xref: /dragonfly/sys/kern/sys_process.c (revision 7d3e9a5b)
1 /*
2  * Copyright (c) 1994, Sean Eric Fagan
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Sean Eric Fagan.
16  * 4. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * $FreeBSD: src/sys/kern/sys_process.c,v 1.51.2.6 2003/01/08 03:06:45 kan Exp $
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/sysmsg.h>
37 #include <sys/uio.h>
38 #include <sys/proc.h>
39 #include <sys/priv.h>
40 #include <sys/vnode.h>
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43 #include <sys/lock.h>
44 
45 #include <vm/vm.h>
46 #include <vm/pmap.h>
47 #include <vm/vm_map.h>
48 #include <vm/vm_page.h>
49 
50 #include <vfs/procfs/procfs.h>
51 
52 #include <sys/thread2.h>
53 #include <sys/spinlock2.h>
54 
55 /* use the equivalent procfs code */
56 #if 0
57 static int
58 pread (struct proc *procp, unsigned int addr, unsigned int *retval)
59 {
60 	int		rv;
61 	vm_map_t	map, tmap;
62 	vm_object_t	object;
63 	vm_map_backing_t ba;
64 	vm_offset_t	kva = 0;
65 	int		page_offset;	/* offset into page */
66 	vm_offset_t	pageno;		/* page number */
67 	vm_map_entry_t	out_entry;
68 	vm_prot_t	out_prot;
69 	int		wflags;
70 	vm_pindex_t	pindex;
71 	vm_pindex_t	pcount;
72 
73 	/* Map page into kernel space */
74 
75 	map = &procp->p_vmspace->vm_map;
76 
77 	page_offset = addr - trunc_page(addr);
78 	pageno = trunc_page(addr);
79 
80 	tmap = map;
81 	rv = vm_map_lookup(&tmap, pageno, VM_PROT_READ, &out_entry,
82 			   &ba, &pindex, &pcount, &out_prot, &wflags);
83 	if (ba)
84 		object = ba->object;
85 	else
86 		object = NULL;
87 
88 
89 	if (rv != KERN_SUCCESS)
90 		return EINVAL;
91 
92 	vm_map_lookup_done (tmap, out_entry, 0);
93 
94 	/* Find space in kernel_map for the page we're interested in */
95 	rv = vm_map_find (kernel_map, object, NULL,
96 			  IDX_TO_OFF(pindex), &kva, PAGE_SIZE,
97 			  PAGE_SIZE, FALSE,
98 			  VM_MAPTYPE_NORMAL, VM_SUBSYS_PROC,
99 			  VM_PROT_ALL, VM_PROT_ALL, 0);
100 
101 	if (!rv) {
102 		vm_object_reference XXX (object);
103 
104 		/* wire the pages */
105 		rv = vm_map_kernel_wiring(kernel_map, kva, kva + PAGE_SIZE, 0);
106 		if (!rv) {
107 			*retval = 0;
108 			bcopy ((caddr_t)kva + page_offset,
109 			       retval, sizeof *retval);
110 		}
111 		vm_map_remove (kernel_map, kva, kva + PAGE_SIZE);
112 	}
113 
114 	return rv;
115 }
116 
117 static int
118 pwrite (struct proc *procp, unsigned int addr, unsigned int datum)
119 {
120 	int		rv;
121 	vm_map_t	map, tmap;
122 	vm_object_t	object;
123 	vm_map_backing_t ba;
124 	vm_offset_t	kva = 0;
125 	int		page_offset;	/* offset into page */
126 	vm_offset_t	pageno;		/* page number */
127 	vm_map_entry_t	out_entry;
128 	vm_prot_t	out_prot;
129 	int		wflags;
130 	vm_pindex_t	pindex;
131 	vm_pindex_t	pcount;
132 	boolean_t	fix_prot = 0;
133 
134 	/* Map page into kernel space */
135 
136 	map = &procp->p_vmspace->vm_map;
137 
138 	page_offset = addr - trunc_page(addr);
139 	pageno = trunc_page(addr);
140 
141 	/*
142 	 * Check the permissions for the area we're interested in.
143 	 */
144 
145 	if (vm_map_check_protection (map, pageno, pageno + PAGE_SIZE,
146 				     VM_PROT_WRITE, FALSE) == FALSE) {
147 		/*
148 		 * If the page was not writable, we make it so.
