xref: /dragonfly/sys/kern/uipc_mbuf.c (revision 5c694678)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
5  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jeffrey M. Hsu.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1982, 1986, 1988, 1991, 1993
38  *	The Regents of the University of California.  All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  *
64  * @(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
65  * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
66  */
67 
68 #include "opt_param.h"
69 #include "opt_mbuf_stress_test.h"
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/file.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/domain.h>
78 #include <sys/objcache.h>
79 #include <sys/tree.h>
80 #include <sys/protosw.h>
81 #include <sys/uio.h>
82 #include <sys/thread.h>
83 #include <sys/proc.h>
84 #include <sys/globaldata.h>
85 
86 #include <sys/spinlock2.h>
87 
88 #include <machine/atomic.h>
89 #include <machine/limits.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 
95 #ifdef INVARIANTS
96 #include <machine/cpu.h>
97 #endif
98 
99 /*
100  * mbuf cluster meta-data
101  */
102 struct mbcluster {
103 	int32_t	mcl_refs;
104 	void	*mcl_data;
105 };
106 
107 /*
108  * mbuf tracking for debugging purposes
109  */
110 #ifdef MBUF_DEBUG
111 
112 static MALLOC_DEFINE(M_MTRACK, "mtrack", "mtrack");
113 
114 struct mbctrack;
115 RB_HEAD(mbuf_rb_tree, mbtrack);
116 RB_PROTOTYPE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *);
117 
118 struct mbtrack {
119 	RB_ENTRY(mbtrack) rb_node;
120 	int trackid;
121 	struct mbuf *m;
122 };
123 
124 static int
125 mbtrack_cmp(struct mbtrack *mb1, struct mbtrack *mb2)
126 {
127 	if (mb1->m < mb2->m)
128 		return (-1);
129 	if (mb1->m > mb2->m)
130 		return (1);
131 	return (0);
132 }
133 
134 RB_GENERATE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *, m);
135 
136 struct mbuf_rb_tree	mbuf_track_root;
137 static struct spinlock	mbuf_track_spin =
138 	SPINLOCK_INITIALIZER(mbuf_track_spin, "mbuf_track_spin");
139 
140 static void
141 mbuftrack(struct mbuf *m)
142 {
143 	struct mbtrack *mbt;
144 
145 	mbt = kmalloc(sizeof(*mbt), M_MTRACK, M_INTWAIT|M_ZERO);
146 	spin_lock(&mbuf_track_spin);
147 	mbt->m = m;
148 	if (mbuf_rb_tree_RB_INSERT(&mbuf_track_root, mbt)) {
149 		spin_unlock(&mbuf_track_spin);
150 		panic("%s: mbuf %p already being tracked", __func__, m);
151 	}
152 	spin_unlock(&mbuf_track_spin);
153 }
154 
155 static void
156 mbufuntrack(struct mbuf *m)
157 {
158 	struct mbtrack *mbt;
159 
160 	spin_lock(&mbuf_track_spin);
161 	mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
162 	if (mbt == NULL) {
163 		spin_unlock(&mbuf_track_spin);
164 		panic("%s: mbuf %p was not tracked", __func__, m);
165 	} else {
166 		mbuf_rb_tree_RB_REMOVE(&mbuf_track_root, mbt);
167 		spin_unlock(&mbuf_track_spin);
168 		kfree(mbt, M_MTRACK);
169 	}
170 }
171 
172 void
173 mbuftrackid(struct mbuf *m, int trackid)
174 {
175 	struct mbtrack *mbt;
176 	struct mbuf *n;
177 
178 	spin_lock(&mbuf_track_spin);
179 	while (m) {
180 		n = m->m_nextpkt;
181 		while (m) {
182 			mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
183 			if (mbt == NULL) {
184 				spin_unlock(&mbuf_track_spin);
185 				panic("%s: mbuf %p not tracked", __func__, m);
186 			}
187 			mbt->trackid = trackid;
188 			m = m->m_next;
189 		}
190 		m = n;
191 	}
192 	spin_unlock(&mbuf_track_spin);
193 }
194 
195 static int
196 mbuftrack_callback(struct mbtrack *mbt, void *arg)
197 {
198 	struct sysctl_req *req = arg;
199 	char buf[64];
200 	int error;
201 
202 	ksnprintf(buf, sizeof(buf), "mbuf %p track %d\n", mbt->m, mbt->trackid);
203 
204 	spin_unlock(&mbuf_track_spin);
205 	error = SYSCTL_OUT(req, buf, strlen(buf));
206 	spin_lock(&mbuf_track_spin);
207 	if (error)
208 		return (-error);
209 	return (0);
210 }
211 
212 static int
213 mbuftrack_show(SYSCTL_HANDLER_ARGS)
214 {
215 	int error;
216 
217 	spin_lock(&mbuf_track_spin);
218 	error = mbuf_rb_tree_RB_SCAN(&mbuf_track_root, NULL,
219 				     mbuftrack_callback, req);
220 	spin_unlock(&mbuf_track_spin);
221 	return (-error);
222 }
223 SYSCTL_PROC(_kern_ipc, OID_AUTO, showmbufs, CTLFLAG_RD|CTLTYPE_STRING,
224 	    0, 0, mbuftrack_show, "A", "Show all in-use mbufs");
225 
226 #else
227 
228 #define mbuftrack(m)
229 #define mbufuntrack(m)
230 
231 #endif
232 
233 static void mbinit(void *);
234 SYSINIT(mbuf, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, mbinit, NULL);
235 
236 struct mbtypes_stat {
237 	u_long	stats[MT_NTYPES];
238 } __cachealign;
239 
240 static struct mbtypes_stat	mbtypes[SMP_MAXCPU];
241 
242 static struct mbstat mbstat[SMP_MAXCPU] __cachealign;
243 int	max_linkhdr;
244 int	max_protohdr;
245 int	max_hdr;
246 int	max_datalen;
247 int	m_defragpackets;
248 int	m_defragbytes;
249 int	m_defraguseless;
250 int	m_defragfailure;
251 #ifdef MBUF_STRESS_TEST
252 int	m_defragrandomfailures;
253 #endif
254 
255 struct objcache *mbuf_cache, *mbufphdr_cache;
256 struct objcache *mclmeta_cache, *mjclmeta_cache;
257 struct objcache *mbufcluster_cache, *mbufphdrcluster_cache;
258 struct objcache *mbufjcluster_cache, *mbufphdrjcluster_cache;
259 
260 struct lock	mbupdate_lk = LOCK_INITIALIZER("mbupdate", 0, LK_CANRECURSE);
261 
262 int		nmbclusters;
263 static int	nmbjclusters;
264 int		nmbufs;
265 
266 static int	mjclph_cachefrac;
267 static int	mjcl_cachefrac;
268 static int	mclph_cachefrac;
269 static int	mcl_cachefrac;
270 
271 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
272 	   &max_linkhdr, 0, "Max size of a link-level header");
273 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
274 	   &max_protohdr, 0, "Max size of a protocol header");
275 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0,
276 	   "Max size of link+protocol headers");
277 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
278 	   &max_datalen, 0, "Max data payload size without headers");
279 
280 static int do_mbstat(SYSCTL_HANDLER_ARGS);
281 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLTYPE_STRUCT|CTLFLAG_RD,
282 	    0, 0, do_mbstat, "S,mbstat", "mbuf usage statistics");
283 
284 static int do_mbtypes(SYSCTL_HANDLER_ARGS);
285 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtypes, CTLTYPE_ULONG|CTLFLAG_RD,
286 	    0, 0, do_mbtypes, "LU", "");
287 
288 static int
289 do_mbstat(SYSCTL_HANDLER_ARGS)
290 {
291 	struct mbstat mbstat_total;
292 	struct mbstat *mbstat_totalp;
293 	int i;
294 
295 	bzero(&mbstat_total, sizeof(mbstat_total));
296 	mbstat_totalp = &mbstat_total;
297 
298 	for (i = 0; i < ncpus; i++) {
299 		mbstat_total.m_mbufs += mbstat[i].m_mbufs;
300 		mbstat_total.m_clusters += mbstat[i].m_clusters;
301 		mbstat_total.m_jclusters += mbstat[i].m_jclusters;
302 		mbstat_total.m_clfree += mbstat[i].m_clfree;
303 		mbstat_total.m_drops += mbstat[i].m_drops;
304 		mbstat_total.m_wait += mbstat[i].m_wait;
305 		mbstat_total.m_drain += mbstat[i].m_drain;
306 		mbstat_total.m_mcfail += mbstat[i].m_mcfail;
307 		mbstat_total.m_mpfail += mbstat[i].m_mpfail;
308 	}
309 
310 	/*
311 	 * The following fields are not cumulative fields so just
312 	 * get their values once.
313 	 */
314 	mbstat_total.m_msize = mbstat[0].m_msize;
315 	mbstat_total.m_mclbytes = mbstat[0].m_mclbytes;
316 	mbstat_total.m_minclsize = mbstat[0].m_minclsize;
317 	mbstat_total.m_mlen = mbstat[0].m_mlen;
318 	mbstat_total.m_mhlen = mbstat[0].m_mhlen;
319 
320 	return sysctl_handle_opaque(oidp, mbstat_totalp,
321 				    sizeof(mbstat_total), req);
322 }
323 
324 static int
325 do_mbtypes(SYSCTL_HANDLER_ARGS)
326 {
327 	u_long totals[MT_NTYPES];
328 	int i, j;
329 
330 	for (i = 0; i < MT_NTYPES; i++)
331 		totals[i] = 0;
332 
333 	for (i = 0; i < ncpus; i++) {
334 		for (j = 0; j < MT_NTYPES; j++)
335 			totals[j] += mbtypes[i].stats[j];
336 	}
337 
338 	return sysctl_handle_opaque(oidp, totals, sizeof(totals), req);
339 }
340 
341 /*
342  * The variables may be set as boot-time tunables or live.  Setting these
343  * values too low can deadlock your network.  Network interfaces may also
344  * adjust nmbclusters and/or nmbjclusters to account for preloading the
345  * hardware rings.
346  */
347 static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS);
348 static int sysctl_nmbjclusters(SYSCTL_HANDLER_ARGS);
349 static int sysctl_nmbufs(SYSCTL_HANDLER_ARGS);
350 SYSCTL_PROC(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLTYPE_INT | CTLFLAG_RW,
351 	    0, 0, sysctl_nmbclusters, "I",
352 	    "Maximum number of mbuf clusters available");
353 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjclusters, CTLTYPE_INT | CTLFLAG_RW,
354 	    0, 0, sysctl_nmbjclusters, "I",
355 	    "Maximum number of mbuf jclusters available");
356 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT | CTLFLAG_RW,
357 	    0, 0, sysctl_nmbufs, "I",
358 	    "Maximum number of mbufs available");
359 
360 SYSCTL_INT(_kern_ipc, OID_AUTO, mjclph_cachefrac, CTLFLAG_RD,
361 	   &mjclph_cachefrac, 0,
362 	   "Fraction of cacheable mbuf jclusters w/ pkthdr");
363 SYSCTL_INT(_kern_ipc, OID_AUTO, mjcl_cachefrac, CTLFLAG_RD,
364 	   &mjcl_cachefrac, 0,
365 	   "Fraction of cacheable mbuf jclusters");
366 SYSCTL_INT(_kern_ipc, OID_AUTO, mclph_cachefrac, CTLFLAG_RD,
367 	   &mclph_cachefrac, 0,
368 	   "Fraction of cacheable mbuf clusters w/ pkthdr");
369 SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_cachefrac, CTLFLAG_RD,
370 	   &mcl_cachefrac, 0, "Fraction of cacheable mbuf clusters");
371 
372 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
373 	   &m_defragpackets, 0, "Number of defragment packets");
374 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
375 	   &m_defragbytes, 0, "Number of defragment bytes");
376 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
377 	   &m_defraguseless, 0,
378 	   "Number of useless defragment mbuf chain operations");
379 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
380 	   &m_defragfailure, 0,
381 	   "Number of failed defragment mbuf chain operations");
382 #ifdef MBUF_STRESS_TEST
383 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
384 	   &m_defragrandomfailures, 0, "");
385 #endif
386 
387 static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
388 static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl");
389 static MALLOC_DEFINE(M_MCLMETA, "mclmeta", "mclmeta");
390 
391 static void m_reclaim (void);
392 static void m_mclref(void *arg);
393 static void m_mclfree(void *arg);
394 static void m_mjclfree(void *arg);
395 
396 static void mbupdatelimits(void);
397 
398 /*
399  * Generally scale default mbufs to maxproc.
