xref: /dragonfly/sys/kern/sys_pipe.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.39 2006/06/13 08:12:03 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 #include <sys/socket.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_zone.h>
87 
88 #include <sys/file2.h>
89 
90 #include <machine/cpufunc.h>
91 
92 /*
93  * interfaces to the outside world
94  */
95 static int pipe_read (struct file *fp, struct uio *uio,
96 		struct ucred *cred, int flags);
97 static int pipe_write (struct file *fp, struct uio *uio,
98 		struct ucred *cred, int flags);
99 static int pipe_close (struct file *fp);
100 static int pipe_shutdown (struct file *fp, int how);
101 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
102 static int pipe_kqfilter (struct file *fp, struct knote *kn);
103 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
104 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct ucred *cred);
105 
106 static struct fileops pipeops = {
107 	NULL,	/* port */
108 	NULL,	/* clone */
109 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
110 	pipe_stat, pipe_close, pipe_shutdown
111 };
112 
113 static void	filt_pipedetach(struct knote *kn);
114 static int	filt_piperead(struct knote *kn, long hint);
115 static int	filt_pipewrite(struct knote *kn, long hint);
116 
117 static struct filterops pipe_rfiltops =
118 	{ 1, NULL, filt_pipedetach, filt_piperead };
119 static struct filterops pipe_wfiltops =
120 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
121 
122 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
123 
124 /*
125  * Default pipe buffer size(s), this can be kind-of large now because pipe
126  * space is pageable.  The pipe code will try to maintain locality of
127  * reference for performance reasons, so small amounts of outstanding I/O
128  * will not wipe the cache.
129  */
130 #define MINPIPESIZE (PIPE_SIZE/3)
131 #define MAXPIPESIZE (2*PIPE_SIZE/3)
132 
133 /*
134  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
135  * is there so that on large systems, we don't exhaust it.
136  */
137 #define MAXPIPEKVA (8*1024*1024)
138 
139 /*
140  * Limit for direct transfers, we cannot, of course limit
141  * the amount of kva for pipes in general though.
142  */
143 #define LIMITPIPEKVA (16*1024*1024)
144 
145 /*
146  * Limit the number of "big" pipes
147  */
148 #define LIMITBIGPIPES	32
149 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
150 
151 static int pipe_maxbig = LIMITBIGPIPES;
152 static int pipe_maxcache = PIPEQ_MAX_CACHE;
153 static int pipe_nbig;
154 static int pipe_bcache_alloc;
155 static int pipe_bkmem_alloc;
156 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
157 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
158 					/* 3:sfbuf_dmap w/ forced invlpg */
159 
160 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
161 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
162         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
163 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
164         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
165 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
166         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
167 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
168         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
169 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
170         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
171 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
172 #if !defined(NO_PIPE_SYSCTL_STATS)
173 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
174         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
175 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
176         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
177 #endif
178 
179 static void pipeclose (struct pipe *cpipe);
180 static void pipe_free_kmem (struct pipe *cpipe);
181 static int pipe_create (struct pipe **cpipep);
182 static __inline int pipelock (struct pipe *cpipe, int catch);
183 static __inline void pipeunlock (struct pipe *cpipe);
184 static __inline void pipeselwakeup (struct pipe *cpipe);
185 #ifndef PIPE_NODIRECT
186 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
187 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
188 static void pipe_clone_write_buffer (struct pipe *wpipe);
189 #endif
190 static int pipespace (struct pipe *cpipe, int size);
191 
192 /*
193  * The pipe system call for the DTYPE_PIPE type of pipes
194  *
195  * pipe_ARgs(int dummy)
196  */
197 
198 /* ARGSUSED */
199 int
200 sys_pipe(struct pipe_args *uap)
201 {
202 	struct thread *td = curthread;
203 	struct proc *p = td->td_proc;
204 	struct file *rf, *wf;
205 	struct pipe *rpipe, *wpipe;
206 	int fd1, fd2, error;
207 
208 	KKASSERT(p);
209 
210 	rpipe = wpipe = NULL;
211 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
212 		pipeclose(rpipe);
213 		pipeclose(wpipe);
214 		return (ENFILE);
215 	}
216 
217 	rpipe->pipe_state |= PIPE_DIRECTOK;
218 	wpipe->pipe_state |= PIPE_DIRECTOK;
219 
220 	/*
221 	 * Select the direct-map features to use for this pipe.  Since the
222 	 * sysctl's can change on the fly we record the settings when the
223 	 * pipe is created.
224 	 *
225 	 * Generally speaking the system will default to what we consider
226 	 * to be the best-balanced and most stable option.  Right now this
227 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
228 	 * moment.
229 	 */
230 	wpipe->pipe_feature = PIPE_COPY;
231 	if (pipe_dwrite_enable) {
232 		switch(pipe_dwrite_sfbuf) {
233 		case 0:
234 			wpipe->pipe_feature = PIPE_KMEM;
235 			break;
236 		case 1:
237 			wpipe->pipe_feature = PIPE_SFBUF1;
238 			break;
239 		case 2:
240 		case 3:
241 			wpipe->pipe_feature = PIPE_SFBUF2;
242 			break;
243 		}
244 	}
245 	rpipe->pipe_feature = wpipe->pipe_feature;
246 
247 	error = falloc(p, &rf, &fd1);
248 	if (error) {
249 		pipeclose(rpipe);
250 		pipeclose(wpipe);
251 		return (error);
252 	}
253 	uap->sysmsg_fds[0] = fd1;
254 
255 	/*
256 	 * Warning: once we've gotten past allocation of the fd for the
257 	 * read-side, we can only drop the read side via fdrop() in order
258 	 * to avoid races against processes which manage to dup() the read
259 	 * side while we are blocked trying to allocate the write side.
