xref: /dragonfly/sys/kern/uipc_mbuf.c (revision 9f3fc534)
1 /*
2  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  * @(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
68  * $DragonFly: src/sys/kern/uipc_mbuf.c,v 1.70 2008/11/20 14:21:01 sephe Exp $
69  */
70 
71 #include "opt_param.h"
72 #include "opt_mbuf_stress_test.h"
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/kernel.h>
78 #include <sys/sysctl.h>
79 #include <sys/domain.h>
80 #include <sys/objcache.h>
81 #include <sys/tree.h>
82 #include <sys/protosw.h>
83 #include <sys/uio.h>
84 #include <sys/thread.h>
85 #include <sys/globaldata.h>
86 #include <sys/thread2.h>
87 
88 #include <machine/atomic.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 
94 #ifdef INVARIANTS
95 #include <machine/cpu.h>
96 #endif
97 
98 /*
99  * mbuf cluster meta-data
100  */
101 struct mbcluster {
102 	int32_t	mcl_refs;
103 	void	*mcl_data;
104 };
105 
106 /*
107  * mbuf tracking for debugging purposes
108  */
109 #ifdef MBUF_DEBUG
110 
111 static MALLOC_DEFINE(M_MTRACK, "mtrack", "mtrack");
112 
113 struct mbctrack;
114 RB_HEAD(mbuf_rb_tree, mbtrack);
115 RB_PROTOTYPE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *);
116 
117 struct mbtrack {
118 	RB_ENTRY(mbtrack) rb_node;
119 	int trackid;
120 	struct mbuf *m;
121 };
122 
123 static int
124 mbtrack_cmp(struct mbtrack *mb1, struct mbtrack *mb2)
125 {
126 	if (mb1->m < mb2->m)
127 		return(-1);
128 	if (mb1->m > mb2->m)
129 		return(1);
130 	return(0);
131 }
132 
133 RB_GENERATE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *, m);
134 
135 struct mbuf_rb_tree	mbuf_track_root;
136 
137 static void
138 mbuftrack(struct mbuf *m)
139 {
140 	struct mbtrack *mbt;
141 
142 	crit_enter();
143 	mbt = kmalloc(sizeof(*mbt), M_MTRACK, M_INTWAIT|M_ZERO);
144 	mbt->m = m;
145 	if (mbuf_rb_tree_RB_INSERT(&mbuf_track_root, mbt))
146 		panic("mbuftrack: mbuf %p already being tracked\n", m);
147 	crit_exit();
148 }
149 
150 static void
151 mbufuntrack(struct mbuf *m)
152 {
153 	struct mbtrack *mbt;
154 
155 	crit_enter();
156 	mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
157 	if (mbt == NULL) {
158 		kprintf("mbufuntrack: mbuf %p was not tracked\n", m);
159 	} else {
160 		mbuf_rb_tree_RB_REMOVE(&mbuf_track_root, mbt);
161 		kfree(mbt, M_MTRACK);
162 	}
163 	crit_exit();
164 }
165 
166 void
167 mbuftrackid(struct mbuf *m, int trackid)
168 {
169 	struct mbtrack *mbt;
170 	struct mbuf *n;
171 
172 	crit_enter();
173 	while (m) {
174 		n = m->m_nextpkt;
175 		while (m) {
176 			mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
177 			if (mbt)
178 				mbt->trackid = trackid;
179 			m = m->m_next;
180 		}
181 		m = n;
182 	}
183 	crit_exit();
184 }
185 
186 static int
187 mbuftrack_callback(struct mbtrack *mbt, void *arg)
188 {
189 	struct sysctl_req *req = arg;
190 	char buf[64];
191 	int error;
192 
193 	ksnprintf(buf, sizeof(buf), "mbuf %p track %d\n", mbt->m, mbt->trackid);