400  *
401  * NOTE: Default NMBUFS must take into account a possible DOS attack
402  *	 using fd passing on unix domain sockets.
403  */
404 #ifndef NMBCLUSTERS
405 #define NMBCLUSTERS	(512 + maxproc * 4)
406 #endif
407 #ifndef BASE_CACHEFRAC
408 #define BASE_CACHEFRAC	16
409 #endif
410 #ifndef MJCLPH_CACHEFRAC
411 #define MJCLPH_CACHEFRAC (BASE_CACHEFRAC * 2)
412 #endif
413 #ifndef MJCL_CACHEFRAC
414 #define MJCL_CACHEFRAC	(BASE_CACHEFRAC * 2)
415 #endif
416 #ifndef MCLPH_CACHEFRAC
417 #define MCLPH_CACHEFRAC	(BASE_CACHEFRAC * 2)
418 #endif
419 #ifndef MCL_CACHEFRAC
420 #define MCL_CACHEFRAC	(BASE_CACHEFRAC * 2)
421 #endif
422 #ifndef NMBJCLUSTERS
423 #define NMBJCLUSTERS	(NMBCLUSTERS / 4)
424 #endif
425 #ifndef NMBUFS
426 #define NMBUFS		(nmbclusters / 2 + maxfiles)
427 #endif
428 
429 #define NMBCLUSTERS_MIN	(NMBCLUSTERS / 2)
430 #define NMBJCLUSTERS_MIN (NMBJCLUSTERS / 2)
431 #define NMBUFS_MIN	(NMBUFS / 2)
432 
433 /*
434  * Perform sanity checks of tunables declared above.
435  */
436 static void
437 tunable_mbinit(void *dummy __unused)
438 {
439 	/*
440 	 * This has to be done before VM init.
441 	 */
442 	nmbclusters = NMBCLUSTERS;
443 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
444 	mjclph_cachefrac = MJCLPH_CACHEFRAC;
445 	TUNABLE_INT_FETCH("kern.ipc.mjclph_cachefrac", &mjclph_cachefrac);
446 	mjcl_cachefrac = MJCL_CACHEFRAC;
447 	TUNABLE_INT_FETCH("kern.ipc.mjcl_cachefrac", &mjcl_cachefrac);
448 	mclph_cachefrac = MCLPH_CACHEFRAC;
449 	TUNABLE_INT_FETCH("kern.ipc.mclph_cachefrac", &mclph_cachefrac);
450 	mcl_cachefrac = MCL_CACHEFRAC;
451 	TUNABLE_INT_FETCH("kern.ipc.mcl_cachefrac", &mcl_cachefrac);
452 
453 	/*
454 	 * WARNING! each mcl cache feeds two mbuf caches, so the minimum
455 	 *	    cachefrac is 2.  For safety, use 3.
456 	 */
457 	if (mjclph_cachefrac < 3)
458 		mjclph_cachefrac = 3;
459 	if (mjcl_cachefrac < 3)
460 		mjcl_cachefrac = 3;
461 	if (mclph_cachefrac < 3)
462 		mclph_cachefrac = 3;
463 	if (mcl_cachefrac < 3)
464 		mcl_cachefrac = 3;
465 
466 	nmbjclusters = NMBJCLUSTERS;
467 	TUNABLE_INT_FETCH("kern.ipc.nmbjclusters", &nmbjclusters);
468 
469 	nmbufs = NMBUFS;
470 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
471 
472 	/* Sanity checks */
473 	if (nmbufs < nmbclusters * 2)
474 		nmbufs = nmbclusters * 2;
475 }
476 SYSINIT(tunable_mbinit, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
477 	tunable_mbinit, NULL);
478 
479 static void
480 mbinclimit(int *limit, int inc, int minlim)
481 {
482 	int new_limit;
483 
484 	lockmgr(&mbupdate_lk, LK_EXCLUSIVE);
485 
486 	new_limit = *limit + inc;
487 	if (new_limit < minlim)
488 		new_limit = minlim;
489 
490 	if (*limit != new_limit) {
491 		*limit = new_limit;
492 		mbupdatelimits();
493 	}
494 
495 	lockmgr(&mbupdate_lk, LK_RELEASE);
496 }
497 
498 static int
499 mbsetlimit(int *limit, int new_limit, int minlim)
500 {
501 	if (new_limit < minlim)
502 		return EINVAL;
503 
504 	lockmgr(&mbupdate_lk, LK_EXCLUSIVE);
505 	mbinclimit(limit, new_limit - *limit, minlim);
506 	lockmgr(&mbupdate_lk, LK_RELEASE);
507 	return 0;
508 }
509 
510 static int
511 sysctl_mblimit(SYSCTL_HANDLER_ARGS, int *limit, int minlim)
512 {
513 	int error, value;
514 
515 	value = *limit;
516 	error = sysctl_handle_int(oidp, &value, 0, req);
517 	if (error || req->newptr == NULL)
518 		return error;
519 
520 	return mbsetlimit(limit, value, minlim);
521 }
522 
523 /*
524  * Sysctl support to update nmbclusters, nmbjclusters, and nmbufs.
525  */
526 static int
527 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
528 {
529 	return sysctl_mblimit(oidp, arg1, arg2, req, &nmbclusters,
530 			      NMBCLUSTERS_MIN);
531 }
532 
533 static int
534 sysctl_nmbjclusters(SYSCTL_HANDLER_ARGS)
535 {
536 	return sysctl_mblimit(oidp, arg1, arg2, req, &nmbjclusters,
537 			      NMBJCLUSTERS_MIN);
538 }
539 
540 static int
541 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
542 {
543 	return sysctl_mblimit(oidp, arg1, arg2, req, &nmbufs, NMBUFS_MIN);
544 }
545 
546 void
547 mcl_inclimit(int inc)
548 {
549 	mbinclimit(&nmbclusters, inc, NMBCLUSTERS_MIN);
550 }
551 
552 void
553 mjcl_inclimit(int inc)
554 {
555 	mbinclimit(&nmbjclusters, inc, NMBJCLUSTERS_MIN);
556 }
557 
558 void
559 mb_inclimit(int inc)
560 {
561 	mbinclimit(&nmbufs, inc, NMBUFS_MIN);
562 }
563 
564 /*
565  * The mbuf object cache only guarantees that m_next and m_nextpkt are
566  * NULL and that m_data points to the beginning of the data area.  In
567  * particular, m_len and m_pkthdr.len are uninitialized.  It is the
568  * responsibility of the caller to initialize those fields before use.
569  */
570 static __inline boolean_t
571 mbuf_ctor(void *obj, void *private __unused, int ocflags __unused)
572 {
573 	struct mbuf *m = obj;
574 
575 	m->m_next = NULL;
576 	m->m_nextpkt = NULL;
577 	m->m_data = m->m_dat;
578 	m->m_flags = 0;
579 
580 	return (TRUE);
581 }
582 
583 /*
584  * Initialize the mbuf and the packet header fields.
585  */
586 static boolean_t
587 mbufphdr_ctor(void *obj, void *private __unused, int ocflags __unused)
588 {
589 	struct mbuf *m = obj;
590 
591 	m->m_next = NULL;
592 	m->m_nextpkt = NULL;
593 	m->m_data = m->m_pktdat;
594 	m->m_flags = M_PKTHDR | M_PHCACHE;
595 
596 	m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
597 	SLIST_INIT(&m->m_pkthdr.tags);
598 	m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
599 	m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
600 
601 	return (TRUE);
602 }
603 
604 /*
605  * A mbcluster object consists of 2K (MCLBYTES) cluster and a refcount.
606  */
607 static boolean_t
608 mclmeta_ctor(void *obj, void *private __unused, int ocflags)
609 {
610 	struct mbcluster *cl = obj;
611 	void *buf;
612 
613 	if (ocflags & M_NOWAIT)
614 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_NOWAIT | M_ZERO);
615 	else
616 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_INTWAIT | M_ZERO);
617 	if (buf == NULL)
618 		return (FALSE);
619 	cl->mcl_refs = 0;
620 	cl->mcl_data = buf;
621 	return (TRUE);
622 }
623 
624 static boolean_t
625 mjclmeta_ctor(void *obj, void *private __unused, int ocflags)
626 {
627 	struct mbcluster *cl = obj;
628 	void *buf;
629 
630 	if (ocflags & M_NOWAIT)
631 		buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_NOWAIT | M_ZERO);
632 	else
633 		buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_INTWAIT | M_ZERO);
634 	if (buf == NULL)
635 		return (FALSE);
636 	cl->mcl_refs = 0;
637 	cl->mcl_data = buf;
638 	return (TRUE);
639 }
640 
641 static void
642 mclmeta_dtor(void *obj, void *private __unused)
643 {
644 	struct mbcluster *mcl = obj;
645 
646 	KKASSERT(mcl->mcl_refs == 0);
647 	kfree(mcl->mcl_data, M_MBUFCL);
648 }
649 
650 static void
651 linkjcluster(struct mbuf *m, struct mbcluster *cl, u_int size)
652 {
653 	/*
654 	 * Add the cluster to the mbuf.  The caller will detect that the
655 	 * mbuf now has an attached cluster.
656 	 */
657 	m->m_ext.ext_arg = cl;
658 	m->m_ext.ext_buf = cl->mcl_data;
659 	m->m_ext.ext_ref = m_mclref;
660 	if (size != MCLBYTES)
661 		m->m_ext.ext_free = m_mjclfree;
662 	else
663 		m->m_ext.ext_free = m_mclfree;
664 	m->m_ext.ext_size = size;
665 	atomic_add_int(&cl->mcl_refs, 1);
666 
667 	m->m_data = m->m_ext.ext_buf;
668 	m->m_flags |= M_EXT | M_EXT_CLUSTER;
669 }
670 
671 static void
672 linkcluster(struct mbuf *m, struct mbcluster *cl)
673 {
674 	linkjcluster(m, cl, MCLBYTES);
675 }
676 
677 static boolean_t
678 mbufphdrcluster_ctor(void *obj, void *private, int ocflags)
679 {
680 	struct mbuf *m = obj;
681 	struct mbcluster *cl;
682 
683 	mbufphdr_ctor(obj, private, ocflags);
684 	cl = objcache_get(mclmeta_cache, ocflags);
685 	if (cl == NULL) {
686 		++mbstat[mycpu->gd_cpuid].m_drops;
687 		return (FALSE);
688 	}
689 	m->m_flags |= M_CLCACHE;
690 	linkcluster(m, cl);
691 	return (TRUE);
692 }
693 
694 static boolean_t
695 mbufphdrjcluster_ctor(void *obj, void *private, int ocflags)
696 {
697 	struct mbuf *m = obj;
698 	struct mbcluster *cl;
699 
700 	mbufphdr_ctor(obj, private, ocflags);
701 	cl = objcache_get(mjclmeta_cache, ocflags);
702 	if (cl == NULL) {
703 		++mbstat[mycpu->gd_cpuid].m_drops;
704 		return (FALSE);
705 	}
706 	m->m_flags |= M_CLCACHE;
707 	linkjcluster(m, cl, MJUMPAGESIZE);
708 	return (TRUE);
709 }
710 
711 static boolean_t
712 mbufcluster_ctor(void *obj, void *private, int ocflags)
713 {
714 	struct mbuf *m = obj;
715 	struct mbcluster *cl;
716 
717 	mbuf_ctor(obj, private, ocflags);
718 	cl = objcache_get(mclmeta_cache, ocflags);
719 	if (cl == NULL) {
720 		++mbstat[mycpu->gd_cpuid].m_drops;
721 		return (FALSE);
722 	}
723 	m->m_flags |= M_CLCACHE;
724 	linkcluster(m, cl);
725 	return (TRUE);
726 }
727 
728 static boolean_t
729 mbufjcluster_ctor(void *obj, void *private, int ocflags)
730 {
731 	struct mbuf *m = obj;
732 	struct mbcluster *cl;
733 
734 	mbuf_ctor(obj, private, ocflags);
735 	cl = objcache_get(mjclmeta_cache, ocflags);
736 	if (cl == NULL) {
737 		++mbstat[mycpu->gd_cpuid].m_drops;
738 		return (FALSE);
739 	}
740 	m->m_flags |= M_CLCACHE;
741 	linkjcluster(m, cl, MJUMPAGESIZE);
742 	return (TRUE);
743 }
744 
745 /*
746  * Used for both the cluster and cluster PHDR caches.