260 	 */
261 	rf->f_type = DTYPE_PIPE;
262 	rf->f_flag = FREAD | FWRITE;
263 	rf->f_ops = &pipeops;
264 	rf->f_data = rpipe;
265 	error = falloc(p, &wf, &fd2);
266 	if (error) {
267 		fsetfd(p, NULL, fd1);
268 		fdrop(rf);
269 		/* rpipe has been closed by fdrop(). */
270 		pipeclose(wpipe);
271 		return (error);
272 	}
273 	wf->f_type = DTYPE_PIPE;
274 	wf->f_flag = FREAD | FWRITE;
275 	wf->f_ops = &pipeops;
276 	wf->f_data = wpipe;
277 	uap->sysmsg_fds[1] = fd2;
278 
279 	rpipe->pipe_peer = wpipe;
280 	wpipe->pipe_peer = rpipe;
281 
282 	fsetfd(p, rf, fd1);
283 	fsetfd(p, wf, fd2);
284 	fdrop(rf);
285 	fdrop(wf);
286 
287 	return (0);
288 }
289 
290 /*
291  * Allocate kva for pipe circular buffer, the space is pageable
292  * This routine will 'realloc' the size of a pipe safely, if it fails
293  * it will retain the old buffer.
294  * If it fails it will return ENOMEM.
295  */
296 static int
297 pipespace(struct pipe *cpipe, int size)
298 {
299 	struct vm_object *object;
300 	caddr_t buffer;
301 	int npages, error;
302 
303 	npages = round_page(size) / PAGE_SIZE;
304 	object = cpipe->pipe_buffer.object;
305 
306 	/*
307 	 * [re]create the object if necessary and reserve space for it
308 	 * in the kernel_map.  The object and memory are pageable.  On
309 	 * success, free the old resources before assigning the new
310 	 * ones.
311 	 */
312 	if (object == NULL || object->size != npages) {
313 		object = vm_object_allocate(OBJT_DEFAULT, npages);
314 		buffer = (caddr_t) vm_map_min(kernel_map);
315 
316 		error = vm_map_find(kernel_map, object, 0,
317 			(vm_offset_t *) &buffer, size, 1,
318 			VM_PROT_ALL, VM_PROT_ALL, 0);
319 
320 		if (error != KERN_SUCCESS) {
321 			vm_object_deallocate(object);
322 			return (ENOMEM);
323 		}
324 		pipe_free_kmem(cpipe);
325 		cpipe->pipe_buffer.object = object;
326 		cpipe->pipe_buffer.buffer = buffer;
327 		cpipe->pipe_buffer.size = size;
328 		++pipe_bkmem_alloc;
329 	} else {
330 		++pipe_bcache_alloc;
331 	}
332 	cpipe->pipe_buffer.in = 0;
333 	cpipe->pipe_buffer.out = 0;
334 	cpipe->pipe_buffer.cnt = 0;
335 	return (0);
336 }
337 
338 /*
339  * Initialize and allocate VM and memory for pipe, pulling the pipe from
340  * our per-cpu cache if possible.  For now make sure it is sized for the
341  * smaller PIPE_SIZE default.
342  */
343 static int
344 pipe_create(cpipep)
345 	struct pipe **cpipep;
346 {
347 	globaldata_t gd = mycpu;
348 	struct pipe *cpipe;
349 	int error;
350 
351 	if ((cpipe = gd->gd_pipeq) != NULL) {
352 		gd->gd_pipeq = cpipe->pipe_peer;
353 		--gd->gd_pipeqcount;
354 		cpipe->pipe_peer = NULL;
355 	} else {
356 		cpipe = malloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
357 	}
358 	*cpipep = cpipe;
359 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
360 		return (error);
361 	vfs_timestamp(&cpipe->pipe_ctime);
362 	cpipe->pipe_atime = cpipe->pipe_ctime;
363 	cpipe->pipe_mtime = cpipe->pipe_ctime;
364 	return (0);
365 }
366 
367 
368 /*
369  * lock a pipe for I/O, blocking other access
370  */
371 static __inline int
372 pipelock(cpipe, catch)
373 	struct pipe *cpipe;
374 	int catch;
375 {
376 	int error;
377 
378 	while (cpipe->pipe_state & PIPE_LOCK) {
379 		cpipe->pipe_state |= PIPE_LWANT;
380 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
381 		if (error != 0)
382 			return (error);
383 	}
384 	cpipe->pipe_state |= PIPE_LOCK;
385 	return (0);
386 }
387 
388 /*
389  * unlock a pipe I/O lock
390  */
391 static __inline void
392 pipeunlock(cpipe)
393 	struct pipe *cpipe;
394 {
395 
396 	cpipe->pipe_state &= ~PIPE_LOCK;
397 	if (cpipe->pipe_state & PIPE_LWANT) {
398 		cpipe->pipe_state &= ~PIPE_LWANT;
399 		wakeup(cpipe);
400 	}
401 }
402 
403 static __inline void
404 pipeselwakeup(cpipe)
405 	struct pipe *cpipe;
406 {
407 
408 	if (cpipe->pipe_state & PIPE_SEL) {
409 		cpipe->pipe_state &= ~PIPE_SEL;
410 		selwakeup(&cpipe->pipe_sel);
411 	}
412 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
413 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
414 	KNOTE(&cpipe->pipe_sel.si_note, 0);
415 }
416 
417 /*
418  * MPALMOSTSAFE (acquires mplock)
419  */
420 static int
421 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
422 {
423 	struct pipe *rpipe;
424 	int error;
425 	int nread = 0;
426 	int nbio;
427 	u_int size;
428 
429 	get_mplock();
430 	rpipe = (struct pipe *) fp->f_data;
431 	++rpipe->pipe_busy;
432 	error = pipelock(rpipe, 1);
433 	if (error)
434 		goto unlocked_error;
435 
436 	if (fflags & O_FBLOCKING)
437 		nbio = 0;
438 	else if (fflags & O_FNONBLOCKING)
439 		nbio = 1;
440 	else if (fp->f_flag & O_NONBLOCK)
441 		nbio = 1;
442 	else
443 		nbio = 0;
444 
445 	while (uio->uio_resid) {
446 		caddr_t va;
447 
448 		if (rpipe->pipe_buffer.cnt > 0) {
449 			/*
450 			 * normal pipe buffer receive
451 			 */
452 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
453 			if (size > rpipe->pipe_buffer.cnt)
454 				size = rpipe->pipe_buffer.cnt;
455 			if (size > (u_int) uio->uio_resid)
456 				size = (u_int) uio->uio_resid;
457 
458 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
459 					size, uio);
460 			if (error)
461 				break;
462 
463 			rpipe->pipe_buffer.out += size;
464 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
465 				rpipe->pipe_buffer.out = 0;
466 
467 			rpipe->pipe_buffer.cnt -= size;
468 
469 			/*
470 			 * If there is no more to read in the pipe, reset
471 			 * its pointers to the beginning.  This improves
472 			 * cache hit stats.
