;
696 	default:
697 		break;
698 	}
699 
700 	/*
701 	 * And update the uio data.  The XIO might have loaded fewer bytes
702 	 * then requested so reload 'size'.
703 	 */
704 	size = wpipe->pipe_map.xio_bytes;
705 	uio->uio_iov->iov_len -= size;
706 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
707 	if (uio->uio_iov->iov_len == 0)
708 		uio->uio_iov++;
709 	uio->uio_resid -= size;
710 	uio->uio_offset += size;
711 	return (0);
712 }
713 
714 /*
715  * In the case of a signal, the writing process might go away.  This
716  * code copies the data into the circular buffer so that the source
717  * pages can be freed without loss of data.
718  *
719  * Note that in direct mode pipe_buffer.out is used to track the
720  * XIO offset.  We are converting the direct mode into buffered mode
721  * which changes the meaning of pipe_buffer.out.
722  */
723 static void
724 pipe_clone_write_buffer(struct pipe *wpipe)
725 {
726 	int size;
727 	int offset;
728 
729 	offset = wpipe->pipe_buffer.out;
730 	size = wpipe->pipe_map.xio_bytes - offset;
731 
732 	KKASSERT(size <= wpipe->pipe_buffer.size);
733 
734 	wpipe->pipe_buffer.in = size;
735 	wpipe->pipe_buffer.out = 0;
736 	wpipe->pipe_buffer.cnt = size;
737 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
738 
739 	xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
740 	xio_release(&wpipe->pipe_map);
741 	if (wpipe->pipe_kva) {
742 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
743 		kmem_free(&kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
744 		wpipe->pipe_kva = 0;
745 	}
746 }
747 
748 /*
749  * This implements the pipe buffer write mechanism.  Note that only
750  * a direct write OR a normal pipe write can be pending at any given time.
751  * If there are any characters in the pipe buffer, the direct write will
752  * be deferred until the receiving process grabs all of the bytes from
753  * the pipe buffer.  Then the direct mapping write is set-up.
754  */
755 static int
756 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
757 {
758 	int error;
759 
760 retry:
761 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
762 		if (wpipe->pipe_state & PIPE_WANTR) {
763 			wpipe->pipe_state &= ~PIPE_WANTR;
764 			wakeup(wpipe);
765 		}
766 		wpipe->pipe_state |= PIPE_WANTW;
767 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
768 		if (error)
769 			goto error2;
770 		if (wpipe->pipe_state & PIPE_EOF) {
771 			error = EPIPE;
772 			goto error2;
773 		}
774 	}
775 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
776 	if (wpipe->pipe_buffer.cnt > 0) {
777 		if (wpipe->pipe_state & PIPE_WANTR) {
778 			wpipe->pipe_state &= ~PIPE_WANTR;
779 			wakeup(wpipe);
780 		}
781 
782 		wpipe->pipe_state |= PIPE_WANTW;
783 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
784 		if (error)
785 			goto error2;
786 		if (wpipe->pipe_state & PIPE_EOF) {
787 			error = EPIPE;
788 			goto error2;
789 		}
790 		goto retry;
791 	}
792 
793 	/*
794 	 * Build our direct-write buffer
795 	 */
796 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
797 	error = pipe_build_write_buffer(wpipe, uio);
798 	if (error)
799 		goto error1;
800 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
801 
802 	/*
803 	 * Wait until the receiver has snarfed the data.  Since we are likely
804 	 * going to sleep we optimize the case and yield synchronously,
805 	 * possibly avoiding the tsleep().
806 	 */
807 	error = 0;
808 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
809 		if (wpipe->pipe_state & PIPE_EOF) {
810 			pipelock(wpipe, 0);
811 			xio_release(&wpipe->pipe_map);
812 			if (wpipe->pipe_kva) {
813 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
814 				kmem_free(&kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
815 				wpipe->pipe_kva = 0;
816 			}
817 			pipeunlock(wpipe);
818 			pipeselwakeup(wpipe);
819 			error = EPIPE;
820 			goto error1;
821 		}
822 		if (wpipe->pipe_state & PIPE_WANTR) {
823 			wpipe->pipe_state &= ~PIPE_WANTR;
824 			wakeup(wpipe);
825 		}
826 		pipeselwakeup(wpipe);
827 		error = tsleep(wpipe, PCATCH, "pipdwt", 0);
828 	}
829 	pipelock(wpipe,0);
830 	if (wpipe->pipe_state & PIPE_DIRECTW) {
831 		/*
832 		 * this bit of trickery substitutes a kernel buffer for
833 		 * the process that might be going away.