747  *
748  * The mbuf may have lost its cluster due to sharing, deal
749  * with the situation by checking M_EXT.
750  */
751 static void
752 mbufcluster_dtor(void *obj, void *private)
753 {
754 	struct mbuf *m = obj;
755 	struct mbcluster *mcl;
756 
757 	if (m->m_flags & M_EXT) {
758 		KKASSERT((m->m_flags & M_EXT_CLUSTER) != 0);
759 		mcl = m->m_ext.ext_arg;
760 		KKASSERT(mcl->mcl_refs == 1);
761 		mcl->mcl_refs = 0;
762 		if (m->m_flags & M_EXT && m->m_ext.ext_size != MCLBYTES)
763 			objcache_put(mjclmeta_cache, mcl);
764 		else
765 			objcache_put(mclmeta_cache, mcl);
766 	}
767 }
768 
769 struct objcache_malloc_args mbuf_malloc_args = { MSIZE, M_MBUF };
770 struct objcache_malloc_args mclmeta_malloc_args =
771 	{ sizeof(struct mbcluster), M_MCLMETA };
772 
773 static void
774 mbinit(void *dummy __unused)
775 {
776 	int limit, mb_limit, cl_limit, ncl_limit, jcl_limit, i;
777 
778 	/*
779 	 * Initialize statistics
780 	 */
781 	for (i = 0; i < ncpus; i++) {
782 		mbstat[i].m_msize = MSIZE;
783 		mbstat[i].m_mclbytes = MCLBYTES;
784 		mbstat[i].m_mjumpagesize = MJUMPAGESIZE;
785 		mbstat[i].m_minclsize = MINCLSIZE;
786 		mbstat[i].m_mlen = MLEN;
787 		mbstat[i].m_mhlen = MHLEN;
788 	}
789 
790 	/*
791 	 * Create object caches and save cluster limits, which will
792 	 * be used to adjust backing kmalloc pools' limit later.
793 	 */
794 
795 	mb_limit = cl_limit = 0;
796 
797 	limit = nmbufs;
798 	mbuf_cache = objcache_create("mbuf",
799 	    limit, nmbufs / BASE_CACHEFRAC,
800 	    mbuf_ctor, NULL, NULL,
801 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
802 	mb_limit += limit;
803 
804 	limit = nmbufs;
805 	mbufphdr_cache = objcache_create("mbuf pkthdr",
806 	    limit, nmbufs / BASE_CACHEFRAC,
807 	    mbufphdr_ctor, NULL, NULL,
808 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
809 	mb_limit += limit;
810 
811 	ncl_limit = nmbclusters;
812 	mclmeta_cache = objcache_create("mbuf cluster",
813 	    ncl_limit, nmbclusters / BASE_CACHEFRAC,
814 	    mclmeta_ctor, mclmeta_dtor, NULL,
815 	    objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
816 	cl_limit += ncl_limit;
817 
818 	jcl_limit = nmbjclusters;
819 	mjclmeta_cache = objcache_create("mbuf jcluster",
820 	    jcl_limit, nmbjclusters / BASE_CACHEFRAC,
821 	    mjclmeta_ctor, mclmeta_dtor, NULL,
822 	    objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
823 	cl_limit += jcl_limit;
824 
825 	limit = nmbclusters;
826 	mbufcluster_cache = objcache_create("mbuf+cl",
827 	    limit, nmbclusters / mcl_cachefrac,
828 	    mbufcluster_ctor, mbufcluster_dtor, NULL,
829 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
830 	mb_limit += limit;
831 
832 	limit = nmbclusters;
833 	mbufphdrcluster_cache = objcache_create("mbuf pkthdr+cl",
834 	    limit, nmbclusters / mclph_cachefrac,
835 	    mbufphdrcluster_ctor, mbufcluster_dtor, NULL,
836 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
837 	mb_limit += limit;
838 
839 	limit = nmbjclusters;
840 	mbufjcluster_cache = objcache_create("mbuf+jcl",
841 	    limit, nmbjclusters / mjcl_cachefrac,
842 	    mbufjcluster_ctor, mbufcluster_dtor, NULL,
843 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
844 	mb_limit += limit;
845 
846 	limit = nmbjclusters;
847 	mbufphdrjcluster_cache = objcache_create("mbuf pkthdr+jcl",
848 	    limit, nmbjclusters / mjclph_cachefrac,
849 	    mbufphdrjcluster_ctor, mbufcluster_dtor, NULL,
850 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
851 	mb_limit += limit;
852 
853 	/*
854 	 * Adjust backing kmalloc pools' limit
855 	 *
856 	 * NOTE: We raise the limit by another 1/8 to take the effect
857 	 * of loosememuse into account.
858 	 */
859 	cl_limit += cl_limit / 8;
860 	kmalloc_raise_limit(mclmeta_malloc_args.mtype,
861 			    mclmeta_malloc_args.objsize * (size_t)cl_limit);
862 	kmalloc_raise_limit(M_MBUFCL,
863 			    (MCLBYTES * (size_t)ncl_limit) +
864 			    (MJUMPAGESIZE * (size_t)jcl_limit));
865 
866 	mb_limit += mb_limit / 8;
867 	kmalloc_raise_limit(mbuf_malloc_args.mtype,
868 			    mbuf_malloc_args.objsize * (size_t)mb_limit);
869 }
870 
871 /*
872  * Adjust mbuf limits after changes have been made
873  *
874  * Caller must hold mbupdate_lk
875  */
876 static void
877 mbupdatelimits(void)
878 {
879 	int limit, mb_limit, cl_limit, ncl_limit, jcl_limit;
880 
881 	KASSERT(lockstatus(&mbupdate_lk, curthread) != 0,
882 		("mbupdate_lk is not held"));
883 
884 	/*
885 	 * Figure out adjustments to object caches after nmbufs, nmbclusters,
886 	 * or nmbjclusters has been modified.
887 	 */
888 	mb_limit = cl_limit = 0;
889 
890 	limit = nmbufs;
891 	objcache_set_cluster_limit(mbuf_cache, limit);
892 	mb_limit += limit;
893 
894 	limit = nmbufs;
895 	objcache_set_cluster_limit(mbufphdr_cache, limit);
896 	mb_limit += limit;
897 
898 	ncl_limit = nmbclusters;
899 	objcache_set_cluster_limit(mclmeta_cache, ncl_limit);
900 	cl_limit += ncl_limit;
901 
902 	jcl_limit = nmbjclusters;
903 	objcache_set_cluster_limit(mjclmeta_cache, jcl_limit);
904 	cl_limit += jcl_limit;
905 
906 	limit = nmbclusters;
907 	objcache_set_cluster_limit(mbufcluster_cache, limit);
908 	mb_limit += limit;
909 
910 	limit = nmbclusters;
911 	objcache_set_cluster_limit(mbufphdrcluster_cache, limit);
912 	mb_limit += limit;
913 
914 	limit = nmbjclusters;
915 	objcache_set_cluster_limit(mbufjcluster_cache, limit);
916 	mb_limit += limit;
917 
918 	limit = nmbjclusters;
919 	objcache_set_cluster_limit(mbufphdrjcluster_cache, limit);
920 	mb_limit += limit;
921 
922 	/*
923 	 * Adjust backing kmalloc pools' limit
924 	 *
925 	 * NOTE: We raise the limit by another 1/8 to take the effect
926 	 * of loosememuse into account.
927 	 */
928 	cl_limit += cl_limit / 8;
929 	kmalloc_raise_limit(mclmeta_malloc_args.mtype,
930 			    mclmeta_malloc_args.objsize * (size_t)cl_limit);
931 	kmalloc_raise_limit(M_MBUFCL,
932 			    (MCLBYTES * (size_t)ncl_limit) +
933 			    (MJUMPAGESIZE * (size_t)jcl_limit));
934 	mb_limit += mb_limit / 8;
935 	kmalloc_raise_limit(mbuf_malloc_args.mtype,
936 			    mbuf_malloc_args.objsize * (size_t)mb_limit);
937 }
938 
939 /*
940  * Return the number of references to this mbuf's data.  0 is returned
941  * if the mbuf is not M_EXT, a reference count is returned if it is
942  * M_EXT | M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT.
943  */
944 int
945 m_sharecount(struct mbuf *m)
946 {
947 	switch (m->m_flags & (M_EXT | M_EXT_CLUSTER)) {
948 	case 0:
949 		return (0);
950 	case M_EXT:
951 		return (99);
952 	case M_EXT | M_EXT_CLUSTER:
953 		return (((struct mbcluster *)m->m_ext.ext_arg)->mcl_refs);
954 	}
955 	/* NOTREACHED */
956 	return (0);		/* to shut up compiler */
957 }
958 
959 /*
960  * change mbuf to new type
961  */
962 void
963 m_chtype(struct mbuf *m, int type)
964 {
965 	struct globaldata *gd = mycpu;
966 
967 	++mbtypes[gd->gd_cpuid].stats[type];
968 	--mbtypes[gd->gd_cpuid].stats[m->m_type];
969 	m->m_type = type;
970 }
971 
972 static void
973 m_reclaim(void)
974 {
975 	struct domain *dp;
976 	struct protosw *pr;
977 
978 	kprintf("Debug: m_reclaim() called\n");
979 
980 	SLIST_FOREACH(dp, &domains, dom_next) {
981 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
982 			if (pr->pr_drain)
983 				(*pr->pr_drain)();
984 		}
985 	}
986 	++mbstat[mycpu->gd_cpuid].m_drain;
987 }
988 
989 static __inline void
990 updatestats(struct mbuf *m, int type)
991 {
992 	struct globaldata *gd = mycpu;
993 
994 	m->m_type = type;
995 	mbuftrack(m);
996 #ifdef MBUF_DEBUG
997 	KASSERT(m->m_next == NULL, ("mbuf %p: bad m_next in get", m));
998 	KASSERT(m->m_nextpkt == NULL, ("mbuf %p: bad m_nextpkt in get", m));
999 #endif
1000 
1001 	++mbtypes[gd->gd_cpuid].stats[type];
1002 	++mbstat[gd->gd_cpuid].m_mbufs;
1003 
1004 }
1005 
1006 /*
1007  * Allocate an mbuf.