473 			 */
474 			if (rpipe->pipe_buffer.cnt == 0) {
475 				rpipe->pipe_buffer.in = 0;
476 				rpipe->pipe_buffer.out = 0;
477 			}
478 			nread += size;
479 #ifndef PIPE_NODIRECT
480 		} else if (rpipe->pipe_kva &&
481 			   rpipe->pipe_feature == PIPE_KMEM &&
482 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
483 			       == PIPE_DIRECTW
484 		) {
485 			/*
486 			 * Direct copy using source-side kva mapping
487 			 */
488 			size = rpipe->pipe_map.xio_bytes -
489 				rpipe->pipe_buffer.out;
490 			if (size > (u_int)uio->uio_resid)
491 				size = (u_int)uio->uio_resid;
492 			va = (caddr_t)rpipe->pipe_kva +
493 				xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
494 			error = uiomove(va, size, uio);
495 			if (error)
496 				break;
497 			nread += size;
498 			rpipe->pipe_buffer.out += size;
499 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
500 				rpipe->pipe_state |= PIPE_DIRECTIP;
501 				rpipe->pipe_state &= ~PIPE_DIRECTW;
502 				/* reset out index for copy mode */
503 				rpipe->pipe_buffer.out = 0;
504 				wakeup(rpipe);
505 			}
506 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
507 			   rpipe->pipe_kva &&
508 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
509 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
510 			       == PIPE_DIRECTW
511 		) {
512 			/*
513 			 * Direct copy, bypassing a kernel buffer.  We cannot
514 			 * mess with the direct-write buffer until
515 			 * PIPE_DIRECTIP is cleared.  In order to prevent
516 			 * the pipe_write code from racing itself in
517 			 * direct_write, we set DIRECTIP when we clear
518 			 * DIRECTW after we have exhausted the buffer.
519 			 */
520 			if (pipe_dwrite_sfbuf == 3)
521 				rpipe->pipe_kvamask = 0;
522 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
523 				    rpipe->pipe_map.xio_npages,
524 				    &rpipe->pipe_kvamask);
525 			size = rpipe->pipe_map.xio_bytes -
526 				rpipe->pipe_buffer.out;
527 			if (size > (u_int)uio->uio_resid)
528 				size = (u_int)uio->uio_resid;
529 			va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
530 			error = uiomove(va, size, uio);
531 			if (error)
532 				break;
533 			nread += size;
534 			rpipe->pipe_buffer.out += size;
535 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
536 				rpipe->pipe_state |= PIPE_DIRECTIP;
537 				rpipe->pipe_state &= ~PIPE_DIRECTW;
538 				/* reset out index for copy mode */
539 				rpipe->pipe_buffer.out = 0;
540 				wakeup(rpipe);
541 			}
542 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
543 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
544 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
545 				== PIPE_DIRECTW
546 		) {
547 			/*
548 			 * Direct copy, bypassing a kernel buffer.  We cannot
549 			 * mess with the direct-write buffer until
550 			 * PIPE_DIRECTIP is cleared.  In order to prevent
551 			 * the pipe_write code from racing itself in
552 			 * direct_write, we set DIRECTIP when we clear
553 			 * DIRECTW after we have exhausted the buffer.
554 			 */
555 			error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
556 			if (error)
557 				break;
558 			nread += size;
559 			rpipe->pipe_buffer.out += size;
560 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
561 				rpipe->pipe_state |= PIPE_DIRECTIP;
562 				rpipe->pipe_state &= ~PIPE_DIRECTW;
563 				/* reset out index for copy mode */
564 				rpipe->pipe_buffer.out = 0;
565 				wakeup(rpipe);
566 			}
567 #endif
568 		} else {
569 			/*
570 			 * detect EOF condition
571 			 * read returns 0 on EOF, no need to set error
572 			 */
573 			if (rpipe->pipe_state & PIPE_EOF)
574 				break;
575 
576 			/*
577 			 * If the "write-side" has been blocked, wake it up now.
578 			 */
579 			if (rpipe->pipe_state & PIPE_WANTW) {
580 				rpipe->pipe_state &= ~PIPE_WANTW;
581 				wakeup(rpipe);
582 			}
583 
584 			/*
585 			 * Break if some data was read.
586 			 */
587 			if (nread > 0)
588 				break;
589 
590 			/*
591 			 * Unlock the pipe buffer for our remaining
592 			 * processing.  We will either break out with an
593 			 * error or we will sleep and relock to loop.