834 		 */
835 		pipe_clone_write_buffer(wpipe);
836 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
837 	} else {
838 		/*
839 		 * note: The pipe_kva mapping is not qremove'd here.  For
840 		 * legacy PIPE_KMEM mode this constitutes an improvement
841 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
842 		 * mode the kva mapping must not be removed to get the
843 		 * caching benefit.
844 		 *
845 		 * For testing purposes we will give the original algorithm
846 		 * the benefit of the doubt 'what it could have been', and
847 		 * keep the optimization.
848 		 */
849 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
850 		xio_release(&wpipe->pipe_map);
851 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
852 	}
853 	pipeunlock(wpipe);
854 	return (error);
855 
856 	/*
857 	 * Direct-write error, clear the direct write flags.
858 	 */
859 error1:
860 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
861 	/* fallthrough */
862 
863 	/*
864 	 * General error, wakeup the other side if it happens to be sleeping.
865 	 */
866 error2:
867 	wakeup(wpipe);
868 	return (error);
869 }
870 #endif
871 
872 /*
873  * MPALMOSTSAFE - acquires mplock
874  */
875 static int
876 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
877 {
878 	int error = 0;
879 	int orig_resid;
880 	int nbio;
881 	struct pipe *wpipe, *rpipe;
882 
883 	get_mplock();
884 	rpipe = (struct pipe *) fp->f_data;
885 	wpipe = rpipe->pipe_peer;
886 
887 	/*
888 	 * detect loss of pipe read side, issue SIGPIPE if lost.
889 	 */
890 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
891 		rel_mplock();
892 		return (EPIPE);
893 	}
894 	++wpipe->pipe_busy;
895 
896 	if (fflags & O_FBLOCKING)
897 		nbio = 0;
898 	else if (fflags & O_FNONBLOCKING)
899 		nbio = 1;
900 	else if (fp->f_flag & O_NONBLOCK)
901 		nbio = 1;
902 	else
903 		nbio = 0;
904 
905 	/*
906 	 * If it is advantageous to resize the pipe buffer, do
907 	 * so.
908 	 */
909 	if ((uio->uio_resid > PIPE_SIZE) &&
910 	    (pipe_nbig < pipe_maxbig) &&
911 	    (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
912 	    (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
913 	    (wpipe->pipe_buffer.cnt == 0) &&
914 	    (error = pipelock(wpipe, 1)) == 0) {
915 		/*
916 		 * Recheck after lock.
917 		 */
918 		if ((pipe_nbig < pipe_maxbig) &&
919 		    (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
920 		    (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
921 		    (wpipe->pipe_buffer.cnt == 0)) {
922 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) {
923 				++pipe_bigcount;
924 				pipe_nbig++;
925 			}
926 		}
927 		pipeunlock(wpipe);
928 	}
929 
930 	/*
931 	 * If an early error occured unbusy and return, waking up any pending
932 	 * readers.
933 	 */
934 	if (error) {
935 		--wpipe->pipe_busy;
936 		if ((wpipe->pipe_busy == 0) &&
937 		    (wpipe->pipe_state & PIPE_WANT)) {
938 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
939 			wakeup(wpipe);
940 		}
941 		rel_mplock();
942 		return(error);
943 	}
944 
945 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
946 
947 	orig_resid = uio->uio_resid;
948 
949 	while (uio->uio_resid) {
950 		int space;
951 
952 #ifndef PIPE_NODIRECT
953 		/*
954 		 * If direct process-to-process writes are enabled and
955 		 * the buffer is large enough, and this is blocking IO,
956 		 * then use the direct write feature.
957 		 *
958 		 * If the pipe was opened at a time when the direct write
959 		 * feature was not enabled pipe_feature will be set to
960 		 * PIPE_COPY and we do not use the feature.
961 		 *
962 		 * The direct write mechanism will detect the reader going
963 		 * away on us.
964 		 */
965 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
966 		     pipe_dwrite_enable > 1) &&
967 		    nbio == 0 && pipe_dwrite_enable &&
968 		    wpipe->pipe_feature != PIPE_COPY
969 		) {
970 			error = pipe_direct_write( wpipe, uio);
971 			if (error)
972 				break;
973 			continue;
974 		}
975 #endif
976 
977 		/*
978 		 * Pipe buffered writes cannot be coincidental with
979 		 * direct writes.  We wait until the currently executing
980 		 * direct write is completed before we start filling the
981 		 * pipe buffer.  We break out if a signal occurs or the
982 		 * reader goes away.