1008  */
1009 struct mbuf *
1010 m_get(int how, int type)
1011 {
1012 	struct mbuf *m;
1013 	int ntries = 0;
1014 	int ocf = MB_OCFLAG(how);
1015 
1016 retryonce:
1017 
1018 	m = objcache_get(mbuf_cache, ocf);
1019 
1020 	if (m == NULL) {
1021 		if ((ocf & M_WAITOK) && ntries++ == 0) {
1022 			struct objcache *reclaimlist[] = {
1023 				mbufphdr_cache,
1024 				mbufcluster_cache,
1025 				mbufphdrcluster_cache,
1026 				mbufjcluster_cache,
1027 				mbufphdrjcluster_cache
1028 			};
1029 			const int nreclaims = NELEM(reclaimlist);
1030 
1031 			if (!objcache_reclaimlist(reclaimlist, nreclaims))
1032 				m_reclaim();
1033 			goto retryonce;
1034 		}
1035 		++mbstat[mycpu->gd_cpuid].m_drops;
1036 		return (NULL);
1037 	}
1038 #ifdef MBUF_DEBUG
1039 	KASSERT(m->m_data == m->m_dat, ("mbuf %p: bad m_data in get", m));
1040 #endif
1041 	m->m_len = 0;
1042 
1043 	updatestats(m, type);
1044 	return (m);
1045 }
1046 
1047 struct mbuf *
1048 m_gethdr(int how, int type)
1049 {
1050 	struct mbuf *m;
1051 	int ocf = MB_OCFLAG(how);
1052 	int ntries = 0;
1053 
1054 retryonce:
1055 
1056 	m = objcache_get(mbufphdr_cache, ocf);
1057 
1058 	if (m == NULL) {
1059 		if ((ocf & M_WAITOK) && ntries++ == 0) {
1060 			struct objcache *reclaimlist[] = {
1061 				mbuf_cache,
1062 				mbufcluster_cache, mbufphdrcluster_cache,
1063 				mbufjcluster_cache, mbufphdrjcluster_cache
1064 			};
1065 			const int nreclaims = NELEM(reclaimlist);
1066 
1067 			if (!objcache_reclaimlist(reclaimlist, nreclaims))
1068 				m_reclaim();
1069 			goto retryonce;
1070 		}
1071 		++mbstat[mycpu->gd_cpuid].m_drops;
1072 		return (NULL);
1073 	}
1074 #ifdef MBUF_DEBUG
1075 	KASSERT(m->m_data == m->m_pktdat, ("mbuf %p: bad m_data in get", m));
1076 #endif
1077 	m->m_len = 0;
1078 	m->m_pkthdr.len = 0;
1079 
1080 	updatestats(m, type);
1081 	return (m);
1082 }
1083 
1084 /*
1085  * Get a mbuf (not a mbuf cluster!) and zero it.
1086  *
1087  * Deprecated.
1088  */
1089 struct mbuf *
1090 m_getclr(int how, int type)
1091 {
1092 	struct mbuf *m;
1093 
1094 	m = m_get(how, type);
1095 	if (m != NULL)
1096 		bzero(m->m_data, MLEN);
1097 	return (m);
1098 }
1099 
1100 static struct mbuf *
1101 m_getcl_cache(int how, short type, int flags, struct objcache *mbclc,
1102 	      struct objcache *mbphclc, u_long *cl_stats)
1103 {
1104 	struct mbuf *m = NULL;
1105 	int ocflags = MB_OCFLAG(how);
1106 	int ntries = 0;
1107 
1108 retryonce:
1109 
1110 	if (flags & M_PKTHDR)
1111 		m = objcache_get(mbphclc, ocflags);
1112 	else
1113 		m = objcache_get(mbclc, ocflags);
1114 
1115 	if (m == NULL) {
1116 		if ((ocflags & M_WAITOK) && ntries++ == 0) {
1117 			struct objcache *reclaimlist[1];
1118 
1119 			if (flags & M_PKTHDR)
1120 				reclaimlist[0] = mbclc;
1121 			else
1122 				reclaimlist[0] = mbphclc;
1123 			if (!objcache_reclaimlist(reclaimlist, 1))
1124 				m_reclaim();
1125 			goto retryonce;
1126 		}
1127 		++mbstat[mycpu->gd_cpuid].m_drops;
1128 		return (NULL);
1129 	}
1130 
1131 #ifdef MBUF_DEBUG
1132 	KASSERT(m->m_data == m->m_ext.ext_buf,
1133 		("mbuf %p: bad m_data in get", m));
1134 #endif
1135 	m->m_type = type;
1136 	m->m_len = 0;
1137 	m->m_pkthdr.len = 0;	/* just do it unconditionally */
1138 
1139 	mbuftrack(m);
1140 
1141 	++mbtypes[mycpu->gd_cpuid].stats[type];
1142 	++(*cl_stats);
1143 	return (m);
1144 }
1145 
1146 struct mbuf *
1147 m_getjcl(int how, short type, int flags, size_t size)
1148 {
1149 	struct objcache *mbclc, *mbphclc;
1150 	u_long *cl_stats;
1151 
1152 	switch (size) {
1153 	case MCLBYTES:
1154 		mbclc = mbufcluster_cache;
1155 		mbphclc = mbufphdrcluster_cache;
1156 		cl_stats = &mbstat[mycpu->gd_cpuid].m_clusters;
1157 		break;
1158 
1159 	default:
1160 		mbclc = mbufjcluster_cache;
1161 		mbphclc = mbufphdrjcluster_cache;
1162 		cl_stats = &mbstat[mycpu->gd_cpuid].m_jclusters;
1163 		break;
1164 	}
1165 	return m_getcl_cache(how, type, flags, mbclc, mbphclc, cl_stats);
1166 }
1167 
1168 /*
1169  * Returns an mbuf with an attached cluster.
1170  * Because many network drivers use this kind of buffers a lot, it is
1171  * convenient to keep a small pool of free buffers of this kind.
1172  * Even a small size such as 10 gives about 10% improvement in the
1173  * forwarding rate in a bridge or router.
1174  */
1175 struct mbuf *
1176 m_getcl(int how, short type, int flags)
1177 {
1178 	return m_getcl_cache(how, type, flags,
1179 			     mbufcluster_cache, mbufphdrcluster_cache,
1180 			     &mbstat[mycpu->gd_cpuid].m_clusters);
1181 }
1182 
1183 /*
1184  * Allocate chain of requested length.
1185  */
1186 struct mbuf *
1187 m_getc(int len, int how, int type)
1188 {
1189 	struct mbuf *n, *nfirst = NULL, **ntail = &nfirst;
1190 	int nsize;
1191 
1192 	while (len > 0) {
1193 		n = m_getl(len, how, type, 0, &nsize);
1194 		if (n == NULL)
1195 			goto failed;
1196 		n->m_len = 0;
1197 		*ntail = n;
1198 		ntail = &n->m_next;
1199 		len -= nsize;
1200 	}
1201 	return (nfirst);
1202 
1203 failed:
1204 	m_freem(nfirst);
1205 	return (NULL);
1206 }
1207 
1208 /*
1209  * Allocate len-worth of mbufs and/or mbuf clusters (whatever fits best)
1210  * and return a pointer to the head of the allocated chain. If m0 is
1211  * non-null, then we assume that it is a single mbuf or an mbuf chain to
1212  * which we want len bytes worth of mbufs and/or clusters attached, and so
1213  * if we succeed in allocating it, we will just return a pointer to m0.
1214  *
1215  * If we happen to fail at any point during the allocation, we will free
1216  * up everything we have already allocated and return NULL.
1217  *
1218  * Deprecated.  Use m_getc() and m_cat() instead.
1219  */
1220 struct mbuf *
1221 m_getm(struct mbuf *m0, int len, int type, int how)
1222 {
1223 	struct mbuf *nfirst;
1224 
1225 	nfirst = m_getc(len, how, type);
1226 
1227 	if (m0 != NULL) {
1228 		m_last(m0)->m_next = nfirst;
1229 		return (m0);
1230 	}
1231 
1232 	return (nfirst);
1233 }
1234 
1235 /*
1236  * Adds a cluster to a normal mbuf, M_EXT is set on success.
1237  * Deprecated.  Use m_getcl() instead.
1238  */
1239 void
1240 m_mclget(struct mbuf *m, int how)
1241 {
1242 	struct mbcluster *mcl;
1243 
1244 	KKASSERT((m->m_flags & M_EXT) == 0);
1245 	mcl = objcache_get(mclmeta_cache, MB_OCFLAG(how));
1246 	if (mcl != NULL) {
1247 		linkcluster(m, mcl);
1248 		++mbstat[mycpu->gd_cpuid].m_clusters;
1249 	} else {
1250 		++mbstat[mycpu->gd_cpuid].m_drops;
1251 	}
1252 }
1253 
1254 /*
1255  * Updates to mbcluster must be MPSAFE.  Only an entity which already has
1256  * a reference to the cluster can ref it, so we are in no danger of
1257  * racing an add with a subtract.  But the operation must still be atomic
1258  * since multiple entities may have a reference on the cluster.
1259  *
1260  * m_mclfree() is almost the same but it must contend with two entities
1261  * freeing the cluster at the same time.
1262  */
1263 static void
1264 m_mclref(void *arg)
1265 {
1266 	struct mbcluster *mcl = arg;
1267 
1268 	atomic_add_int(&mcl->mcl_refs, 1);
1269 }
1270 
1271 /*
1272  * When dereferencing a cluster we have to deal with a N->0 race, where
1273  * N entities free their references simultaneously.  To do this we use
1274  * atomic_fetchadd_int().
1275  */
1276 static void
1277 m_mclfree(void *arg)
1278 {
1279 	struct mbcluster *mcl = arg;
1280 
1281 	if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1) {
1282 		--mbstat[mycpu->gd_cpuid].m_clusters;
1283 		objcache_put(mclmeta_cache, mcl);
1284 	}
1285 }
1286 
1287 static void
1288 m_mjclfree(void *arg)
1289 {
1290 	struct mbcluster *mcl = arg;
1291 
1292 	if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1) {
1293 		--mbstat[mycpu->gd_cpuid].m_jclusters;
1294 		objcache_put(mjclmeta_cache, mcl);
1295 	}
1296 }
1297 
1298 /*
1299  * Free a single mbuf and any associated external storage.  The successor,
1300  * if any, is returned.
1301  *
1302  * We do need to check non-first mbuf for m_aux, since some of existing
1303  * code does not call M_PREPEND properly.
1304  * (example: call to bpf_mtap from drivers)
1305  */
1306 
1307 struct mbuf *
1308 #ifdef MBUF_DEBUG
1309 _m_free(struct mbuf *m, const char *func)
1310 #else
1311 m_free(struct mbuf *m)
1312 #endif
1313 {
1314 	struct mbuf *n;
1315 	struct globaldata *gd = mycpu;
1316 
1317 	KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m));
1318 	KASSERT(M_TRAILINGSPACE(m) >= 0, ("overflowed mbuf %p", m));
1319 	--mbtypes[gd->gd_cpuid].stats[m->m_type];
1320 
1321 	n = m->m_next;
1322 
1323 	/*
1324 	 * Make sure the mbuf is in constructed state before returning it
1325 	 * to the objcache.
1326 	 */
1327 	m->m_next = NULL;
1328 	mbufuntrack(m);
1329 #ifdef MBUF_DEBUG
1330 	m->m_hdr.mh_lastfunc = func;
1331 #endif
1332 #ifdef notyet
1333 	KKASSERT(m->m_nextpkt == NULL);
1334 #else
1335 	if (m->m_nextpkt != NULL) {
1336 		static int afewtimes = 10;
1337 
1338 		if (afewtimes-- > 0) {
1339 			kprintf("mfree: m->m_nextpkt != NULL\n");
1340 			print_backtrace(-1);
1341 		}
1342 		m->m_nextpkt = NULL;
1343 	}
1344 #endif
1345 	if (m->m_flags & M_PKTHDR) {
1346 		m_tag_delete_chain(m);		/* eliminate XXX JH */
1347 	}
1348 
1349 	m->m_flags &= (M_EXT | M_EXT_CLUSTER | M_CLCACHE | M_PHCACHE);
1350 
1351 	/*
1352 	 * Clean the M_PKTHDR state so we can return the mbuf to its original
1353 	 * cache.  This is based on the PHCACHE flag which tells us whether
1354 	 * the mbuf was originally allocated out of a packet-header cache
1355 	 * or a non-packet-header cache.
1356 	 */
1357 	if (m->m_flags & M_PHCACHE) {
1358 		m->m_flags |= M_PKTHDR;
1359 		m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
1360 		m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
1361 		m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
1362 		SLIST_INIT(&m->m_pkthdr.tags);
1363 	}
1364 
1365 	/*
1366 	 * Handle remaining flags combinations.  M_CLCACHE tells us whether
1367 	 * the mbuf was originally allocated from a cluster cache or not,
1368 	 * and is totally separate from whether the mbuf is currently
1369 	 * associated with a cluster.