594 			 */
595 			pipeunlock(rpipe);
596 
597 			/*
598 			 * Handle non-blocking mode operation or
599 			 * wait for more data.
600 			 */
601 			if (nbio) {
602 				error = EAGAIN;
603 			} else {
604 				rpipe->pipe_state |= PIPE_WANTR;
605 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
606 				    "piperd", 0)) == 0) {
607 					error = pipelock(rpipe, 1);
608 				}
609 			}
610 			if (error)
611 				goto unlocked_error;
612 		}
613 	}
614 	pipeunlock(rpipe);
615 
616 	if (error == 0)
617 		vfs_timestamp(&rpipe->pipe_atime);
618 unlocked_error:
619 	--rpipe->pipe_busy;
620 
621 	/*
622 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
623 	 */
624 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
625 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
626 		wakeup(rpipe);
627 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
628 		/*
629 		 * Handle write blocking hysteresis.
630 		 */
631 		if (rpipe->pipe_state & PIPE_WANTW) {
632 			rpipe->pipe_state &= ~PIPE_WANTW;
633 			wakeup(rpipe);
634 		}
635 	}
636 
637 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
638 		pipeselwakeup(rpipe);
639 	rel_mplock();
640 	return (error);
641 }
642 
643 #ifndef PIPE_NODIRECT
644 /*
645  * Map the sending processes' buffer into kernel space and wire it.
646  * This is similar to a physical write operation.
647  */
648 static int
649 pipe_build_write_buffer(wpipe, uio)
650 	struct pipe *wpipe;
651 	struct uio *uio;
652 {
653 	int error;
654 	u_int size;
655 
656 	size = (u_int) uio->uio_iov->iov_len;
657 	if (size > wpipe->pipe_buffer.size)
658 		size = wpipe->pipe_buffer.size;
659 
660 	if (uio->uio_segflg == UIO_SYSSPACE) {
661 		error = xio_init_kbuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
662 					size);
663 	} else {
664 		error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
665 					size, XIOF_READ);
666 	}
667 	wpipe->pipe_buffer.out = 0;
668 	if (error)
669 		return(error);
670 
671 	/*
672 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
673 	 * map the pages on the target while KMEM maps the pages now.
674 	 */
675 	switch(wpipe->pipe_feature) {
676 	case PIPE_KMEM:
677 	case PIPE_SFBUF2:
678 		if (wpipe->pipe_kva == NULL) {
679 			wpipe->pipe_kva =
680 			    kmem_alloc_nofault(kernel_map, XIO_INTERNAL_SIZE);
681 			wpipe->pipe_kvamask = 0;
682 		}
683 		if (wpipe->pipe_feature == PIPE_KMEM) {
684 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
685 				    wpipe->pipe_map.xio_npages);
686 		}
687 		break;
688 	default:
689 		break;
690 	}
691 
692 	/*
693 	 * And update the uio data.  The XIO might have loaded fewer bytes
694 	 * then requested so reload 'size'.
695 	 */
696 	size = wpipe->pipe_map.xio_bytes;
697 	uio->uio_iov->iov_len -= size;
698 	uio->uio_iov->iov_base += size;
699 	if (uio->uio_iov->iov_len == 0)
700 		uio->uio_iov++;
701 	uio->uio_resid -= size;
702 	uio->uio_offset += size;
703 	return (0);
704 }
705 
706 /*
707  * In the case of a signal, the writing process might go away.  This
708  * code copies the data into the circular buffer so that the source
709  * pages can be freed without loss of data.
710  *
711  * Note that in direct mode pipe_buffer.out is used to track the
712  * XIO offset.  We are converting the direct mode into buffered mode
713  * which changes the meaning of pipe_buffer.out.
714  */
715 static void
716 pipe_clone_write_buffer(wpipe)
717 	struct pipe *wpipe;
718 {
719 	int size;
720 	int offset;
721 
722 	offset = wpipe->pipe_buffer.out;
723 	size = wpipe->pipe_map.xio_bytes - offset;
724 
725 	KKASSERT(size <= wpipe->pipe_buffer.size);
726 
727 	wpipe->pipe_buffer.in = size;
728 	wpipe->pipe_buffer.out = 0;
729 	wpipe->pipe_buffer.cnt = size;
730 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
731 
732 	xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
733 	xio_release(&wpipe->pipe_map);
734 	if (wpipe->pipe_kva) {
735 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
736 		kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
737 		wpipe->pipe_kva = NULL;
738 	}
739 }
740 
741 /*
742  * This implements the pipe buffer write mechanism.  Note that only
743  * a direct write OR a normal pipe write can be pending at any given time.
744  * If there are any characters in the pipe buffer, the direct write will
745  * be deferred until the receiving process grabs all of the bytes from
746  * the pipe buffer.  Then the direct mapping write is set-up.
747  */
748 static int
749 pipe_direct_write(wpipe, uio)
750 	struct pipe *wpipe;
751 	struct uio *uio;
752 {
753 	int error;
754 
755 retry:
756 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
757 		if (wpipe->pipe_state & PIPE_WANTR) {
758 			wpipe->pipe_state &= ~PIPE_WANTR;
759 			wakeup(wpipe);
760 		}
761 		wpipe->pipe_state |= PIPE_WANTW;
762 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
763 		if (error)
764 			goto error2;
765 		if (wpipe->pipe_state & PIPE_EOF) {
766 			error = EPIPE;
767 			goto error2;
768 		}
769 	}
770 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
771 	if (wpipe->pipe_buffer.cnt > 0) {
772 		if (wpipe->pipe_state & PIPE_WANTR) {
773 			wpipe->pipe_state &= ~PIPE_WANTR;
774 			wakeup(wpipe);
775 		}
776 
777 		wpipe->pipe_state |= PIPE_WANTW;
778 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
779 		if (error)
780 			goto error2;
781 		if (wpipe->pipe_state & PIPE_EOF) {
782 			error = EPIPE;
783 			goto error2;
784 		}
785 		goto retry;
786 	}
787 
788 	/*
789 	 * Build our direct-write buffer
790 	 */
791 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
792 	error = pipe_build_write_buffer(wpipe, uio);
793 	if (error)
794 		goto error1;
795 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
796 
797 	/*
798 	 * Wait until the receiver has snarfed the data.  Since we are likely
799 	 * going to sleep we optimize the case and yield synchronously,
800 	 * possibly avoiding the tsleep().