983 		 */
984 	retrywrite:
985 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
986 			if (wpipe->pipe_state & PIPE_WANTR) {
987 				wpipe->pipe_state &= ~PIPE_WANTR;
988 				wakeup(wpipe);
989 			}
990 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
991 			if (wpipe->pipe_state & PIPE_EOF)
992 				break;
993 			if (error)
994 				break;
995 		}
996 		if (wpipe->pipe_state & PIPE_EOF) {
997 			error = EPIPE;
998 			break;
999 		}
1000 
1001 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1002 
1003 		/* Writes of size <= PIPE_BUF must be atomic. */
1004 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1005 			space = 0;
1006 
1007 		/*
1008 		 * Write to fill, read size handles write hysteresis.  Also
1009 		 * additional restrictions can cause select-based non-blocking
1010 		 * writes to spin.
1011 		 */
1012 		if (space > 0) {
1013 			if ((error = pipelock(wpipe,1)) == 0) {
1014 				int size;	/* Transfer size */
1015 				int segsize;	/* first segment to transfer */
1016 
1017 				/*
1018 				 * It is possible for a direct write to
1019 				 * slip in on us... handle it here...
1020 				 */
1021 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
1022 					pipeunlock(wpipe);
1023 					goto retrywrite;
1024 				}
1025 				/*
1026 				 * If a process blocked in uiomove, our
1027 				 * value for space might be bad.
1028 				 *
1029 				 * XXX will we be ok if the reader has gone
1030 				 * away here?
1031 				 */
1032 				if (space > wpipe->pipe_buffer.size -
1033 				    wpipe->pipe_buffer.cnt) {
1034 					pipeunlock(wpipe);
1035 					goto retrywrite;
1036 				}
1037 
1038 				/*
1039 				 * Transfer size is minimum of uio transfer
1040 				 * and free space in pipe buffer.
1041 				 */
1042 				if (space > uio->uio_resid)
1043 					size = uio->uio_resid;
1044 				else
1045 					size = space;
1046 				/*
1047 				 * First segment to transfer is minimum of
1048 				 * transfer size and contiguous space in
1049 				 * pipe buffer.  If first segment to transfer
1050 				 * is less than the transfer size, we've got
1051 				 * a wraparound in the buffer.
1052 				 */
1053 				segsize = wpipe->pipe_buffer.size -
1054 					wpipe->pipe_buffer.in;
1055 				if (segsize > size)
1056 					segsize = size;
1057 
1058 				/* Transfer first segment */
1059 
1060 				error = uiomove(&wpipe->pipe_buffer.buffer
1061 						  [wpipe->pipe_buffer.in],
1062 						segsize, uio);
1063 
1064 				if (error == 0 && segsize < size) {
1065 					/*
1066 					 * Transfer remaining part now, to
1067 					 * support atomic writes.  Wraparound
1068 					 * happened.
1069 					 */
1070 					if (wpipe->pipe_buffer.in + segsize !=
1071 					    wpipe->pipe_buffer.size)
1072 						panic("Expected pipe buffer wraparound disappeared");
1073 
1074 					error = uiomove(&wpipe->pipe_buffer.
1075 							  buffer[0],
1076 							size - segsize, uio);
1077 				}
1078 				if (error == 0) {
1079 					wpipe->pipe_buffer.in += size;
1080 					if (wpipe->pipe_buffer.in >=
1081 					    wpipe->pipe_buffer.size) {
1082 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1083 							panic("Expected wraparound bad");
1084 						wpipe->pipe_buffer.in = size - segsize;
1085 					}
1086 
1087 					wpipe->pipe_buffer.cnt += size;
1088 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1089 						panic("Pipe buffer overflow");
1090 
1091 				}
1092 				pipeunlock(wpipe);
1093 			}
1094 			if (error)
1095 				break;
1096 
1097 		} else {
1098 			/*
1099 			 * If the "read-side" has been blocked, wake it up now
1100 			 * and yield to let it drain synchronously rather
1101 			 * then block.
1102 			 */
1103 			if (wpipe->pipe_state & PIPE_WANTR) {
1104 				wpipe->pipe_state &= ~PIPE_WANTR;
1105 				wakeup(wpipe);
1106 			}
1107 
1108 			/*
1109 			 * don't block on non-blocking I/O
1110 			 */
1111 			if (nbio) {
1112 				error = EAGAIN;
1113 				break;
1114 			}
1115 
1116 			/*
1117 			 * We have no more space and have something to offer,
1118 			 * wake up select/poll.