194 
195 	error = SYSCTL_OUT(req, buf, strlen(buf));
196 	if (error)
197 		return(-error);
198 	return(0);
199 }
200 
201 static int
202 mbuftrack_show(SYSCTL_HANDLER_ARGS)
203 {
204 	int error;
205 
206 	crit_enter();
207 	error = mbuf_rb_tree_RB_SCAN(&mbuf_track_root, NULL,
208 				     mbuftrack_callback, req);
209 	crit_exit();
210 	return (-error);
211 }
212 SYSCTL_PROC(_kern_ipc, OID_AUTO, showmbufs, CTLFLAG_RD|CTLTYPE_STRING,
213 	    0, 0, mbuftrack_show, "A", "Show all in-use mbufs");
214 
215 #else
216 
217 #define mbuftrack(m)
218 #define mbufuntrack(m)
219 
220 #endif
221 
222 static void mbinit(void *);
223 SYSINIT(mbuf, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, mbinit, NULL)
224 
225 static u_long	mbtypes[SMP_MAXCPU][MT_NTYPES];
226 
227 static struct mbstat mbstat[SMP_MAXCPU];
228 int	max_linkhdr;
229 int	max_protohdr;
230 int	max_hdr;
231 int	max_datalen;
232 int	m_defragpackets;
233 int	m_defragbytes;
234 int	m_defraguseless;
235 int	m_defragfailure;
236 #ifdef MBUF_STRESS_TEST
237 int	m_defragrandomfailures;
238 #endif
239 
240 struct objcache *mbuf_cache, *mbufphdr_cache;
241 struct objcache *mclmeta_cache;
242 struct objcache *mbufcluster_cache, *mbufphdrcluster_cache;
243 
244 int	nmbclusters;
245 int	nmbufs;
246 
247 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
248 	   &max_linkhdr, 0, "");
249 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
250 	   &max_protohdr, 0, "");
251 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0, "");
252 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
253 	   &max_datalen, 0, "");
254 SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
255 	   &mbuf_wait, 0, "");
256 static int do_mbstat(SYSCTL_HANDLER_ARGS);
257 
258 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLTYPE_STRUCT|CTLFLAG_RD,
259 	0, 0, do_mbstat, "S,mbstat", "");
260 
261 static int do_mbtypes(SYSCTL_HANDLER_ARGS);
262 
263 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtypes, CTLTYPE_ULONG|CTLFLAG_RD,
264 	0, 0, do_mbtypes, "LU", "");
265 
266 static int
267 do_mbstat(SYSCTL_HANDLER_ARGS)
268 {
269 	struct mbstat mbstat_total;
270 	struct mbstat *mbstat_totalp;
271 	int i;
272 
273 	bzero(&mbstat_total, sizeof(mbstat_total));
274 	mbstat_totalp = &mbstat_total;
275 
276 	for (i = 0; i < ncpus; i++)
277 	{
278 		mbstat_total.m_mbufs += mbstat[i].m_mbufs;
279 		mbstat_total.m_clusters += mbstat[i].m_clusters;
280 		mbstat_total.m_spare += mbstat[i].m_spare;
281 		mbstat_total.m_clfree += mbstat[i].m_clfree;
282 		mbstat_total.m_drops += mbstat[i].m_drops;
283 		mbstat_total.m_wait += mbstat[i].m_wait;
284 		mbstat_total.m_drain += mbstat[i].m_drain;
285 		mbstat_total.m_mcfail += mbstat[i].m_mcfail;
286 		mbstat_total.m_mpfail += mbstat[i].m_mpfail;
287 
288 	}
289 	/*
290 	 * The following fields are not cumulative fields so just
291 	 * get their values once.