149 		 * XXX It is possible a page may *not* be read/executable,
150 		 * if a process changes that!
151 		 */
152 		fix_prot = 1;
153 		/* The page isn't writable, so let's try making it so... */
154 		if ((rv = vm_map_protect (map, pageno, pageno + PAGE_SIZE,
155 			VM_PROT_ALL, 0)) != KERN_SUCCESS)
156 		  return EFAULT;	/* I guess... */
157 	}
158 
159 	/*
160 	 * Now we need to get the page.  out_entry, out_prot, wflags, and
161 	 * single_use aren't used.  One would think the vm code would be
162 	 * a *bit* nicer...  We use tmap because vm_map_lookup() can
163 	 * change the map argument.
164 	 */
165 
166 	tmap = map;
167 	rv = vm_map_lookup(&tmap, pageno, VM_PROT_WRITE, &out_entry,
168 			   &ba, &pindex, &pcount, &out_prot, &wflags);
169 	if (ba)
170 		object = ba->object;
171 	else
172 		object = NULL;
173 
174 	if (rv != KERN_SUCCESS)
175 		return EINVAL;
176 
177 	/*
178 	 * Okay, we've got the page.  Let's release tmap.
179 	 */
180 	vm_map_lookup_done (tmap, out_entry, 0);
181 
182 	/*
183 	 * Fault the page in...
184 	 */
185 	rv = vm_fault(map, pageno, VM_PROT_WRITE|VM_PROT_READ, FALSE);
186 	if (rv != KERN_SUCCESS)
187 		return EFAULT;
188 
189 	/* Find space in kernel_map for the page we're interested in */
190 	rv = vm_map_find (kernel_map, object, NULL,
191 			  IDX_TO_OFF(pindex), &kva, PAGE_SIZE,
192 			  PAGE_SIZE, FALSE,
193 			  VM_MAPTYPE_NORMAL, VM_SUBSYS_PROC,
194 			  VM_PROT_ALL, VM_PROT_ALL, 0);
195 	if (!rv) {
196 		vm_object_reference XXX (object);
197 
198 		/* wire the pages */
199 		rv = vm_map_kernel_wiring(kernel_map, kva, kva + PAGE_SIZE, 0);
200 		if (!rv) {
201 		  bcopy (&datum, (caddr_t)kva + page_offset, sizeof datum);
202 		}
203 		vm_map_remove (kernel_map, kva, kva + PAGE_SIZE);
204 	}
205 
206 	if (fix_prot)
207 		vm_map_protect (map, pageno, pageno + PAGE_SIZE,
208 			VM_PROT_READ|VM_PROT_EXECUTE, 0);
209 	return rv;
210 }
211 #endif
212 
213 /*
214  * Process debugging system call.
215  *
216  * MPALMOSTSAFE
217  */
218 int
219 sys_ptrace(struct sysmsg *sysmsg, const struct ptrace_args *uap)
220 {
221 	struct proc *p = curproc;
222 
223 	/*
224 	 * XXX this obfuscation is to reduce stack usage, but the register
225 	 * structs may be too large to put on the stack anyway.
226 	 */
227 	union {
228 		struct ptrace_io_desc piod;
229 		struct dbreg dbreg;
230 		struct fpreg fpreg;
231 		struct reg reg;
232 	} r;
233 	void *addr;
234 	int error = 0;
235 
236 	addr = &r;
237 	switch (uap->req) {
238 	case PT_GETREGS:
239 	case PT_GETFPREGS:
240 #ifdef PT_GETDBREGS
241 	case PT_GETDBREGS:
242 #endif
243 		break;
244 	case PT_SETREGS:
245 		error = copyin(uap->addr, &r.reg, sizeof r.reg);
246 		break;
247 	case PT_SETFPREGS:
248 		error = copyin(uap->addr, &r.fpreg, sizeof r.fpreg);
249 		break;
250 #ifdef PT_SETDBREGS
251 	case PT_SETDBREGS:
252 		error = copyin(uap->addr, &r.dbreg, sizeof r.dbreg);
253 		break;
254 #endif
255 	case PT_IO:
256 		error = copyin(uap->addr, &r.piod, sizeof r.piod);
257 		break;
258 	default:
259 		addr = uap->addr;
260 	}
261 	if (error)
262 		return (error);
263 
264 	error = kern_ptrace(p, uap->req, uap->pid, addr, uap->data,
265 			&sysmsg->sysmsg_result);
266 	if (error)