801 	 */
802 	error = 0;
803 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
804 		if (wpipe->pipe_state & PIPE_EOF) {
805 			pipelock(wpipe, 0);
806 			xio_release(&wpipe->pipe_map);
807 			if (wpipe->pipe_kva) {
808 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
809 				kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
810 				wpipe->pipe_kva = NULL;
811 			}
812 			pipeunlock(wpipe);
813 			pipeselwakeup(wpipe);
814 			error = EPIPE;
815 			goto error1;
816 		}
817 		if (wpipe->pipe_state & PIPE_WANTR) {
818 			wpipe->pipe_state &= ~PIPE_WANTR;
819 			wakeup(wpipe);
820 		}
821 		pipeselwakeup(wpipe);
822 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
823 	}
824 	pipelock(wpipe,0);
825 	if (wpipe->pipe_state & PIPE_DIRECTW) {
826 		/*
827 		 * this bit of trickery substitutes a kernel buffer for
828 		 * the process that might be going away.
829 		 */
830 		pipe_clone_write_buffer(wpipe);
831 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
832 	} else {
833 		/*
834 		 * note: The pipe_kva mapping is not qremove'd here.  For
835 		 * legacy PIPE_KMEM mode this constitutes an improvement
836 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
837 		 * mode the kva mapping must not be removed to get the
838 		 * caching benefit.
839 		 *
840 		 * For testing purposes we will give the original algorithm
841 		 * the benefit of the doubt 'what it could have been', and
842 		 * keep the optimization.
843 		 */
844 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
845 		xio_release(&wpipe->pipe_map);
846 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
847 	}
848 	pipeunlock(wpipe);
849 	return (error);
850 
851 	/*
852 	 * Direct-write error, clear the direct write flags.
853 	 */
854 error1:
855 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
856 	/* fallthrough */
857 
858 	/*
859 	 * General error, wakeup the other side if it happens to be sleeping.
860 	 */
861 error2:
862 	wakeup(wpipe);
863 	return (error);
864 }
865 #endif
866 
867 /*
868  * MPALMOSTSAFE - acquires mplock
869  */
870 static int
871 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
872 {
873 	int error = 0;
874 	int orig_resid;
875 	int nbio;
876 	struct pipe *wpipe, *rpipe;
877 
878 	get_mplock();
879 	rpipe = (struct pipe *) fp->f_data;
880 	wpipe = rpipe->pipe_peer;
881 
882 	/*
883 	 * detect loss of pipe read side, issue SIGPIPE if lost.
884 	 */
885 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
886 		rel_mplock();
887 		return (EPIPE);
888 	}
889 	++wpipe->pipe_busy;
890 
891 	if (fflags & O_FBLOCKING)
892 		nbio = 0;
893 	else if (fflags & O_FNONBLOCKING)
894 		nbio = 1;
895 	else if (fp->f_flag & O_NONBLOCK)
896 		nbio = 1;
897 	else
898 		nbio = 0;
899 
900 	/*
901 	 * If it is advantageous to resize the pipe buffer, do
902 	 * so.
903 	 */
904 	if ((uio->uio_resid > PIPE_SIZE) &&
905 		(pipe_nbig < pipe_maxbig) &&
906 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
907 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
908 		(wpipe->pipe_buffer.cnt == 0)) {
909 
910 		if ((error = pipelock(wpipe,1)) == 0) {
911 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
912 				pipe_nbig++;
913 			pipeunlock(wpipe);
914 		}
915 	}
916 
917 	/*
918 	 * If an early error occured unbusy and return, waking up any pending
919 	 * readers.
920 	 */
921 	if (error) {
922 		--wpipe->pipe_busy;
923 		if ((wpipe->pipe_busy == 0) &&
924 		    (wpipe->pipe_state & PIPE_WANT)) {
925 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
926 			wakeup(wpipe);
927 		}
928 		rel_mplock();
929 		return(error);
930 	}
931 
932 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
933 
934 	orig_resid = uio->uio_resid;
935 
936 	while (uio->uio_resid) {
937 		int space;
938 
939 #ifndef PIPE_NODIRECT
940 		/*
941 		 * If the transfer is large, we can gain performance if
942 		 * we do process-to-process copies directly.
943 		 * If the write is non-blocking, we don't use the
944 		 * direct write mechanism.
945 		 *
946 		 * The direct write mechanism will detect the reader going
947 		 * away on us.
948 		 */
949 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
950 		    pipe_dwrite_enable > 1) &&
951 		    nbio == 0 &&
952 		    pipe_dwrite_enable) {
953 			error = pipe_direct_write( wpipe, uio);
954 			if (error)
955 				break;
956 			continue;
957 		}
958 #endif
959 
960 		/*
961 		 * Pipe buffered writes cannot be coincidental with
962 		 * direct writes.  We wait until the currently executing
963 		 * direct write is completed before we start filling the
964 		 * pipe buffer.  We break out if a signal occurs or the
965 		 * reader goes away.