1370 	 */
1371 	switch (m->m_flags & (M_CLCACHE | M_EXT | M_EXT_CLUSTER)) {
1372 	case M_CLCACHE | M_EXT | M_EXT_CLUSTER:
1373 		/*
1374 		 * mbuf+cluster cache case.  The mbuf was allocated from the
1375 		 * combined mbuf_cluster cache and can be returned to the
1376 		 * cache if the cluster hasn't been shared.
1377 		 */
1378 		if (m_sharecount(m) == 1) {
1379 			/*
1380 			 * The cluster has not been shared, we can just
1381 			 * reset the data pointer and return the mbuf
1382 			 * to the cluster cache.  Note that the reference
1383 			 * count is left intact (it is still associated with
1384 			 * an mbuf).
1385 			 */
1386 			m->m_data = m->m_ext.ext_buf;
1387 			if ((m->m_flags & M_EXT) &&
1388 			    m->m_ext.ext_size != MCLBYTES) {
1389 				if (m->m_flags & M_PHCACHE)
1390 					objcache_put(mbufphdrjcluster_cache, m);
1391 				else
1392 					objcache_put(mbufjcluster_cache, m);
1393 				--mbstat[mycpu->gd_cpuid].m_jclusters;
1394 			} else {
1395 				if (m->m_flags & M_PHCACHE)
1396 					objcache_put(mbufphdrcluster_cache, m);
1397 				else
1398 					objcache_put(mbufcluster_cache, m);
1399 				--mbstat[mycpu->gd_cpuid].m_clusters;
1400 			}
1401 		} else {
1402 			/*
1403 			 * Hell.  Someone else has a ref on this cluster,
1404 			 * we have to disconnect it which means we can't
1405 			 * put it back into the mbufcluster_cache, we
1406 			 * have to destroy the mbuf.
1407 			 *
1408 			 * Other mbuf references to the cluster will typically
1409 			 * be M_EXT | M_EXT_CLUSTER but without M_CLCACHE.
1410 			 *
1411 			 * XXX we could try to connect another cluster to it.
1412 			 */
1413 			m->m_ext.ext_free(m->m_ext.ext_arg);
1414 			m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1415 			if (m->m_ext.ext_size == MCLBYTES) {
1416 				if (m->m_flags & M_PHCACHE)
1417 					objcache_dtor(mbufphdrcluster_cache, m);
1418 				else
1419 					objcache_dtor(mbufcluster_cache, m);
1420 			} else {
1421 				if (m->m_flags & M_PHCACHE)
1422 					objcache_dtor(mbufphdrjcluster_cache, m);
1423 				else
1424 					objcache_dtor(mbufjcluster_cache, m);
1425 			}
1426 		}
1427 		break;
1428 	case M_EXT | M_EXT_CLUSTER:
1429 	case M_EXT:
1430 		/*
1431 		 * Normal cluster association case, disconnect the cluster from
1432 		 * the mbuf.  The cluster may or may not be custom.
1433 		 */
1434 		m->m_ext.ext_free(m->m_ext.ext_arg);
1435 		m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1436 		/* FALLTHROUGH */
1437 	case 0:
1438 		/*
1439 		 * return the mbuf to the mbuf cache.
1440 		 */
1441 		if (m->m_flags & M_PHCACHE) {
1442 			m->m_data = m->m_pktdat;
1443 			objcache_put(mbufphdr_cache, m);
1444 		} else {
1445 			m->m_data = m->m_dat;
1446 			objcache_put(mbuf_cache, m);
1447 		}
1448 		--mbstat[mycpu->gd_cpuid].m_mbufs;
1449 		break;
1450 	default:
1451 		if (!panicstr)
1452 			panic("bad mbuf flags %p %08x", m, m->m_flags);
1453 		break;
1454 	}
1455 	return (n);
1456 }
1457 
1458 #ifdef MBUF_DEBUG
1459 
1460 void
1461 _m_freem(struct mbuf *m, const char *func)
1462 {
1463 	while (m)
1464 		m = _m_free(m, func);
1465 }
1466 
1467 #else
1468 
1469 void
1470 m_freem(struct mbuf *m)
1471 {
1472 	while (m)
1473 		m = m_free(m);
1474 }
1475 
1476 #endif /* MBUF_DEBUG */
1477 
1478 void
1479 m_extadd(struct mbuf *m, void *buf, u_int size, void (*reff)(void *),
1480 	 void (*freef)(void *), void *arg)
1481 {
1482 	m->m_ext.ext_arg = arg;
1483 	m->m_ext.ext_buf = buf;
1484 	m->m_ext.ext_ref = reff;
1485 	m->m_ext.ext_free = freef;
1486 	m->m_ext.ext_size = size;
1487 	reff(arg);
1488 	m->m_data = buf;
1489 	m->m_flags |= M_EXT;
1490 }
1491 
1492 /*
1493  * mbuf utility routines
1494  */
1495 
1496 /*
1497  * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain and
1498  * copy junk along.
1499  */
1500 struct mbuf *
1501 m_prepend(struct mbuf *m, int len, int how)
1502 {
1503 	struct mbuf *mn;
1504 
1505 	if (m->m_flags & M_PKTHDR)
1506 		mn = m_gethdr(how, m->m_type);
1507 	else
1508 		mn = m_get(how, m->m_type);
1509 	if (mn == NULL) {
1510 		m_freem(m);
1511 		return (NULL);
1512 	}
1513 	if (m->m_flags & M_PKTHDR)
1514 		M_MOVE_PKTHDR(mn, m);
1515 	mn->m_next = m;
1516 	m = mn;
1517 	if (len < MHLEN)
1518 		MH_ALIGN(m, len);
1519 	m->m_len = len;
1520 	return (m);
1521 }
1522 
1523 /*
1524  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
1525  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
1526  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
1527  * Note that the copy is read-only, because clusters are not copied,
1528  * only their reference counts are incremented.
1529  */
1530 struct mbuf *
1531 m_copym(const struct mbuf *m, int off0, int len, int wait)
1532 {
1533 	struct mbuf *n, **np;
1534 	int off = off0;
1535 	struct mbuf *top;
1536 	int copyhdr = 0;
1537 
1538 	KASSERT(off >= 0, ("%s: negative off %d", __func__, off));
1539 	KASSERT(len >= 0, ("%s: negative len %d", __func__, len));
1540 	if (off == 0 && (m->m_flags & M_PKTHDR))
1541 		copyhdr = 1;
1542 	while (off > 0) {
1543 		KASSERT(m != NULL,
1544 			("%s: offset > size of mbuf chain", __func__));
1545 		if (off < m->m_len)
1546 			break;
1547 		off -= m->m_len;
1548 		m = m->m_next;
1549 	}
1550 	np = &top;
1551 	top = NULL;
1552 	while (len > 0) {
1553 		if (m == NULL) {
1554 			KASSERT(len == M_COPYALL,
1555 				("%s: length > size of mbuf chain", __func__));
1556 			break;
1557 		}
1558 		/*
1559 		 * Because we are sharing any cluster attachment below,
1560 		 * be sure to get an mbuf that does not have a cluster
1561 		 * associated with it.
1562 		 */
1563 		if (copyhdr)
1564 			n = m_gethdr(wait, m->m_type);
1565 		else
1566 			n = m_get(wait, m->m_type);
1567 		*np = n;
1568 		if (n == NULL)
1569 			goto nospace;
1570 		if (copyhdr) {
1571 			if (!m_dup_pkthdr(n, m, wait))
1572 				goto nospace;
1573 			if (len == M_COPYALL)
1574 				n->m_pkthdr.len -= off0;
1575 			else
1576 				n->m_pkthdr.len = len;
1577 			copyhdr = 0;
1578 		}
1579 		n->m_len = min(len, m->m_len - off);
1580 		if (m->m_flags & M_EXT) {
1581 			KKASSERT((n->m_flags & M_EXT) == 0);
1582 			n->m_data = m->m_data + off;
1583 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1584 			n->m_ext = m->m_ext;
1585 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1586 		} else {
1587 			bcopy(mtod(m, caddr_t) + off, mtod(n, caddr_t),
1588 			      n->m_len);
1589 		}
1590 		if (len != M_COPYALL)
1591 			len -= n->m_len;
1592 		off = 0;
1593 		m = m->m_next;
1594 		np = &n->m_next;
1595 	}
1596 	if (top == NULL)
1597 		++mbstat[mycpu->gd_cpuid].m_mcfail;
1598 	return (top);
1599 nospace:
1600 	m_freem(top);
1601 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1602 	return (NULL);
1603 }
1604 
1605 /*
1606  * Copy an entire packet, including header (which must be present).
1607  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
1608  * Note that the copy is read-only, because clusters are not copied,
1609  * only their reference counts are incremented.
1610  * Preserve alignment of the first mbuf so if the creator has left
1611  * some room at the beginning (e.g. for inserting protocol headers)
1612  * the copies also have the room available.
1613  */
1614 struct mbuf *
1615 m_copypacket(struct mbuf *m, int how)
1616 {
1617 	struct mbuf *top, *n, *o;
1618 
1619 	n = m_gethdr(how, m->m_type);
1620 	top = n;
1621 	if (!n)
1622 		goto nospace;
1623 
1624 	if (!m_dup_pkthdr(n, m, how))
1625 		goto nospace;
1626 	n->m_len = m->m_len;
1627 	if (m->m_flags & M_EXT) {
1628 		KKASSERT((n->m_flags & M_EXT) == 0);
1629 		n->m_data = m->m_data;
1630 		m->m_ext.ext_ref(m->m_ext.ext_arg);
1631 		n->m_ext = m->m_ext;
1632 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1633 	} else {
1634 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat);
1635 		bcopy(mtod(m, void *), mtod(n, void *), n->m_len);
1636 	}
1637 
1638 	m = m->m_next;
1639 	while (m) {
1640 		o = m_get(how, m->m_type);
1641 		if (!o)
1642 			goto nospace;
1643 
1644 		n->m_next = o;
1645 		n = n->m_next;
1646 
1647 		n->m_len = m->m_len;
1648 		if (m->m_flags & M_EXT) {
1649 			KKASSERT((n->m_flags & M_EXT) == 0);
1650 			n->m_data = m->m_data;
1651 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1652 			n->m_ext = m->m_ext;
1653 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1654 		} else {
1655 			bcopy(mtod(m, void *), mtod(n, void *), n->m_len);
1656 		}
1657 
1658 		m = m->m_next;
1659 	}
1660 	return top;
1661 nospace:
1662 	m_freem(top);
1663 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1664 	return (NULL);
1665 }
1666 
1667 /*
1668  * Copy data from an mbuf chain starting "off" bytes from the beginning,
1669  * continuing for "len" bytes, into the indicated buffer.
1670  */
1671 void
1672 m_copydata(const struct mbuf *m, int off, int len, void *_cp)
1673 {
1674 	caddr_t cp = _cp;
1675 	unsigned count;
1676 
1677 	KASSERT(off >= 0, ("%s: negative off %d", __func__, off));
1678 	KASSERT(len >= 0, ("%s: negative len %d", __func__, len));
1679 	while (off > 0) {
1680 		KASSERT(m != NULL,
1681 			("%s: offset > size of mbuf chain", __func__));
1682 		if (off < m->m_len)
1683 			break;
1684 		off -= m->m_len;
1685 		m = m->m_next;
1686 	}
1687 	while (len > 0) {
1688 		KASSERT(m != NULL,
1689 			("%s: length > size of mbuf chain", __func__));
1690 		count = min(m->m_len - off, len);
1691 		bcopy(mtod(m, caddr_t) + off, cp, count);
1692 		len -= count;
1693 		cp += count;
1694 		off = 0;
1695 		m = m->m_next;
1696 	}
1697 }
1698 
1699 /*
1700  * Copy a packet header mbuf chain into a completely new chain, including
1701  * copying any mbuf clusters.  Use this instead of m_copypacket() when
1702  * you need a writable copy of an mbuf chain.