267 		return (error);
268 
269 	switch (uap->req) {
270 	case PT_IO:
271 		(void)copyout(&r.piod, uap->addr, sizeof r.piod);
272 		break;
273 	case PT_GETREGS:
274 		error = copyout(&r.reg, uap->addr, sizeof r.reg);
275 		break;
276 	case PT_GETFPREGS:
277 		error = copyout(&r.fpreg, uap->addr, sizeof r.fpreg);
278 		break;
279 #ifdef PT_GETDBREGS
280 	case PT_GETDBREGS:
281 		error = copyout(&r.dbreg, uap->addr, sizeof r.dbreg);
282 		break;
283 #endif
284 	}
285 
286 	return (error);
287 }
288 
289 int
290 kern_ptrace(struct proc *curp, int req, pid_t pid, void *addr,
291 	    int data, int *res)
292 {
293 	struct proc *p, *pp;
294 	struct lwp *lp;
295 	struct iovec iov;
296 	struct uio uio;
297 	struct ptrace_io_desc *piod;
298 	int error = 0;
299 	int write, tmp;
300 	int t;
301 
302 	write = 0;
303 	if (req == PT_TRACE_ME) {
304 		p = curp;
305 		PHOLD(p);
306 	} else {
307 		if ((p = pfind(pid)) == NULL)
308 			return ESRCH;
309 	}
310 	if (!PRISON_CHECK(curp->p_ucred, p->p_ucred)) {
311 		PRELE(p);
312 		return (ESRCH);
313 	}
314 	if (p->p_flags & P_SYSTEM) {
315 		PRELE(p);
316 		return EINVAL;
317 	}
318 
319 	lwkt_gettoken(&p->p_token);
320 	/* Can't trace a process that's currently exec'ing. */
321 	if ((p->p_flags & P_INEXEC) != 0) {
322 		lwkt_reltoken(&p->p_token);
323 		PRELE(p);
324 		return EAGAIN;
325 	}
326 
327 	/*
328 	 * Permissions check
329 	 */
330 	switch (req) {
331 	case PT_TRACE_ME:
332 		/* Always legal. */
333 		break;
334 
335 	case PT_ATTACH:
336 		/* Self */
337 		if (p->p_pid == curp->p_pid) {
338 			lwkt_reltoken(&p->p_token);
339 			PRELE(p);
340 			return EINVAL;
341 		}
342 
343 		/* Already traced */
344 		if (p->p_flags & P_TRACED) {
345 			lwkt_reltoken(&p->p_token);
346 			PRELE(p);
347 			return EBUSY;
348 		}
349 
350 		if (curp->p_flags & P_TRACED)
351 			for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr)
352 				if (pp == p) {
353 					lwkt_reltoken(&p->p_token);
354 					PRELE(p);
355 					return (EINVAL);
356 				}
357 
358 		/* not owned by you, has done setuid (unless you're root) */
359 		if ((p->p_ucred->cr_ruid != curp->p_ucred->cr_ruid) ||
360 		     (p->p_flags & P_SUGID)) {
361 			if ((error = priv_check_cred(curp->p_ucred, PRIV_ROOT, 0)) != 0) {
362 				lwkt_reltoken(&p->p_token);
363 				PRELE(p);
364 				return error;
365 			}
366 		}
367 
368 		/* can't trace init when securelevel > 0 */
369 		if (securelevel > 0 && p->p_pid == 1) {
370 			lwkt_reltoken(&p->p_token);
371 			PRELE(p);
372 			return EPERM;
373 		}
374 
375 		/* OK */
376 		break;
377 
378 	case PT_READ_I:
379 	case PT_READ_D:
380 	case PT_WRITE_I:
381 	case PT_WRITE_D:
382 	case PT_IO:
383 	case PT_CONTINUE:
384 	case PT_KILL:
385 	case PT_STEP:
386 	case PT_DETACH:
387 #ifdef PT_GETREGS
388 	case PT_GETREGS:
389 #endif
390 #ifdef PT_SETREGS
391 	case PT_SETREGS:
392 #endif
393 #ifdef PT_GETFPREGS
394 	case PT_GETFPREGS:
395 #endif
396 #ifdef PT_SETFPREGS
397 	case PT_SETFPREGS:
398 #endif
399 #ifdef PT_GETDBREGS
400 	case PT_GETDBREGS:
401 #endif
402 #ifdef PT_SETDBREGS
403 	case PT_SETDBREGS:
404 #endif
405 		/* not being traced... */
406 		if ((p->p_flags & P_TRACED) == 0) {
407 			lwkt_reltoken(&p->p_token);