292 	 */
293 	mbstat_total.m_msize = mbstat[0].m_msize;
294 	mbstat_total.m_mclbytes = mbstat[0].m_mclbytes;
295 	mbstat_total.m_minclsize = mbstat[0].m_minclsize;
296 	mbstat_total.m_mlen = mbstat[0].m_mlen;
297 	mbstat_total.m_mhlen = mbstat[0].m_mhlen;
298 
299 	return(sysctl_handle_opaque(oidp, mbstat_totalp, sizeof(mbstat_total), req));
300 }
301 
302 static int
303 do_mbtypes(SYSCTL_HANDLER_ARGS)
304 {
305 	u_long totals[MT_NTYPES];
306 	int i, j;
307 
308 	for (i = 0; i < MT_NTYPES; i++)
309 		totals[i] = 0;
310 
311 	for (i = 0; i < ncpus; i++)
312 	{
313 		for (j = 0; j < MT_NTYPES; j++)
314 			totals[j] += mbtypes[i][j];
315 	}
316 
317 	return(sysctl_handle_opaque(oidp, totals, sizeof(totals), req));
318 }
319 
320 /*
321  * These are read-only because we do not currently have any code
322  * to adjust the objcache limits after the fact.  The variables
323  * may only be set as boot-time tunables.
324  */
325 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
326 	   &nmbclusters, 0, "Maximum number of mbuf clusters available");
327 SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RD, &nmbufs, 0,
328 	   "Maximum number of mbufs available");
329 
330 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
331 	   &m_defragpackets, 0, "");
332 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
333 	   &m_defragbytes, 0, "");
334 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
335 	   &m_defraguseless, 0, "");
336 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
337 	   &m_defragfailure, 0, "");
338 #ifdef MBUF_STRESS_TEST
339 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
340 	   &m_defragrandomfailures, 0, "");
341 #endif
342 
343 static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
344 static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl");
345 static MALLOC_DEFINE(M_MCLMETA, "mclmeta", "mclmeta");
346 
347 static void m_reclaim (void);
348 static void m_mclref(void *arg);
349 static void m_mclfree(void *arg);
350 
351 #ifndef NMBCLUSTERS
352 #define NMBCLUSTERS	(512 + maxusers * 16)
353 #endif
354 #ifndef NMBUFS
355 #define NMBUFS		(nmbclusters * 2)
356 #endif
357 
358 /*
359  * Perform sanity checks of tunables declared above.
360  */
361 static void
362 tunable_mbinit(void *dummy)
363 {
364 	/*
365 	 * This has to be done before VM init.
366 	 */
367 	nmbclusters = NMBCLUSTERS;
368 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
369 	nmbufs = NMBUFS;
370 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
371 	/* Sanity checks */
372 	if (nmbufs < nmbclusters * 2)
373 		nmbufs = nmbclusters * 2;
374 }
375 SYSINIT(tunable_mbinit, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
376 	tunable_mbinit, NULL);
377 
378 /* "number of clusters of pages" */
379 #define NCL_INIT	1
380 
381 #define NMB_INIT	16
382 
383 /*
384  * The mbuf object cache only guarantees that m_next and m_nextpkt are
385  * NULL and that m_data points to the beginning of the data area.  In
386  * particular, m_len and m_pkthdr.len are uninitialized.  It is the
387  * responsibility of the caller to initialize those fields before use.
388  */
389 
390 static boolean_t __inline
391 mbuf_ctor(void *obj, void *private, int ocflags)
392 {
393 	struct mbuf *m = obj;
394 
395 	m->m_next = NULL;
396 	m->m_nextpkt = NULL;
397 	m->m_data = m->m_dat;
398 	m->m_flags = 0;
399 
400 	return (TRUE);
401 }
402 
403 /*
404  * Initialize the mbuf and the packet header fields.
405  */
406 static boolean_t
407 mbufphdr_ctor(void *obj, void *private, int ocflags)
408 {
409 	struct mbuf *m = obj;
410 
411 	m->m_next = NULL;
412 	m->m_nextpkt = NULL;
413 	m->m_data = m->m_pktdat;
414 	m->m_flags = M_PKTHDR | M_PHCACHE;
415 
416 	m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
417 	SLIST_INIT(&m->m_pkthdr.tags);
418 	m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
419 	m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
420 
421 	return (TRUE);
422 }
423 
424 /*
425  * A mbcluster object consists of 2K (MCLBYTES) cluster and a refcount.