1703  */
1704 struct mbuf *
1705 m_dup(struct mbuf *m, int how)
1706 {
1707 	struct mbuf **p, *n, *top = NULL;
1708 	int remain, moff, nsize, chunk;
1709 
1710 	/* Sanity check */
1711 	if (m == NULL)
1712 		return (NULL);
1713 
1714 	KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __func__));
1715 
1716 	/* While there's more data, get a new mbuf, tack it on, and fill it */
1717 	remain = m->m_pkthdr.len;
1718 	moff = 0;
1719 	p = &top;
1720 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
1721 		/* Get the next new mbuf */
1722 		n = m_getl(remain, how, m->m_type, top == NULL ? M_PKTHDR : 0,
1723 			   &nsize);
1724 		if (n == NULL)
1725 			goto nospace;
1726 		if (top == NULL)
1727 			if (!m_dup_pkthdr(n, m, how))
1728 				goto nospace0;
1729 
1730 		/* Link it into the new chain */
1731 		*p = n;
1732 		p = &n->m_next;
1733 
1734 		/* Copy data from original mbuf(s) into new mbuf */
1735 		n->m_len = 0;
1736 		while (n->m_len < nsize && m != NULL) {
1737 			chunk = min(nsize - n->m_len, m->m_len - moff);
1738 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1739 			moff += chunk;
1740 			n->m_len += chunk;
1741 			remain -= chunk;
1742 			if (moff == m->m_len) {
1743 				m = m->m_next;
1744 				moff = 0;
1745 			}
1746 		}
1747 
1748 		/* Check correct total mbuf length */
1749 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1750 			("%s: bogus m_pkthdr.len", __func__));
1751 	}
1752 	return (top);
1753 
1754 nospace:
1755 	m_freem(top);
1756 nospace0:
1757 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1758 	return (NULL);
1759 }
1760 
1761 /*
1762  * Copy the non-packet mbuf data chain into a new set of mbufs, including
1763  * copying any mbuf clusters.  This is typically used to realign a data
1764  * chain by nfs_realign().
1765  *
1766  * The original chain is left intact.  how should be M_WAITOK or M_NOWAIT
1767  * and NULL can be returned if M_NOWAIT is passed.
1768  *
1769  * Be careful to use cluster mbufs, a large mbuf chain converted to non
1770  * cluster mbufs can exhaust our supply of mbufs.
1771  */
1772 struct mbuf *
1773 m_dup_data(struct mbuf *m, int how)
1774 {
1775 	struct mbuf **p, *n, *top = NULL;
1776 	int mlen, moff, chunk, gsize, nsize;
1777 
1778 	/* Degenerate case */
1779 	if (m == NULL)
1780 		return (NULL);
1781 
1782 	/*
1783 	 * Optimize the mbuf allocation but do not get too carried away.
1784 	 */
1785 	if (m->m_next || m->m_len > MLEN)
1786 		if (m->m_flags & M_EXT && m->m_ext.ext_size == MCLBYTES)
1787 			gsize = MCLBYTES;
1788 		else
1789 			gsize = MJUMPAGESIZE;
1790 	else
1791 		gsize = MLEN;
1792 
1793 	/* Chain control */
1794 	p = &top;
1795 	n = NULL;
1796 	nsize = 0;
1797 
1798 	/*
1799 	 * Scan the mbuf chain until nothing is left, the new mbuf chain
1800 	 * will be allocated on the fly as needed.
1801 	 */
1802 	while (m) {
1803 		mlen = m->m_len;
1804 		moff = 0;
1805 
1806 		while (mlen) {
1807 			KKASSERT(m->m_type == MT_DATA);
1808 			if (n == NULL) {
1809 				n = m_getl(gsize, how, MT_DATA, 0, &nsize);
1810 				if (n == NULL)
1811 					goto nospace;
1812 				n->m_len = 0;
1813 				*p = n;
1814 				p = &n->m_next;
1815 			}
1816 			chunk = imin(mlen, nsize);
1817 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1818 			mlen -= chunk;
1819 			moff += chunk;
1820 			n->m_len += chunk;
1821 			nsize -= chunk;
1822 			if (nsize == 0)
1823 				n = NULL;
1824 		}
1825 		m = m->m_next;
1826 	}
1827 	*p = NULL;
1828 	return(top);
1829 nospace:
1830 	*p = NULL;
1831 	m_freem(top);
1832 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1833 	return (NULL);
1834 }
1835 
1836 /*
1837  * Concatenate mbuf chain n to m.
1838  * Both chains must be of the same type (e.g. MT_DATA).
1839  * Any m_pkthdr is not updated.
1840  */
1841 void
1842 m_cat(struct mbuf *m, struct mbuf *n)
1843 {
1844 	m = m_last(m);
1845 	while (n) {
1846 		if (m->m_flags & M_EXT ||
1847 		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1848 			/* just join the two chains */
1849 			m->m_next = n;
1850 			return;
1851 		}
1852 		/* splat the data from one into the other */
1853 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, n->m_len);
1854 		m->m_len += n->m_len;
1855 		n = m_free(n);
1856 	}
1857 }
1858 
1859 void
1860 m_adj(struct mbuf *mp, int req_len)
1861 {
1862 	struct mbuf *m;
1863 	int count, len = req_len;
1864 
1865 	if ((m = mp) == NULL)
1866 		return;
1867 	if (len >= 0) {
1868 		/*
1869 		 * Trim from head.
1870 		 */
1871 		while (m != NULL && len > 0) {
1872 			if (m->m_len <= len) {
1873 				len -= m->m_len;
1874 				m->m_len = 0;
1875 				m = m->m_next;
1876 			} else {
1877 				m->m_len -= len;
1878 				m->m_data += len;
1879 				len = 0;
1880 			}
1881 		}
1882 		m = mp;
1883 		if (mp->m_flags & M_PKTHDR)
1884 			m->m_pkthdr.len -= (req_len - len);
1885 	} else {
1886 		/*
1887 		 * Trim from tail.  Scan the mbuf chain,
1888 		 * calculating its length and finding the last mbuf.
1889 		 * If the adjustment only affects this mbuf, then just
1890 		 * adjust and return.  Otherwise, rescan and truncate
1891 		 * after the remaining size.
1892 		 */
1893 		len = -len;
1894 		count = 0;
1895 		for (;;) {
1896 			count += m->m_len;
1897 			if (m->m_next == NULL)
1898 				break;
1899 			m = m->m_next;
1900 		}
1901 		if (m->m_len >= len) {
1902 			m->m_len -= len;
1903 			if (mp->m_flags & M_PKTHDR)
1904 				mp->m_pkthdr.len -= len;
1905 			return;
1906 		}
1907 		count -= len;
1908 		if (count < 0)
1909 			count = 0;
1910 		/*
1911 		 * Correct length for chain is "count".
1912 		 * Find the mbuf with last data, adjust its length,
1913 		 * and toss data from remaining mbufs on chain.
1914 		 */
1915 		m = mp;
1916 		if (m->m_flags & M_PKTHDR)
1917 			m->m_pkthdr.len = count;
1918 		for (; m; m = m->m_next) {
1919 			if (m->m_len >= count) {
1920 				m->m_len = count;
1921 				break;
1922 			}
1923 			count -= m->m_len;
1924 		}
1925 		while ((m = m->m_next) != NULL)
1926 			m->m_len = 0;
1927 	}
1928 }
1929 
1930 /*
1931  * Set the m_data pointer of a newly-allocated mbuf
1932  * to place an object of the specified size at the
1933  * end of the mbuf, longword aligned.
1934  */
1935 void
1936 m_align(struct mbuf *m, int len)
1937 {
1938 	int adjust;
1939 
1940 	if (m->m_flags & M_EXT)
1941 		adjust = m->m_ext.ext_size - len;
1942 	else if (m->m_flags & M_PKTHDR)
1943 		adjust = MHLEN - len;
1944 	else
1945 		adjust = MLEN - len;
1946 	m->m_data += rounddown2(adjust, sizeof(long));
1947 }
1948 
1949 /*
1950  * Create a writable copy of the mbuf chain.  While doing this
1951  * we compact the chain with a goal of producing a chain with
1952  * at most two mbufs.  The second mbuf in this chain is likely
1953  * to be a cluster.  The primary purpose of this work is to create
1954  * a writable packet for encryption, compression, etc.  The
1955  * secondary goal is to linearize the data so the data can be
1956  * passed to crypto hardware in the most efficient manner possible.
1957  */
1958 struct mbuf *
1959 m_unshare(struct mbuf *m0, int how)
1960 {
1961 	struct mbuf *m, *mprev;
1962 	struct mbuf *n, *mfirst, *mlast;
1963 	int len, off;
1964 
1965 	mprev = NULL;
1966 	for (m = m0; m != NULL; m = mprev->m_next) {
1967 		/*
1968 		 * Regular mbufs are ignored unless there's a cluster
1969 		 * in front of it that we can use to coalesce.  We do
1970 		 * the latter mainly so later clusters can be coalesced
1971 		 * also w/o having to handle them specially (i.e. convert
1972 		 * mbuf+cluster -> cluster).  This optimization is heavily
1973 		 * influenced by the assumption that we're running over
1974 		 * Ethernet where MCLBYTES is large enough that the max
1975 		 * packet size will permit lots of coalescing into a
1976 		 * single cluster.  This in turn permits efficient
1977 		 * crypto operations, especially when using hardware.
1978 		 */
1979 		if ((m->m_flags & M_EXT) == 0) {
1980 			if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1981 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1982 				/* XXX: this ignores mbuf types */
1983 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1984 				       mtod(m, caddr_t), m->m_len);
1985 				mprev->m_len += m->m_len;
1986 				/* unlink from chain and reclaim */
1987 				mprev->m_next = m->m_next;
1988 				m_free(m);
1989 			} else {
1990 				mprev = m;
1991 			}
1992 			continue;
1993 		}
1994 		/*
1995 		 * Writable mbufs are left alone (for now).
1996 		 */
1997 		if (M_WRITABLE(m)) {
1998 			mprev = m;
1999 			continue;
2000 		}
2001 
2002 		/*
2003 		 * Not writable, replace with a copy or coalesce with
2004 		 * the previous mbuf if possible (since we have to copy
2005 		 * it anyway, we try to reduce the number of mbufs and
2006 		 * clusters so that future work is easier).
2007 		 */
2008 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2009 		/* NB: we only coalesce into a cluster or larger */
2010 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2011 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
2012 			/* XXX: this ignores mbuf types */
2013 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2014 			       mtod(m, caddr_t), m->m_len);
2015 			mprev->m_len += m->m_len;
2016 			/* unlink from chain and reclaim */
2017 			mprev->m_next = m->m_next;
2018 			m_free(m);
2019 			continue;
2020 		}
2021 
2022 		/*
2023 		 * Allocate new space to hold the copy...
2024 		 */
2025 		/* XXX why can M_PKTHDR be set past the first mbuf? */
2026 		if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
2027 			/*
2028 			 * NB: if a packet header is present we must
2029 			 * allocate the mbuf separately from any cluster
2030 			 * because M_MOVE_PKTHDR will smash the data
2031 			 * pointer and drop the M_EXT marker.
2032 			 */
2033 			MGETHDR(n, how, m->m_type);
2034 			if (n == NULL) {
2035 				m_freem(m0);
2036 				return (NULL);
2037 			}
2038 			M_MOVE_PKTHDR(n, m);
2039 			MCLGET(n, how);
2040 			if ((n->m_flags & M_EXT) == 0) {
2041 				m_free(n);
2042 				m_freem(m0);
2043 				return (NULL);
2044 			}
2045 		} else {
2046 			n = m_getcl(how, m->m_type, m->m_flags);
2047 			if (n == NULL) {
2048 				m_freem(m0);
2049 				return (NULL);
2050 			}
2051 		}
2052 		/*
2053 		 * ... and copy the data.  We deal with jumbo mbufs
2054 		 * (i.e. m_len > MCLBYTES) by splitting them into
2055 		 * clusters.  We could just malloc a buffer and make
2056 		 * it external but too many device drivers don't know
2057 		 * how to break up the non-contiguous memory when
2058 		 * doing DMA.