1119 			 */
1120 			pipeselwakeup(wpipe);
1121 
1122 			wpipe->pipe_state |= PIPE_WANTW;
1123 			error = tsleep(wpipe, PCATCH, "pipewr", 0);
1124 			if (error != 0)
1125 				break;
1126 			/*
1127 			 * If read side wants to go away, we just issue a signal
1128 			 * to ourselves.
1129 			 */
1130 			if (wpipe->pipe_state & PIPE_EOF) {
1131 				error = EPIPE;
1132 				break;
1133 			}
1134 		}
1135 	}
1136 
1137 	--wpipe->pipe_busy;
1138 
1139 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1140 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1141 		wakeup(wpipe);
1142 	} else if (wpipe->pipe_buffer.cnt > 0) {
1143 		/*
1144 		 * If we have put any characters in the buffer, we wake up
1145 		 * the reader.
1146 		 */
1147 		if (wpipe->pipe_state & PIPE_WANTR) {
1148 			wpipe->pipe_state &= ~PIPE_WANTR;
1149 			wakeup(wpipe);
1150 		}
1151 	}
1152 
1153 	/*
1154 	 * Don't return EPIPE if I/O was successful
1155 	 */
1156 	if ((wpipe->pipe_buffer.cnt == 0) &&
1157 	    (uio->uio_resid == 0) &&
1158 	    (error == EPIPE)) {
1159 		error = 0;
1160 	}
1161 
1162 	if (error == 0)
1163 		vfs_timestamp(&wpipe->pipe_mtime);
1164 
1165 	/*
1166 	 * We have something to offer,
1167 	 * wake up select/poll.
1168 	 */
1169 	if (wpipe->pipe_buffer.cnt)
1170 		pipeselwakeup(wpipe);
1171 	rel_mplock();
1172 	return (error);
1173 }
1174 
1175 /*
1176  * MPALMOSTSAFE - acquires mplock
1177  *
1178  * we implement a very minimal set of ioctls for compatibility with sockets.
1179  */
1180 int
1181 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct ucred *cred)
1182 {
1183 	struct pipe *mpipe;
1184 	int error;
1185 
1186 	get_mplock();
1187 	mpipe = (struct pipe *)fp->f_data;
1188 
1189 	switch (cmd) {
1190 	case FIOASYNC:
1191 		if (*(int *)data) {
1192 			mpipe->pipe_state |= PIPE_ASYNC;
1193 		} else {
1194 			mpipe->pipe_state &= ~PIPE_ASYNC;
1195 		}
1196 		error = 0;
1197 		break;
1198 	case FIONREAD:
1199 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1200 			*(int *)data = mpipe->pipe_map.xio_bytes -
1201 					mpipe->pipe_buffer.out;
1202 		} else {
1203 			*(int *)data = mpipe->pipe_buffer.cnt;
1204 		}
1205 		error = 0;
1206 		break;
1207 	case FIOSETOWN:
1208 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1209 		break;
1210 	case FIOGETOWN:
1211 		*(int *)data = fgetown(mpipe->pipe_sigio);
1212 		error = 0;
1213 		break;
1214 	case TIOCSPGRP:
1215 		/* This is deprecated, FIOSETOWN should be used instead. */
1216 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1217 		break;
1218 
1219 	case TIOCGPGRP:
1220 		/* This is deprecated, FIOGETOWN should be used instead. */
1221 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1222 		error = 0;
1223 		break;
1224 	default:
1225 		error = ENOTTY;
1226 		break;
1227 	}
1228 	rel_mplock();
1229 	return (error);
1230 }
1231 
1232 /*
1233  * MPALMOSTSAFE - acquires mplock
1234  */
1235 int
1236 pipe_poll(struct file *fp, int events, struct ucred *cred)
1237 {
1238 	struct pipe *rpipe;
1239 	struct pipe *wpipe;
1240 	int revents = 0;
1241 
1242 	get_mplock();
1243 	rpipe = (struct pipe *)fp->f_data;
1244 	wpipe = rpipe->pipe_peer;
1245 	if (events & (POLLIN | POLLRDNORM))
1246 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1247 		    (rpipe->pipe_buffer.cnt > 0) ||
1248 		    (rpipe->pipe_state & PIPE_EOF))
1249 			revents |= events & (POLLIN | POLLRDNORM);
1250 
1251 	if (events & (POLLOUT | POLLWRNORM))
1252 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1253 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1254 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1255 			revents |= events & (POLLOUT | POLLWRNORM);
1256 