426  */
427 static boolean_t
428 mclmeta_ctor(void *obj, void *private, int ocflags)
429 {
430 	struct mbcluster *cl = obj;
431 	void *buf;
432 
433 	if (ocflags & M_NOWAIT)
434 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_NOWAIT | M_ZERO);
435 	else
436 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_INTWAIT | M_ZERO);
437 	if (buf == NULL)
438 		return (FALSE);
439 	cl->mcl_refs = 0;
440 	cl->mcl_data = buf;
441 	return (TRUE);
442 }
443 
444 static void
445 mclmeta_dtor(void *obj, void *private)
446 {
447 	struct mbcluster *mcl = obj;
448 
449 	KKASSERT(mcl->mcl_refs == 0);
450 	kfree(mcl->mcl_data, M_MBUFCL);
451 }
452 
453 static void
454 linkcluster(struct mbuf *m, struct mbcluster *cl)
455 {
456 	/*
457 	 * Add the cluster to the mbuf.  The caller will detect that the
458 	 * mbuf now has an attached cluster.
459 	 */
460 	m->m_ext.ext_arg = cl;
461 	m->m_ext.ext_buf = cl->mcl_data;
462 	m->m_ext.ext_ref = m_mclref;
463 	m->m_ext.ext_free = m_mclfree;
464 	m->m_ext.ext_size = MCLBYTES;
465 	atomic_add_int(&cl->mcl_refs, 1);
466 
467 	m->m_data = m->m_ext.ext_buf;
468 	m->m_flags |= M_EXT | M_EXT_CLUSTER;
469 }
470 
471 static boolean_t
472 mbufphdrcluster_ctor(void *obj, void *private, int ocflags)
473 {
474 	struct mbuf *m = obj;
475 	struct mbcluster *cl;
476 
477 	mbufphdr_ctor(obj, private, ocflags);
478 	cl = objcache_get(mclmeta_cache, ocflags);
479 	if (cl == NULL)
480 		return (FALSE);
481 	m->m_flags |= M_CLCACHE;
482 	linkcluster(m, cl);
483 	return (TRUE);
484 }
485 
486 static boolean_t
487 mbufcluster_ctor(void *obj, void *private, int ocflags)
488 {
489 	struct mbuf *m = obj;
490 	struct mbcluster *cl;
491 
492 	mbuf_ctor(obj, private, ocflags);
493 	cl = objcache_get(mclmeta_cache, ocflags);
494 	if (cl == NULL)
495 		return (FALSE);
496 	m->m_flags |= M_CLCACHE;
497 	linkcluster(m, cl);
498 	return (TRUE);
499 }
500 
501 /*
502  * Used for both the cluster and cluster PHDR caches.
503  *
504  * The mbuf may have lost its cluster due to sharing, deal
505  * with the situation by checking M_EXT.
506  */
507 static void
508 mbufcluster_dtor(void *obj, void *private)
509 {
510 	struct mbuf *m = obj;
511 	struct mbcluster *mcl;
512 
513 	if (m->m_flags & M_EXT) {
514 		KKASSERT((m->m_flags & M_EXT_CLUSTER) != 0);
515 		mcl = m->m_ext.ext_arg;
516 		KKASSERT(mcl->mcl_refs == 1);
517 		mcl->mcl_refs = 0;
518 		objcache_put(mclmeta_cache, mcl);
519 	}
520 }
521 
522 struct objcache_malloc_args mbuf_malloc_args = { MSIZE, M_MBUF };
523 struct objcache_malloc_args mclmeta_malloc_args =
524 	{ sizeof(struct mbcluster), M_MCLMETA };
525 
526 /* ARGSUSED*/
527 static void
528 mbinit(void *dummy)
529 {
530 	int mb_limit, cl_limit;
531 	int limit;
532 	int i;
533 
534 	/*
535 	 * Initialize statistics
536 	 */
537 	for (i = 0; i < ncpus; i++) {
538 		atomic_set_long_nonlocked(&mbstat[i].m_msize, MSIZE);
539 		atomic_set_long_nonlocked(&mbstat[i].m_mclbytes, MCLBYTES);
540 		atomic_set_long_nonlocked(&mbstat[i].m_minclsize, MINCLSIZE);
541 		atomic_set_long_nonlocked(&mbstat[i].m_mlen, MLEN);
542 		atomic_set_long_nonlocked(&mbstat[i].m_mhlen, MHLEN);
543 	}
544 
545 	/*
546 	 * Create objtect caches and save cluster limits, which will
547 	 * be used to adjust backing kmalloc pools' limit later.