966 		 */
967 	retrywrite:
968 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
969 			if (wpipe->pipe_state & PIPE_WANTR) {
970 				wpipe->pipe_state &= ~PIPE_WANTR;
971 				wakeup(wpipe);
972 			}
973 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
974 			if (wpipe->pipe_state & PIPE_EOF)
975 				break;
976 			if (error)
977 				break;
978 		}
979 		if (wpipe->pipe_state & PIPE_EOF) {
980 			error = EPIPE;
981 			break;
982 		}
983 
984 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
985 
986 		/* Writes of size <= PIPE_BUF must be atomic. */
987 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
988 			space = 0;
989 
990 		/*
991 		 * Write to fill, read size handles write hysteresis.  Also
992 		 * additional restrictions can cause select-based non-blocking
993 		 * writes to spin.
994 		 */
995 		if (space > 0) {
996 			if ((error = pipelock(wpipe,1)) == 0) {
997 				int size;	/* Transfer size */
998 				int segsize;	/* first segment to transfer */
999 
1000 				/*
1001 				 * It is possible for a direct write to
1002 				 * slip in on us... handle it here...
1003 				 */
1004 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
1005 					pipeunlock(wpipe);
1006 					goto retrywrite;
1007 				}
1008 				/*
1009 				 * If a process blocked in uiomove, our
1010 				 * value for space might be bad.
1011 				 *
1012 				 * XXX will we be ok if the reader has gone
1013 				 * away here?
1014 				 */
1015 				if (space > wpipe->pipe_buffer.size -
1016 				    wpipe->pipe_buffer.cnt) {
1017 					pipeunlock(wpipe);
1018 					goto retrywrite;
1019 				}
1020 
1021 				/*
1022 				 * Transfer size is minimum of uio transfer
1023 				 * and free space in pipe buffer.
1024 				 */
1025 				if (space > uio->uio_resid)
1026 					size = uio->uio_resid;
1027 				else
1028 					size = space;
1029 				/*
1030 				 * First segment to transfer is minimum of
1031 				 * transfer size and contiguous space in
1032 				 * pipe buffer.  If first segment to transfer
1033 				 * is less than the transfer size, we've got
1034 				 * a wraparound in the buffer.
1035 				 */
1036 				segsize = wpipe->pipe_buffer.size -
1037 					wpipe->pipe_buffer.in;
1038 				if (segsize > size)
1039 					segsize = size;
1040 
1041 				/* Transfer first segment */
1042 
1043 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1044 						segsize, uio);
1045 
1046 				if (error == 0 && segsize < size) {
1047 					/*
1048 					 * Transfer remaining part now, to
1049 					 * support atomic writes.  Wraparound
1050 					 * happened.
1051 					 */
1052 					if (wpipe->pipe_buffer.in + segsize !=
1053 					    wpipe->pipe_buffer.size)
1054 						panic("Expected pipe buffer wraparound disappeared");
1055 
1056 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1057 							size - segsize, uio);
1058 				}
1059 				if (error == 0) {
1060 					wpipe->pipe_buffer.in += size;
1061 					if (wpipe->pipe_buffer.in >=
1062 					    wpipe->pipe_buffer.size) {
1063 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1064 							panic("Expected wraparound bad");
1065 						wpipe->pipe_buffer.in = size - segsize;
1066 					}
1067 
1068 					wpipe->pipe_buffer.cnt += size;
1069 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1070 						panic("Pipe buffer overflow");
1071 
1072 				}
1073 				pipeunlock(wpipe);
1074 			}
1075 			if (error)
1076 				break;
1077 
1078 		} else {
1079 			/*
1080 			 * If the "read-side" has been blocked, wake it up now
1081 			 * and yield to let it drain synchronously rather
1082 			 * then block.
1083 			 */
1084 			if (wpipe->pipe_state & PIPE_WANTR) {
1085 				wpipe->pipe_state &= ~PIPE_WANTR;
1086 				wakeup(wpipe);
1087 			}
1088 
1089 			/*
1090 			 * don't block on non-blocking I/O
1091 			 */
1092 			if (nbio) {
1093 				error = EAGAIN;
1094 				break;
1095 			}
1096 
1097 			/*
1098 			 * We have no more space and have something to offer,
1099 			 * wake up select/poll.
1100 			 */
1101 			pipeselwakeup(wpipe);
1102 
1103 			wpipe->pipe_state |= PIPE_WANTW;
1104 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1105 			if (error != 0)
1106 				break;
1107 			/*
1108 			 * If read side wants to go away, we just issue a signal
1109 			 * to ourselves.
1110 			 */
1111 			if (wpipe->pipe_state & PIPE_EOF) {
1112 				error = EPIPE;
1113 				break;
1114 			}
1115 		}
1116 	}
1117 
1118 	--wpipe->pipe_busy;
1119 
1120 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1121 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1122 		wakeup(wpipe);
1123 	} else if (wpipe->pipe_buffer.cnt > 0) {
1124 		/*
1125 		 * If we have put any characters in the buffer, we wake up
1126 		 * the reader.
1127 		 */
1128 		if (wpipe->pipe_state & PIPE_WANTR) {
1129 			wpipe->pipe_state &= ~PIPE_WANTR;
1130 			wakeup(wpipe);
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Don't return EPIPE if I/O was successful
1136 	 */
1137 	if ((wpipe->pipe_buffer.cnt == 0) &&
1138 	    (uio->uio_resid == 0) &&
1139 	    (error == EPIPE)) {
1140 		error = 0;
1141 	}
1142 
1143 	if (error == 0)
1144 		vfs_timestamp(&wpipe->pipe_mtime);
1145 
1146 	/*
1147 	 * We have something to offer,
1148 	 * wake up select/poll.