408 			PRELE(p);
409 			return EPERM;
410 		}
411 
412 		/* not being traced by YOU */
413 		if (p->p_pptr != curp) {
414 			lwkt_reltoken(&p->p_token);
415 			PRELE(p);
416 			return EBUSY;
417 		}
418 
419 		/* not currently stopped */
420 		if (p->p_stat != SSTOP ||
421 		    (p->p_flags & P_WAITED) == 0) {
422 			lwkt_reltoken(&p->p_token);
423 			PRELE(p);
424 			return EBUSY;
425 		}
426 
427 		/* OK */
428 		break;
429 
430 	default:
431 		lwkt_reltoken(&p->p_token);
432 		PRELE(p);
433 		return EINVAL;
434 	}
435 
436 	/* XXX lwp */
437 	lp = FIRST_LWP_IN_PROC(p);
438 	if (lp == NULL) {
439 		lwkt_reltoken(&p->p_token);
440 		PRELE(p);
441 		return EINVAL;
442 	}
443 
444 #ifdef FIX_SSTEP
445 	/*
446 	 * Single step fixup ala procfs
447 	 */
448 	FIX_SSTEP(lp);
449 #endif
450 
451 	/*
452 	 * Actually do the requests
453 	 */
454 
455 	*res = 0;
456 
457 	switch (req) {
458 	case PT_TRACE_ME:
459 		/* set my trace flag and "owner" so it can read/write me */
460 		p->p_flags |= P_TRACED;
461 		p->p_oppid = p->p_pptr->p_pid;
462 		lwkt_reltoken(&p->p_token);
463 		PRELE(p);
464 		return 0;
465 
466 	case PT_ATTACH:
467 		/* security check done above */
468 		p->p_flags |= P_TRACED;
469 		p->p_oppid = p->p_pptr->p_pid;
470 		proc_reparent(p, curp);
471 		data = SIGSTOP;
472 		goto sendsig;	/* in PT_CONTINUE below */
473 
474 	case PT_STEP:
475 	case PT_CONTINUE:
476 	case PT_DETACH:
477 		/* Zero means do not send any signal */
478 		if (data < 0 || data >= _SIG_MAXSIG) {
479 			lwkt_reltoken(&p->p_token);
480 			PRELE(p);
481 			return EINVAL;
482 		}
483 
484 		LWPHOLD(lp);
485 
486 		if (req == PT_STEP) {
487 			if ((error = ptrace_single_step (lp))) {
488 				LWPRELE(lp);
489 				lwkt_reltoken(&p->p_token);
490 				PRELE(p);
491 				return error;
492 			}
493 		}
494 
495 		if (addr != (void *)1) {
496 			if ((error = ptrace_set_pc (lp, (u_long)addr))) {
497 				LWPRELE(lp);
498 				lwkt_reltoken(&p->p_token);
499 				PRELE(p);
500 				return error;
501 			}
502 		}
503 		LWPRELE(lp);
504 
505 		if (req == PT_DETACH) {
506 			/* reset process parent */
507 			if (p->p_oppid != p->p_pptr->p_pid) {
508 				struct proc *pp;
509 
510 				pp = pfind(p->p_oppid);
511 				if (pp) {
512 					proc_reparent(p, pp);
513 					PRELE(pp);
514 				}
515 			}
516 
517 			p->p_flags &= ~(P_TRACED | P_WAITED);
518 			p->p_oppid = 0;
519 
520 			/* should we send SIGCHLD? */
521 		}
522 
523 	sendsig:
524 		/*
525 		 * Deliver or queue signal.  If the process is stopped
526 		 * force it to be SACTIVE again.
527 		 */
528 		crit_enter();
529 		if (p->p_stat == SSTOP) {
530 			p->p_xstat = data;
531 			proc_unstop(p, SSTOP);
532 		} else if (data) {
533 			ksignal(p, data);
534 		}
535 		crit_exit();
536 		lwkt_reltoken(&p->p_token);
537 		PRELE(p);
538 		return 0;
539 
540 	case PT_WRITE_I:
541 	case PT_WRITE_D:
542 		write = 1;
543 		/* fallthrough */
544 	case PT_READ_I:
545 	case PT_READ_D:
546 		/*
547 		 * NOTE! uio_offset represents the offset in the target
548 		 * process.  The iov is in the current process (the guy
549 		 * making the ptrace call) so uio_td must be the current
550 		 * process (though for a SYSSPACE transfer it doesn't
551 		 * really matter).