1257 	if ((rpipe->pipe_state & PIPE_EOF) ||
1258 	    (wpipe == NULL) ||
1259 	    (wpipe->pipe_state & PIPE_EOF))
1260 		revents |= POLLHUP;
1261 
1262 	if (revents == 0) {
1263 		if (events & (POLLIN | POLLRDNORM)) {
1264 			selrecord(curthread, &rpipe->pipe_sel);
1265 			rpipe->pipe_state |= PIPE_SEL;
1266 		}
1267 
1268 		if (events & (POLLOUT | POLLWRNORM)) {
1269 			selrecord(curthread, &wpipe->pipe_sel);
1270 			wpipe->pipe_state |= PIPE_SEL;
1271 		}
1272 	}
1273 	rel_mplock();
1274 	return (revents);
1275 }
1276 
1277 /*
1278  * MPALMOSTSAFE - acquires mplock
1279  */
1280 static int
1281 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1282 {
1283 	struct pipe *pipe;
1284 
1285 	get_mplock();
1286 	pipe = (struct pipe *)fp->f_data;
1287 
1288 	bzero((caddr_t)ub, sizeof(*ub));
1289 	ub->st_mode = S_IFIFO;
1290 	ub->st_blksize = pipe->pipe_buffer.size;
1291 	ub->st_size = pipe->pipe_buffer.cnt;
1292 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1293 		ub->st_size = pipe->pipe_map.xio_bytes -
1294 				pipe->pipe_buffer.out;
1295 	}
1296 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1297 	ub->st_atimespec = pipe->pipe_atime;
1298 	ub->st_mtimespec = pipe->pipe_mtime;
1299 	ub->st_ctimespec = pipe->pipe_ctime;
1300 	/*
1301 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1302 	 * st_flags, st_gen.
1303 	 * XXX (st_dev, st_ino) should be unique.
1304 	 */
1305 	rel_mplock();
1306 	return (0);
1307 }
1308 
1309 /*
1310  * MPALMOSTSAFE - acquires mplock
1311  */
1312 static int
1313 pipe_close(struct file *fp)
1314 {
1315 	struct pipe *cpipe;
1316 
1317 	get_mplock();
1318 	cpipe = (struct pipe *)fp->f_data;
1319 	fp->f_ops = &badfileops;
1320 	fp->f_data = NULL;
1321 	funsetown(cpipe->pipe_sigio);
1322 	pipeclose(cpipe);
1323 	rel_mplock();
1324 	return (0);
1325 }
1326 
1327 /*
1328  * Shutdown one or both directions of a full-duplex pipe.
1329  *
1330  * MPALMOSTSAFE - acquires mplock
1331  */
1332 static int
1333 pipe_shutdown(struct file *fp, int how)
1334 {
1335 	struct pipe *rpipe;
1336 	struct pipe *wpipe;
1337 	int error = EPIPE;
1338 
1339 	get_mplock();
1340 	rpipe = (struct pipe *)fp->f_data;
1341 
1342 	switch(how) {
1343 	case SHUT_RDWR:
1344 	case SHUT_RD:
1345 		if (rpipe) {
1346 			rpipe->pipe_state |= PIPE_EOF;
1347 			pipeselwakeup(rpipe);
1348 			if (rpipe->pipe_busy)
1349 				wakeup(rpipe);
1350 			error = 0;
1351 		}
1352 		if (how == SHUT_RD)
1353 			break;
1354 		/* fall through */
1355 	case SHUT_WR:
1356 		if (rpipe && (wpipe = rpipe->pipe_peer) != NULL) {
1357 			wpipe->pipe_state |= PIPE_EOF;
1358 			pipeselwakeup(wpipe);
1359 			if (wpipe->pipe_busy)
1360 				wakeup(wpipe);
1361 			error = 0;
1362 		}
1363 	}
1364 	rel_mplock();
1365 	return (error);
1366 }
1367 
1368 static void
1369 pipe_free_kmem(struct pipe *cpipe)
1370 {
1371 	if (cpipe->pipe_buffer.buffer != NULL) {
1372 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1373 			--pipe_nbig;
1374 		kmem_free(&kernel_map,
1375 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1376 			cpipe->pipe_buffer.size);
1377 		cpipe->pipe_buffer.buffer = NULL;
1378 		cpipe->pipe_buffer.object = NULL;
1379 	}
1380 #ifndef PIPE_NODIRECT
1381 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1382 		cpipe->pipe_map.xio_offset == 0 &&
1383 		cpipe->pipe_map.xio_npages == 0);
1384 #endif
1385 }
1386 
1387 /*
1388  * shutdown the pipe
1389  */
1390 static void
1391 pipeclose(struct pipe *cpipe)
1392 {
1393 	globaldata_t gd;
1394 	struct pipe *ppipe;
1395 
1396 	if (cpipe == NULL)
1397 		return;
1398 
1399 	pipeselwakeup(cpipe);
1400 
1401 	/*
1402 	 * If the other side is blocked, wake it up saying that
1403 	 * we want to close it down.