1149 	 */
1150 	if (wpipe->pipe_buffer.cnt)
1151 		pipeselwakeup(wpipe);
1152 	rel_mplock();
1153 	return (error);
1154 }
1155 
1156 /*
1157  * MPALMOSTSAFE - acquires mplock
1158  *
1159  * we implement a very minimal set of ioctls for compatibility with sockets.
1160  */
1161 int
1162 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct ucred *cred)
1163 {
1164 	struct pipe *mpipe;
1165 	int error;
1166 
1167 	get_mplock();
1168 	mpipe = (struct pipe *)fp->f_data;
1169 
1170 	switch (cmd) {
1171 	case FIOASYNC:
1172 		if (*(int *)data) {
1173 			mpipe->pipe_state |= PIPE_ASYNC;
1174 		} else {
1175 			mpipe->pipe_state &= ~PIPE_ASYNC;
1176 		}
1177 		error = 0;
1178 		break;
1179 	case FIONREAD:
1180 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1181 			*(int *)data = mpipe->pipe_map.xio_bytes -
1182 					mpipe->pipe_buffer.out;
1183 		} else {
1184 			*(int *)data = mpipe->pipe_buffer.cnt;
1185 		}
1186 		error = 0;
1187 		break;
1188 	case FIOSETOWN:
1189 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1190 		break;
1191 	case FIOGETOWN:
1192 		*(int *)data = fgetown(mpipe->pipe_sigio);
1193 		error = 0;
1194 		break;
1195 	case TIOCSPGRP:
1196 		/* This is deprecated, FIOSETOWN should be used instead. */
1197 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1198 		break;
1199 
1200 	case TIOCGPGRP:
1201 		/* This is deprecated, FIOGETOWN should be used instead. */
1202 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1203 		error = 0;
1204 		break;
1205 	default:
1206 		error = ENOTTY;
1207 		break;
1208 	}
1209 	rel_mplock();
1210 	return (error);
1211 }
1212 
1213 /*
1214  * MPALMOSTSAFE - acquires mplock
1215  */
1216 int
1217 pipe_poll(struct file *fp, int events, struct ucred *cred)
1218 {
1219 	struct pipe *rpipe;
1220 	struct pipe *wpipe;
1221 	int revents = 0;
1222 
1223 	get_mplock();
1224 	rpipe = (struct pipe *)fp->f_data;
1225 	wpipe = rpipe->pipe_peer;
1226 	if (events & (POLLIN | POLLRDNORM))
1227 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1228 		    (rpipe->pipe_buffer.cnt > 0) ||
1229 		    (rpipe->pipe_state & PIPE_EOF))
1230 			revents |= events & (POLLIN | POLLRDNORM);
1231 
1232 	if (events & (POLLOUT | POLLWRNORM))
1233 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1234 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1235 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1236 			revents |= events & (POLLOUT | POLLWRNORM);
1237 
1238 	if ((rpipe->pipe_state & PIPE_EOF) ||
1239 	    (wpipe == NULL) ||
1240 	    (wpipe->pipe_state & PIPE_EOF))
1241 		revents |= POLLHUP;
1242 
1243 	if (revents == 0) {
1244 		if (events & (POLLIN | POLLRDNORM)) {
1245 			selrecord(curthread, &rpipe->pipe_sel);
1246 			rpipe->pipe_state |= PIPE_SEL;
1247 		}
1248 
1249 		if (events & (POLLOUT | POLLWRNORM)) {
1250 			selrecord(curthread, &wpipe->pipe_sel);
1251 			wpipe->pipe_state |= PIPE_SEL;
1252 		}
1253 	}
1254 	rel_mplock();
1255 	return (revents);
1256 }
1257 
1258 /*
1259  * MPALMOSTSAFE - acquires mplock
1260  */
1261 static int
1262 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1263 {
1264 	struct pipe *pipe;
1265 
1266 	get_mplock();
1267 	pipe = (struct pipe *)fp->f_data;
1268 
1269 	bzero((caddr_t)ub, sizeof(*ub));
1270 	ub->st_mode = S_IFIFO;
1271 	ub->st_blksize = pipe->pipe_buffer.size;
1272 	ub->st_size = pipe->pipe_buffer.cnt;
1273 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1274 		ub->st_size = pipe->pipe_map.xio_bytes -
1275 				pipe->pipe_buffer.out;
1276 	}
1277 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1278 	ub->st_atimespec = pipe->pipe_atime;
1279 	ub->st_mtimespec = pipe->pipe_mtime;
1280 	ub->st_ctimespec = pipe->pipe_ctime;
1281 	/*
1282 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1283 	 * st_flags, st_gen.
1284 	 * XXX (st_dev, st_ino) should be unique.
1285 	 */
1286 	rel_mplock();
1287 	return (0);
1288 }
1289 
1290 /*
1291  * MPALMOSTSAFE - acquires mplock
1292  */
1293 static int
1294 pipe_close(struct file *fp)
1295 {
1296 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1297 
1298 	get_mplock();
1299 	fp->f_ops = &badfileops;
1300 	fp->f_data = NULL;
1301 	funsetown(cpipe->pipe_sigio);
1302 	pipeclose(cpipe);
1303 	rel_mplock();
1304 	return (0);
1305 }
1306 
1307 /*
1308  * Shutdown one or both directions of a full-duplex pipe.