552 		 */
553 		tmp = 0;
554 		/* write = 0 set above */
555 		iov.iov_base = write ? (caddr_t)&data : (caddr_t)&tmp;
556 		iov.iov_len = sizeof(int);
557 		uio.uio_iov = &iov;
558 		uio.uio_iovcnt = 1;
559 		uio.uio_offset = (off_t)(uintptr_t)addr;
560 		uio.uio_resid = sizeof(int);
561 		uio.uio_segflg = UIO_SYSSPACE;
562 		uio.uio_rw = write ? UIO_WRITE : UIO_READ;
563 		uio.uio_td = curthread;
564 		error = procfs_domem(curp, lp, NULL, &uio);
565 		if (uio.uio_resid != 0) {
566 			/*
567 			 * XXX procfs_domem() doesn't currently return ENOSPC,
568 			 * so I think write() can bogusly return 0.
569 			 * XXX what happens for short writes?  We don't want
570 			 * to write partial data.
571 			 * XXX procfs_domem() returns EPERM for other invalid
572 			 * addresses.  Convert this to EINVAL.  Does this
573 			 * clobber returns of EPERM for other reasons?
574 			 */
575 			if (error == 0 || error == ENOSPC || error == EPERM)
576 				error = EINVAL;	/* EOF */
577 		}
578 		if (!write)
579 			*res = tmp;
580 		lwkt_reltoken(&p->p_token);
581 		PRELE(p);
582 		return (error);
583 
584 	case PT_IO:
585 		/*
586 		 * NOTE! uio_offset represents the offset in the target
587 		 * process.  The iov is in the current process (the guy
588 		 * making the ptrace call) so uio_td must be the current
589 		 * process.
590 		 */
591 		piod = addr;
592 		iov.iov_base = piod->piod_addr;
593 		iov.iov_len = piod->piod_len;
594 		uio.uio_iov = &iov;
595 		uio.uio_iovcnt = 1;
596 		uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
597 		uio.uio_resid = piod->piod_len;
598 		uio.uio_segflg = UIO_USERSPACE;
599 		uio.uio_td = curthread;
600 		switch (piod->piod_op) {
601 		case PIOD_READ_D:
602 		case PIOD_READ_I:
603 			uio.uio_rw = UIO_READ;
604 			break;
605 		case PIOD_WRITE_D:
606 		case PIOD_WRITE_I:
607 			uio.uio_rw = UIO_WRITE;
608 			break;
609 		default:
610 			lwkt_reltoken(&p->p_token);
611 			PRELE(p);
612 			return (EINVAL);
613 		}
614 		error = procfs_domem(curp, lp, NULL, &uio);
615 		piod->piod_len -= uio.uio_resid;
616 		lwkt_reltoken(&p->p_token);
617 		PRELE(p);
618 		return (error);
619 
620 	case PT_KILL:
621 		data = SIGKILL;
622 		goto sendsig;	/* in PT_CONTINUE above */
623 
624 #ifdef PT_SETREGS
625 	case PT_SETREGS:
626 		write = 1;
627 		/* fallthrough */
628 #endif /* PT_SETREGS */
629 #ifdef PT_GETREGS
630 	case PT_GETREGS:
631 		/* write = 0 above */
632 #endif /* PT_SETREGS */
633 #if defined(PT_SETREGS) || defined(PT_GETREGS)
634 		if (!procfs_validregs(lp)) {
635 			lwkt_reltoken(&p->p_token);
636 			PRELE(p);
637 			return EINVAL;
638 		} else {
639 			iov.iov_base = addr;
640 			iov.iov_len = sizeof(struct reg);
641 			uio.uio_iov = &iov;
642 			uio.uio_iovcnt = 1;
643 			uio.uio_offset = 0;
644 			uio.uio_resid = sizeof(struct reg);
645 			uio.uio_segflg = UIO_SYSSPACE;
646 			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
647 			uio.uio_td = curthread;
648 			t = procfs_doregs(curp, lp, NULL, &uio);
649 			lwkt_reltoken(&p->p_token);
650 			PRELE(p);
651 			return t;
652 		}
653 #endif /* defined(PT_SETREGS) || defined(PT_GETREGS) */