1404 	 */
1405 	while (cpipe->pipe_busy) {
1406 		wakeup(cpipe);
1407 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1408 		tsleep(cpipe, 0, "pipecl", 0);
1409 	}
1410 
1411 	/*
1412 	 * Disconnect from peer
1413 	 */
1414 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1415 		pipeselwakeup(ppipe);
1416 
1417 		ppipe->pipe_state |= PIPE_EOF;
1418 		wakeup(ppipe);
1419 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1420 		ppipe->pipe_peer = NULL;
1421 	}
1422 
1423 	if (cpipe->pipe_kva) {
1424 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1425 		kmem_free(&kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1426 		cpipe->pipe_kva = 0;
1427 	}
1428 
1429 	/*
1430 	 * free or cache resources
1431 	 */
1432 	gd = mycpu;
1433 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1434 	    cpipe->pipe_buffer.size != PIPE_SIZE
1435 	) {
1436 		pipe_free_kmem(cpipe);
1437 		kfree(cpipe, M_PIPE);
1438 	} else {
1439 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1440 			cpipe->pipe_map.xio_bytes == 0 &&
1441 			cpipe->pipe_map.xio_offset == 0);
1442 		cpipe->pipe_state = 0;
1443 		cpipe->pipe_busy = 0;
1444 		cpipe->pipe_peer = gd->gd_pipeq;
1445 		gd->gd_pipeq = cpipe;
1446 		++gd->gd_pipeqcount;
1447 	}
1448 }
1449 
1450 /*
1451  * MPALMOSTSAFE - acquires mplock
1452  */
1453 static int
1454 pipe_kqfilter(struct file *fp, struct knote *kn)
1455 {
1456 	struct pipe *cpipe;
1457 
1458 	get_mplock();
1459 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1460 
1461 	switch (kn->kn_filter) {
1462 	case EVFILT_READ:
1463 		kn->kn_fop = &pipe_rfiltops;
1464 		break;
1465 	case EVFILT_WRITE:
1466 		kn->kn_fop = &pipe_wfiltops;
1467 		cpipe = cpipe->pipe_peer;
1468 		if (cpipe == NULL) {
1469 			/* other end of pipe has been closed */
1470 			rel_mplock();
1471 			return (EPIPE);
1472 		}
1473 		break;
1474 	default:
1475 		return (1);
1476 	}
1477 	kn->kn_hook = (caddr_t)cpipe;
1478 
1479 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1480 	rel_mplock();
1481 	return (0);
1482 }
1483 
1484 static void
1485 filt_pipedetach(struct knote *kn)
1486 {
1487 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1488 
1489 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1490 }
1491 
1492 /*ARGSUSED*/
1493 static int
1494 filt_piperead(struct knote *kn, long hint)
1495 {
1496 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1497 	struct pipe *wpipe = rpipe->pipe_peer;
1498 
1499 	kn->kn_data = rpipe->pipe_buffer.cnt;
1500 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1501 		kn->kn_data = rpipe->pipe_map.xio_bytes -
1502 				rpipe->pipe_buffer.out;
1503 	}
1504 
1505 	if ((rpipe->pipe_state & PIPE_EOF) ||
1506 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1507 		kn->kn_flags |= EV_EOF;
1508 		return (1);
1509 	}
1510 	return (kn->kn_data > 0);
1511 }
1512 
1513 /*ARGSUSED*/
1514 static int
1515 filt_pipewrite(struct knote *kn, long hint)
1516 {
1517 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1518 	struct pipe *wpipe = rpipe->pipe_peer;
1519 
1520 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1521 		kn->kn_data = 0;
1522 		kn->kn_flags |= EV_EOF;
1523 		return (1);
1524 	}
1525 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1526 	if (wpipe->pipe_state & PIPE_DIRECTW)
1527 		kn->kn_data = 0;
1528 
1529 	return (kn->kn_data >= PIPE_BUF);
1530 }
1531