1309  *
1310  * MPALMOSTSAFE - acquires mplock
1311  */
1312 static int
1313 pipe_shutdown(struct file *fp, int how)
1314 {
1315 	struct pipe *rpipe;
1316 	struct pipe *wpipe;
1317 	int error = EPIPE;
1318 
1319 	get_mplock();
1320 	rpipe = (struct pipe *)fp->f_data;
1321 
1322 	switch(how) {
1323 	case SHUT_RDWR:
1324 	case SHUT_RD:
1325 		if (rpipe) {
1326 			rpipe->pipe_state |= PIPE_EOF;
1327 			pipeselwakeup(rpipe);
1328 			if (rpipe->pipe_busy)
1329 				wakeup(rpipe);
1330 			error = 0;
1331 		}
1332 		if (how == SHUT_RD)
1333 			break;
1334 		/* fall through */
1335 	case SHUT_WR:
1336 		if (rpipe && (wpipe = rpipe->pipe_peer) != NULL) {
1337 			wpipe->pipe_state |= PIPE_EOF;
1338 			pipeselwakeup(wpipe);
1339 			if (wpipe->pipe_busy)
1340 				wakeup(wpipe);
1341 			error = 0;
1342 		}
1343 	}
1344 	rel_mplock();
1345 	return (error);
1346 }
1347 
1348 static void
1349 pipe_free_kmem(struct pipe *cpipe)
1350 {
1351 	if (cpipe->pipe_buffer.buffer != NULL) {
1352 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1353 			--pipe_nbig;
1354 		kmem_free(kernel_map,
1355 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1356 			cpipe->pipe_buffer.size);
1357 		cpipe->pipe_buffer.buffer = NULL;
1358 		cpipe->pipe_buffer.object = NULL;
1359 	}
1360 #ifndef PIPE_NODIRECT
1361 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1362 		cpipe->pipe_map.xio_offset == 0 &&
1363 		cpipe->pipe_map.xio_npages == 0);
1364 #endif
1365 }
1366 
1367 /*
1368  * shutdown the pipe
1369  */
1370 static void
1371 pipeclose(struct pipe *cpipe)
1372 {
1373 	globaldata_t gd;
1374 	struct pipe *ppipe;
1375 
1376 	if (cpipe == NULL)
1377 		return;
1378 
1379 	pipeselwakeup(cpipe);
1380 
1381 	/*
1382 	 * If the other side is blocked, wake it up saying that
1383 	 * we want to close it down.
1384 	 */
1385 	while (cpipe->pipe_busy) {
1386 		wakeup(cpipe);
1387 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1388 		tsleep(cpipe, 0, "pipecl", 0);
1389 	}
1390 
1391 	/*
1392 	 * Disconnect from peer
1393 	 */
1394 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1395 		pipeselwakeup(ppipe);
1396 
1397 		ppipe->pipe_state |= PIPE_EOF;
1398 		wakeup(ppipe);
1399 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1400 		ppipe->pipe_peer = NULL;
1401 	}
1402 
1403 	if (cpipe->pipe_kva) {
1404 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1405 		kmem_free(kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1406 		cpipe->pipe_kva = NULL;
1407 	}
1408 
1409 	/*
1410 	 * free or cache resources
1411 	 */
1412 	gd = mycpu;
1413 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1414 	    cpipe->pipe_buffer.size != PIPE_SIZE
1415 	) {
1416 		pipe_free_kmem(cpipe);
1417 		free(cpipe, M_PIPE);
1418 	} else {
1419 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1420 			cpipe->pipe_map.xio_bytes == 0 &&
1421 			cpipe->pipe_map.xio_offset == 0);
1422 		cpipe->pipe_state = 0;
1423 		cpipe->pipe_busy = 0;
1424 		cpipe->pipe_peer = gd->gd_pipeq;
1425 		gd->gd_pipeq = cpipe;
1426 		++gd->gd_pipeqcount;
1427 	}
1428 }
1429 
1430 /*
1431  * MPALMOSTSAFE - acquires mplock
1432  */
1433 static int
1434 pipe_kqfilter(struct file *fp, struct knote *kn)
1435 {
1436 	struct pipe *cpipe;
1437 
1438 	get_mplock();
1439 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1440 
1441 	switch (kn->kn_filter) {
1442 	case EVFILT_READ:
1443 		kn->kn_fop = &pipe_rfiltops;
1444 		break;
1445 	case EVFILT_WRITE:
1446 		kn->kn_fop = &pipe_wfiltops;
1447 		cpipe = cpipe->pipe_peer;
1448 		if (cpipe == NULL) {
1449 			/* other end of pipe has been closed */
1450 			rel_mplock();
1451 			return (EPIPE);
1452 		}
1453 		break;
1454 	default:
1455 		return (1);
1456 	}
1457 	kn->kn_hook = (caddr_t)cpipe;
1458 
1459 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1460 	rel_mplock();
1461 	return (0);
1462 }
1463 
1464 static void
1465 filt_pipedetach(struct knote *kn)
1466 {
1467 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1468 
1469 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1470 }
1471 
1472 /*ARGSUSED*/
1473 static int
1474 filt_piperead(struct knote *kn, long hint)
1475 {
1476 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1477 	struct pipe *wpipe = rpipe->pipe_peer;
1478 
1479 	kn->kn_data = rpipe->pipe_buffer.cnt;
1480 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1481 		kn->kn_data = rpipe->pipe_map.xio_bytes -
1482 				rpipe->pipe_buffer.out;
1483 	}
1484 
1485 	if ((rpipe->pipe_state & PIPE_EOF) ||
1486 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1487 		kn->kn_flags |= EV_EOF;
1488 		return (1);
1489 	}
1490 	return (kn->kn_data > 0);
1491 }
1492 
1493 /*ARGSUSED*/
1494 static int
1495 filt_pipewrite(struct knote *kn, long hint)
1496 {
1497 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1498 	struct pipe *wpipe = rpipe->pipe_peer;
1499 
1500 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1501 		kn->kn_data = 0;
1502 		kn->kn_flags |= EV_EOF;
1503 		return (1);
1504 	}
1505 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1506 	if (wpipe->pipe_state & PIPE_DIRECTW)
1507 		kn->kn_data = 0;
1508 
1509 	return (kn->kn_data >= PIPE_BUF);
1510 }
1511