654 
655 #ifdef PT_SETFPREGS
656 	case PT_SETFPREGS:
657 		write = 1;
658 		/* fallthrough */
659 #endif /* PT_SETFPREGS */
660 #ifdef PT_GETFPREGS
661 	case PT_GETFPREGS:
662 		/* write = 0 above */
663 #endif /* PT_SETFPREGS */
664 #if defined(PT_SETFPREGS) || defined(PT_GETFPREGS)
665 		if (!procfs_validfpregs(lp)) {
666 			lwkt_reltoken(&p->p_token);
667 			PRELE(p);
668 			return EINVAL;
669 		} else {
670 			iov.iov_base = addr;
671 			iov.iov_len = sizeof(struct fpreg);
672 			uio.uio_iov = &iov;
673 			uio.uio_iovcnt = 1;
674 			uio.uio_offset = 0;
675 			uio.uio_resid = sizeof(struct fpreg);
676 			uio.uio_segflg = UIO_SYSSPACE;
677 			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
678 			uio.uio_td = curthread;
679 			t = procfs_dofpregs(curp, lp, NULL, &uio);
680 			lwkt_reltoken(&p->p_token);
681 			PRELE(p);
682 			return t;
683 		}
684 #endif /* defined(PT_SETFPREGS) || defined(PT_GETFPREGS) */
685 
686 #ifdef PT_SETDBREGS
687 	case PT_SETDBREGS:
688 		write = 1;
689 		/* fallthrough */
690 #endif /* PT_SETDBREGS */
691 #ifdef PT_GETDBREGS
692 	case PT_GETDBREGS:
693 		/* write = 0 above */
694 #endif /* PT_SETDBREGS */
695 #if defined(PT_SETDBREGS) || defined(PT_GETDBREGS)
696 		if (!procfs_validdbregs(lp)) {
697 			lwkt_reltoken(&p->p_token);
698 			PRELE(p);
699 			return EINVAL;
700 		} else {
701 			iov.iov_base = addr;
702 			iov.iov_len = sizeof(struct dbreg);
703 			uio.uio_iov = &iov;
704 			uio.uio_iovcnt = 1;
705 			uio.uio_offset = 0;
706 			uio.uio_resid = sizeof(struct dbreg);
707 			uio.uio_segflg = UIO_SYSSPACE;
708 			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
709 			uio.uio_td = curthread;
710 			t = procfs_dodbregs(curp, lp, NULL, &uio);
711 			lwkt_reltoken(&p->p_token);
712 			PRELE(p);
713 			return t;
714 		}
715 #endif /* defined(PT_SETDBREGS) || defined(PT_GETDBREGS) */
716 
717 	default:
718 		break;
719 	}
720 
721 	lwkt_reltoken(&p->p_token);
722 	PRELE(p);
723 
724 	return 0;
725 }
726 
727 int
728 trace_req(struct proc *p)
729 {
730 	return 1;
731 }
732 
733 /*
734  * stopevent()
735  *
736  * Stop a process because of a procfs event.  Stay stopped until p->p_step
737  * is cleared (cleared by PIOCCONT in procfs).
738  *
739  * MPSAFE
740  */
741 void
742 stopevent(struct proc *p, unsigned int event, unsigned int val)
743 {
744 	/*
745 	 * Set event info.  Recheck p_stops in case we are
746 	 * racing a close() on procfs.
747 	 */
748 	spin_lock(&p->p_spin);
749 	if ((p->p_stops & event) == 0) {
750 		spin_unlock(&p->p_spin);
751 		return;
752 	}
753 	p->p_xstat = val;
754 	p->p_stype = event;
755 	p->p_step = 1;
756 	tsleep_interlock(&p->p_step, 0);
757 	spin_unlock(&p->p_spin);
758 
759 	/*
760 	 * Wakeup any PIOCWAITing procs and wait for p_step to
761 	 * be cleared.
762 	 */
763 	for (;;) {
764 		wakeup(&p->p_stype);
765 		tsleep(&p->p_step, PINTERLOCKED, "stopevent", 0);
766 		spin_lock(&p->p_spin);
767 		if (p->p_step == 0) {
768 			spin_unlock(&p->p_spin);
769 			break;
770 		}
771 		tsleep_interlock(&p->p_step, 0);
772 		spin_unlock(&p->p_spin);
773 	}
774 }
775 
776