2059 		 */
2060 		len = m->m_len;
2061 		off = 0;
2062 		mfirst = n;
2063 		mlast = NULL;
2064 		for (;;) {
2065 			int cc = min(len, MCLBYTES);
2066 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2067 			n->m_len = cc;
2068 			if (mlast != NULL)
2069 				mlast->m_next = n;
2070 			mlast = n;
2071 
2072 			len -= cc;
2073 			if (len <= 0)
2074 				break;
2075 			off += cc;
2076 
2077 			n = m_getcl(how, m->m_type, m->m_flags);
2078 			if (n == NULL) {
2079 				m_freem(mfirst);
2080 				m_freem(m0);
2081 				return (NULL);
2082 			}
2083 		}
2084 		n->m_next = m->m_next;
2085 		if (mprev == NULL)
2086 			m0 = mfirst;		/* new head of chain */
2087 		else
2088 			mprev->m_next = mfirst;	/* replace old mbuf */
2089 		m_free(m);			/* release old mbuf */
2090 		mprev = mfirst;
2091 	}
2092 	return (m0);
2093 }
2094 
2095 /*
2096  * Rearrange an mbuf chain so that len bytes are contiguous
2097  * and in the data area of an mbuf (so that mtod will work for a structure
2098  * of size len).  Returns the resulting mbuf chain on success, frees it and
2099  * returns null on failure.  If there is room, it will add up to
2100  * max_protohdr-len extra bytes to the contiguous region in an attempt to
2101  * avoid being called next time.
2102  */
2103 struct mbuf *
2104 m_pullup(struct mbuf *n, int len)
2105 {
2106 	struct mbuf *m;
2107 	int count;
2108 	int space;
2109 
2110 	/*
2111 	 * If first mbuf has no cluster, and has room for len bytes
2112 	 * without shifting current data, pullup into it,
2113 	 * otherwise allocate a new mbuf to prepend to the chain.
2114 	 */
2115 	if (!(n->m_flags & M_EXT) &&
2116 	    n->m_data + len < &n->m_dat[MLEN] &&
2117 	    n->m_next) {
2118 		if (n->m_len >= len)
2119 			return (n);
2120 		m = n;
2121 		n = n->m_next;
2122 		len -= m->m_len;
2123 	} else {
2124 		if (len > MHLEN)
2125 			goto bad;
2126 		if (n->m_flags & M_PKTHDR)
2127 			m = m_gethdr(M_NOWAIT, n->m_type);
2128 		else
2129 			m = m_get(M_NOWAIT, n->m_type);
2130 		if (m == NULL)
2131 			goto bad;
2132 		m->m_len = 0;
2133 		if (n->m_flags & M_PKTHDR)
2134 			M_MOVE_PKTHDR(m, n);
2135 	}
2136 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
2137 	do {
2138 		count = min(min(max(len, max_protohdr), space), n->m_len);
2139 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, count);
2140 		len -= count;
2141 		m->m_len += count;
2142 		n->m_len -= count;
2143 		space -= count;
2144 		if (n->m_len)
2145 			n->m_data += count;
2146 		else
2147 			n = m_free(n);
2148 	} while (len > 0 && n);
2149 	if (len > 0) {
2150 		m_free(m);
2151 		goto bad;
2152 	}
2153 	m->m_next = n;
2154 	return (m);
2155 bad:
2156 	m_freem(n);
2157 	++mbstat[mycpu->gd_cpuid].m_mcfail;
2158 	return (NULL);
2159 }
2160 
2161 /*
2162  * Partition an mbuf chain in two pieces, returning the tail --
2163  * all but the first len0 bytes.  In case of failure, it returns NULL and
2164  * attempts to restore the chain to its original state.
2165  *
2166  * Note that the resulting mbufs might be read-only, because the new
2167  * mbuf can end up sharing an mbuf cluster with the original mbuf if
2168  * the "breaking point" happens to lie within a cluster mbuf. Use the
2169  * M_WRITABLE() macro to check for this case.
2170  */
2171 struct mbuf *
2172 m_split(struct mbuf *m0, int len0, int wait)
2173 {
2174 	struct mbuf *m, *n;
2175 	unsigned len = len0, remain;
2176 
2177 	for (m = m0; m && len > m->m_len; m = m->m_next)
2178 		len -= m->m_len;
2179 	if (m == NULL)
2180 		return (NULL);
2181 	remain = m->m_len - len;
2182 	if (m0->m_flags & M_PKTHDR) {
2183 		n = m_gethdr(wait, m0->m_type);
2184 		if (n == NULL)
2185 			return (NULL);
2186 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
2187 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
2188 		m0->m_pkthdr.len = len0;
2189 		if (m->m_flags & M_EXT)
2190 			goto extpacket;
2191 		if (remain > MHLEN) {
2192 			/* m can't be the lead packet */
2193 			MH_ALIGN(n, 0);
2194 			n->m_next = m_split(m, len, wait);
2195 			if (n->m_next == NULL) {
2196 				m_free(n);
2197 				return (NULL);
2198 			} else {
2199 				n->m_len = 0;
2200 				return (n);
2201 			}
2202 		} else
2203 			MH_ALIGN(n, remain);
2204 	} else if (remain == 0) {
2205 		n = m->m_next;
2206 		m->m_next = NULL;
2207 		return (n);
2208 	} else {
2209 		n = m_get(wait, m->m_type);
2210 		if (n == NULL)
2211 			return (NULL);
2212 		M_ALIGN(n, remain);
2213 	}
2214 extpacket:
2215 	if (m->m_flags & M_EXT) {
2216 		KKASSERT((n->m_flags & M_EXT) == 0);
2217 		n->m_data = m->m_data + len;
2218 		m->m_ext.ext_ref(m->m_ext.ext_arg);
2219 		n->m_ext = m->m_ext;
2220 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
2221 	} else {
2222 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
2223 	}
2224 	n->m_len = remain;
2225 	m->m_len = len;
2226 	n->m_next = m->m_next;
2227 	m->m_next = NULL;
2228 	return (n);
2229 }
2230 
2231 /*
2232  * Routine to copy from device local memory into mbufs.
2233  * Note: "offset" is ill-defined and always called as 0, so ignore it.
2234  */
2235 struct mbuf *
2236 m_devget(void *_buf, int len, int offset __unused, struct ifnet *ifp)
2237 {
2238 	struct mbuf *m, *mfirst = NULL, **mtail;
2239 	caddr_t buf = _buf;
2240 	int nsize, flags;
2241 
2242 	KKASSERT(offset == 0);
2243 	mtail = &mfirst;
2244 	flags = M_PKTHDR;
2245 
2246 	while (len > 0) {
2247 		m = m_getl(len, M_NOWAIT, MT_DATA, flags, &nsize);
2248 		if (m == NULL) {
2249 			m_freem(mfirst);
2250 			return (NULL);
2251 		}
2252 		m->m_len = min(len, nsize);
2253 
2254 		if (flags & M_PKTHDR) {
2255 			if (len + max_linkhdr <= nsize)
2256 				m->m_data += max_linkhdr;
2257 			m->m_pkthdr.rcvif = ifp;
2258 			m->m_pkthdr.len = len;
2259 			flags = 0;
2260 		}
2261 
2262 		bcopy(buf, m->m_data, m->m_len);
2263 		buf += m->m_len;
2264 		len -= m->m_len;
2265 		*mtail = m;
2266 		mtail = &m->m_next;
2267 	}
2268 
2269 	return (mfirst);
2270 }
2271 
2272 /*
2273  * Routine to pad mbuf to the specified length 'padto'.
2274  */
2275 int
2276 m_devpad(struct mbuf *m, int padto)
2277 {
2278 	struct mbuf *last = NULL;
2279 	int padlen;
2280 
2281 	if (padto <= m->m_pkthdr.len)
2282 		return 0;
2283 
2284 	padlen = padto - m->m_pkthdr.len;
2285 
2286 	/* if there's only the packet-header and we can pad there, use it. */
2287 	if (m->m_pkthdr.len == m->m_len && M_TRAILINGSPACE(m) >= padlen) {
2288 		last = m;
2289 	} else {
2290 		/*
2291 		 * Walk packet chain to find last mbuf. We will either
2292 		 * pad there, or append a new mbuf and pad it
2293 		 */
2294 		for (last = m; last->m_next != NULL; last = last->m_next)
2295 			; /* EMPTY */
2296 
2297 		/* `last' now points to last in chain. */
2298 		if (M_TRAILINGSPACE(last) < padlen) {
2299 			struct mbuf *n;
2300 
2301 			/* Allocate new empty mbuf, pad it.  Compact later. */
2302 			MGET(n, M_NOWAIT, MT_DATA);
2303 			if (n == NULL)
2304 				return ENOBUFS;
2305 			n->m_len = 0;
2306 			last->m_next = n;
2307 			last = n;
2308 		}
2309 	}
2310 	KKASSERT(M_TRAILINGSPACE(last) >= padlen);
2311 	KKASSERT(M_WRITABLE(last));
2312 
2313 	/* Now zero the pad area */
2314 	bzero(mtod(last, caddr_t) + last->m_len, padlen);
2315 	last->m_len += padlen;
2316 	m->m_pkthdr.len += padlen;
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Copy data from a buffer back into the indicated mbuf chain,
2322  * starting "off" bytes from the beginning, extending the mbuf
2323  * chain if necessary.
2324  *
2325  * Note that m0->m_len may be 0 (e.g., a newly allocated mbuf).
2326  */
2327 static __inline int
2328 _m_copyback2(struct mbuf *m0, int off, int len, const void *_cp, int how,
2329 	     boolean_t allow_alloc)
2330 {
2331 	struct mbuf *m = m0, *n;
2332 	c_caddr_t cp = _cp;
2333 	int mlen, tlen, nsize, totlen = 0, error = ENOBUFS;
2334 
2335 	KASSERT(off >= 0, ("%s: negative off %d", __func__, off));
2336 	KASSERT(len >= 0, ("%s: negative len %d", __func__, len));
2337 
2338 	if (m0 == NULL)
2339 		return (0);
2340 
2341 	while (off > m->m_len) {
2342 		if (m->m_next == NULL && (tlen = M_TRAILINGSPACE(m)) > 0) {
2343 			/* Use the trailing space of the last mbuf. */
2344 			mlen = min(off - m->m_len, tlen);
2345 			bzero(mtod(m, caddr_t) + m->m_len, mlen);
2346 			m->m_len += mlen;
2347 		}
2348 		off -= m->m_len;
2349 		totlen += m->m_len;
2350 		if (m->m_next == NULL) {
2351 			if (!allow_alloc)
2352 				goto out;
2353 			n = m_getl(off + len, how, m->m_type, 0, &nsize);
2354 			if (n == NULL)
2355 				goto out;
2356 			n->m_len = min(nsize, off + len);
2357 			bzero(mtod(n, void *), n->m_len);
2358 			m->m_next = n;
2359 		}
2360 		m = m->m_next;
2361 	}
2362 	while (len > 0) {
2363 		if (m->m_next == NULL &&
2364 		    m->m_len < off + len &&
2365 		    (tlen = M_TRAILINGSPACE(m)) > 0) {
2366 			/* Use the trailing space of the last mbuf. */
2367 			m->m_len += min(off + len - m->m_len, tlen);
2368 		}
2369 		mlen = min(m->m_len - off, len);
2370 		bcopy(cp, mtod(m, caddr_t) + off, mlen);
2371 		off = 0;
2372 		cp += mlen;
2373 		len -= mlen;
2374 		totlen += mlen + off;
2375 		if (len == 0)
2376 			break;
2377 		if (m->m_next == NULL) {
2378 			if (!allow_alloc)
2379 				goto out;
2380 			n = m_getl(len, how, m->m_type, 0, &nsize);
2381 			if (n == NULL)
2382 				goto out;
2383 			n->m_len = min(nsize, len);
2384 			m->m_next = n;
2385 		}
2386 		m = m->m_next;
2387 	}
2388 	error = 0;
2389 
2390 out:
2391 	if ((m0->m_flags & M_PKTHDR) && (m0->m_pkthdr.len < totlen))
2392 		m0->m_pkthdr.len = totlen;
2393 
2394 	return (error);
2395 }
2396 
2397 int
2398 m_copyback2(struct mbuf *m0, int off, int len, const void *cp, int how)
2399 {
2400 	return _m_copyback2(m0, off, len, cp, how, TRUE);
2401 }
2402 
2403 /*
2404  * Similar to m_copyback2() but forbid mbuf expansion.  The caller must
2405  * ensure that the mbuf (chain) is big enough; otherwise, the copyback
2406  * would fail with diagnostics printed to the console.
2407  */
2408 void
2409 m_copyback(struct mbuf *m0, int off, int len, const void *cp)
2410 {
2411 	if (_m_copyback2(m0, off, len, cp, 0, FALSE) != 0) {
2412 		kprintf("%s: unexpected mbuf expansion required, "
2413 			"code path needs to be fixed:\n", __func__);
2414 		print_backtrace(8);
2415 	}
2416 }
2417 
2418 /*
2419  * Append the specified data to the indicated mbuf chain,
2420  * Extend the mbuf chain if the new data does not fit in
2421  * existing space.
2422  *
2423  * Return 1 if able to complete the job; otherwise 0.
2424  */
2425 int
2426 m_append(struct mbuf *m0, int len, const void *_cp)
2427 {
2428 	struct mbuf *m, *n;
2429 	c_caddr_t cp = _cp;
2430 	int remainder, space;
2431 
2432 	for (m = m0; m->m_next != NULL; m = m->m_next)
2433 		;
2434 	remainder = len;
2435 	space = M_TRAILINGSPACE(m);
2436 	if (space > 0) {
2437 		/*
2438 		 * Copy into available space.
2439 		 */
2440 		if (space > remainder)
2441 			space = remainder;
2442 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
2443 		m->m_len += space;
2444 		cp += space, remainder -= space;
2445 	}
2446 	while (remainder > 0) {
2447 		/*
2448 		 * Allocate a new mbuf; could check space
2449 		 * and allocate a cluster instead.
2450 		 */
2451 		n = m_get(M_NOWAIT, m->m_type);
2452 		if (n == NULL)
2453 			break;
2454 		n->m_len = min(MLEN, remainder);
2455 		bcopy(cp, mtod(n, caddr_t), n->m_len);
2456 		cp += n->m_len, remainder -= n->m_len;
2457 		m->m_next = n;
2458 		m = n;
2459 	}
2460 	if (m0->m_flags & M_PKTHDR)
2461 		m0->m_pkthdr.len += len - remainder;
2462 	return (remainder == 0);
2463 }
2464 
2465 /*
2466  * Apply function f to the data in an mbuf chain starting "off" bytes from
2467  * the beginning, continuing for "len" bytes.
2468  */
2469 int
2470 m_apply(struct mbuf *m, int off, int len,
2471 	int (*f)(void *, void *, u_int), void *arg)
2472 {
2473 	u_int count;
2474 	int rval;
2475 
2476 	KASSERT(off >= 0, ("%s: negative off %d", __func__, off));
2477 	KASSERT(len >= 0, ("%s: negative len %d", __func__, len));
2478 	while (off > 0) {
2479 		KASSERT(m != NULL,
2480 			("%s: offset > size of mbuf chain", __func__));
2481 		if (off < m->m_len)
2482 			break;
2483 		off -= m->m_len;
2484 		m = m->m_next;
2485 	}
2486 	while (len > 0) {
2487 		KASSERT(m != NULL,
2488 			("%s: offset > size of mbuf chain", __func__));
2489 		count = min(m->m_len - off, len);
2490 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
2491 		if (rval)
2492 			return (rval);
2493 		len -= count;
2494 		off = 0;
2495 		m = m->m_next;
2496 	}
2497 	return (0);
2498 }
2499 
2500 /*
2501  * Return a pointer to mbuf/offset of location in mbuf chain.
2502  */
2503 struct mbuf *
2504 m_getptr(struct mbuf *m, int loc, int *off)
2505 {
2506 	while (loc >= 0) {
2507 		/* Normal end of search. */
2508 		if (m->m_len > loc) {
2509 			*off = loc;
2510 			return (m);
2511 		} else {
2512 			loc -= m->m_len;
2513 			if (m->m_next == NULL) {
2514 				if (loc == 0) {
2515 					/* Point at the end of valid data. */
2516 					*off = m->m_len;
2517 					return (m);
2518 				}
2519 				return (NULL);
2520 			}
2521 			m = m->m_next;
2522 		}
2523 	}
2524 	return (NULL);
2525 }
2526 
2527 void
2528 m_print(const struct mbuf *m)
2529 {
2530 	int len;
2531 	const struct mbuf *m2;
2532 	char *hexstr;
2533 
2534 	len = m->m_pkthdr.len;
2535 	m2 = m;
2536 	hexstr = kmalloc(HEX_NCPYLEN(len), M_TEMP, M_ZERO | M_WAITOK);
2537 	while (len) {
2538 		kprintf("%p %s\n", m2, hexncpy(m2->m_data, m2->m_len, hexstr,
2539 			HEX_NCPYLEN(m2->m_len), "-"));
2540 		len -= m2->m_len;
2541 		m2 = m2->m_next;
2542 	}
2543 	kfree(hexstr, M_TEMP);
2544 	return;
2545 }
2546 
2547 /*
2548  * "Move" mbuf pkthdr from "from" to "to".
2549  * "from" must have M_PKTHDR set, and "to" must be empty.
2550  */
2551 void
2552 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
2553 {
2554 	KASSERT((to->m_flags & M_PKTHDR), ("%s: not packet header", __func__));
2555 
2556 	to->m_flags |= from->m_flags & M_COPYFLAGS;
2557 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
2558 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
2559 }
2560 
2561 /*
2562  * Duplicate "from"'s mbuf pkthdr in "to".
2563  * "from" must have M_PKTHDR set, and "to" must be empty.
2564  * In particular, this does a deep copy of the packet tags.
2565  */
2566 int
2567 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
2568 {
2569 	KASSERT((to->m_flags & M_PKTHDR), ("%s: not packet header", __func__));
2570 
2571 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
2572 		      (to->m_flags & ~M_COPYFLAGS);
2573 	to->m_pkthdr = from->m_pkthdr;
2574 	SLIST_INIT(&to->m_pkthdr.tags);
2575 	return (m_tag_copy_chain(to, from, how));
2576 }
2577 
2578 /*
2579  * Defragment a mbuf chain, returning the shortest possible
2580  * chain of mbufs and clusters.  If allocation fails and
2581  * this cannot be completed, NULL will be returned, but
2582  * the passed in chain will be unchanged.  Upon success,
2583  * the original chain will be freed, and the new chain
2584  * will be returned.
2585  *
2586  * If a non-packet header is passed in, the original
2587  * mbuf (chain?) will be returned unharmed.
2588  *
2589  * m_defrag_nofree doesn't free the passed in mbuf.
2590  */
2591 struct mbuf *
2592 m_defrag(struct mbuf *m0, int how)
2593 {
2594 	struct mbuf *m_new;
2595 
2596 	if ((m_new = m_defrag_nofree(m0, how)) == NULL)
2597 		return (NULL);
2598 	if (m_new != m0)
2599 		m_freem(m0);
2600 	return (m_new);
2601 }
2602 
2603 struct mbuf *
2604 m_defrag_nofree(struct mbuf *m0, int how)
2605 {
2606 	struct mbuf	*m_new = NULL, *m_final = NULL;
2607 	int		progress = 0, length, nsize;
2608 
2609 	if (!(m0->m_flags & M_PKTHDR))
2610 		return (m0);
2611 
2612 #ifdef MBUF_STRESS_TEST
2613 	if (m_defragrandomfailures) {
2614 		int temp = karc4random() & 0xff;
2615 		if (temp == 0xba)
2616 			goto nospace;
2617 	}
2618 #endif
2619 
2620 	m_final = m_getl(m0->m_pkthdr.len, how, MT_DATA, M_PKTHDR, &nsize);
2621 	if (m_final == NULL)
2622 		goto nospace;
2623 	m_final->m_len = 0;	/* in case m0->m_pkthdr.len is zero */
2624 
2625 	if (m_dup_pkthdr(m_final, m0, how) == 0)
2626 		goto nospace;
2627 
2628 	m_new = m_final;
2629 
2630 	while (progress < m0->m_pkthdr.len) {
2631 		length = m0->m_pkthdr.len - progress;
2632 		if (length > MCLBYTES)
2633 			length = MCLBYTES;
2634 
2635 		if (m_new == NULL) {
2636 			m_new = m_getl(length, how, MT_DATA, 0, &nsize);
2637 			if (m_new == NULL)
2638 				goto nospace;
2639 		}
2640 
2641 		m_copydata(m0, progress, length, mtod(m_new, void *));
2642 		progress += length;
2643 		m_new->m_len = length;
2644 		if (m_new != m_final)
2645 			m_cat(m_final, m_new);
2646 		m_new = NULL;
2647 	}
2648 	if (m0->m_next == NULL)
2649 		m_defraguseless++;
2650 	m_defragpackets++;
2651 	m_defragbytes += m_final->m_pkthdr.len;
2652 	return (m_final);
2653 nospace:
2654 	m_defragfailure++;
2655 	if (m_new)
2656 		m_free(m_new);
2657 	m_freem(m_final);
2658 	return (NULL);
2659 }
2660 
2661 /*
2662  * Move data from uio into mbufs.
2663  */
2664 struct mbuf *
2665 m_uiomove(struct uio *uio)
2666 {
2667 	struct mbuf *m;			/* current working mbuf */
2668 	struct mbuf *head = NULL;	/* result mbuf chain */
2669 	struct mbuf **mp = &head;
2670 	int flags = M_PKTHDR;
2671 	int nsize;
2672 	int error;
2673 	int resid;
2674 
2675 	do {
2676 		if (uio->uio_resid > INT_MAX)
2677 			resid = INT_MAX;
2678 		else
2679 			resid = (int)uio->uio_resid;
2680 		m = m_getl(resid, M_WAITOK, MT_DATA, flags, &nsize);
2681 		if (flags) {
2682 			m->m_pkthdr.len = 0;
2683 			/* Leave room for protocol headers. */
2684 			if (resid < MHLEN)
2685 				MH_ALIGN(m, resid);
2686 			flags = 0;
2687 		}
2688 		m->m_len = imin(nsize, resid);
2689 		error = uiomove(mtod(m, caddr_t), m->m_len, uio);
2690 		if (error) {
2691 			m_free(m);
2692 			goto failed;
2693 		}
2694 		*mp = m;
2695 		mp = &m->m_next;
2696 		head->m_pkthdr.len += m->m_len;
2697 	} while (uio->uio_resid > 0);
2698 
2699 	return (head);
2700 
2701 failed:
2702 	m_freem(head);
2703 	return (NULL);
2704 }
2705 
2706 struct mbuf *
2707 m_last(struct mbuf *m)
2708 {
2709 	while (m->m_next)
2710 		m = m->m_next;
2711 	return (m);
2712 }
2713 
2714 /*
2715  * Return the number of bytes in an mbuf chain.
2716  * If lastm is not NULL, also return the last mbuf.
2717  */
2718 u_int
2719 m_lengthm(struct mbuf *m, struct mbuf **lastm)
2720 {
2721 	u_int len = 0;
2722 	struct mbuf *prev = m;
2723 
2724 	while (m) {
2725 		len += m->m_len;
2726 		prev = m;
2727 		m = m->m_next;
2728 	}
2729 	if (lastm != NULL)
2730 		*lastm = prev;
2731 	return (len);
2732 }
2733 
2734 /*
2735  * Like m_lengthm(), except also keep track of mbuf usage.
2736  */
2737 u_int
2738 m_countm(struct mbuf *m, struct mbuf **lastm, u_int *pmbcnt)
2739 {
2740 	u_int len = 0, mbcnt = 0;
2741 	struct mbuf *prev = m;
2742 
2743 	while (m) {
2744 		len += m->m_len;
2745 		mbcnt += MSIZE;
2746 		if (m->m_flags & M_EXT)
2747 			mbcnt += m->m_ext.ext_size;
2748 		prev = m;
2749 		m = m->m_next;
2750 	}
2751 	if (lastm != NULL)
2752 		*lastm = prev;
2753 	*pmbcnt = mbcnt;
2754 	return (len);
2755 }
2756