548 	 */
549 
550 	mb_limit = cl_limit = 0;
551 
552 	limit = nmbufs;
553 	mbuf_cache = objcache_create("mbuf", &limit, 0,
554 	    mbuf_ctor, NULL, NULL,
555 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
556 	mb_limit += limit;
557 
558 	limit = nmbufs;
559 	mbufphdr_cache = objcache_create("mbuf pkt hdr", &limit, 64,
560 	    mbufphdr_ctor, NULL, NULL,
561 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
562 	mb_limit += limit;
563 
564 	cl_limit = nmbclusters;
565 	mclmeta_cache = objcache_create("cluster mbuf", &cl_limit, 0,
566 	    mclmeta_ctor, mclmeta_dtor, NULL,
567 	    objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
568 
569 	limit = nmbclusters;
570 	mbufcluster_cache = objcache_create("mbuf + cluster", &limit, 0,
571 	    mbufcluster_ctor, mbufcluster_dtor, NULL,
572 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
573 	mb_limit += limit;
574 
575 	limit = nmbclusters;
576 	mbufphdrcluster_cache = objcache_create("mbuf pkt hdr + cluster",
577 	    &limit, 64, mbufphdrcluster_ctor, mbufcluster_dtor, NULL,
578 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
579 	mb_limit += limit;
580 
581 	/*
582 	 * Adjust backing kmalloc pools' limit
583 	 *
584 	 * NOTE: We raise the limit by another 1/8 to take the effect
585 	 * of loosememuse into account.
586 	 */
587 	cl_limit += cl_limit / 8;
588 	kmalloc_raise_limit(mclmeta_malloc_args.mtype,
589 			    mclmeta_malloc_args.objsize * cl_limit);
590 	kmalloc_raise_limit(M_MBUFCL, MCLBYTES * cl_limit);
591 
592 	mb_limit += mb_limit / 8;
593 	kmalloc_raise_limit(mbuf_malloc_args.mtype,
594 			    mbuf_malloc_args.objsize * mb_limit);
595 }
596 
597 /*
598  * Return the number of references to this mbuf's data.  0 is returned
599  * if the mbuf is not M_EXT, a reference count is returned if it is
600  * M_EXT | M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT.
601  */
602 int
603 m_sharecount(struct mbuf *m)
604 {
605 	switch (m->m_flags & (M_EXT | M_EXT_CLUSTER)) {
606 	case 0:
607 		return (0);
608 	case M_EXT:
609 		return (99);
610 	case M_EXT | M_EXT_CLUSTER:
611 		return (((struct mbcluster *)m->m_ext.ext_arg)->mcl_refs);
612 	}
613 	/* NOTREACHED */
614 	return (0);		/* to shut up compiler */
615 }
616 
617 /*
618  * change mbuf to new type
619  */
620 void
621 m_chtype(struct mbuf *m, int type)
622 {
623 	struct globaldata *gd = mycpu;
624 
625 	atomic_add_long_nonlocked(&mbtypes[gd->gd_cpuid][type], 1);
626 	atomic_subtract_long_nonlocked(&mbtypes[gd->gd_cpuid][m->m_type], 1);
627 	atomic_set_short_nonlocked(&m->m_type, type);
628 }
629 
630 static void
631 m_reclaim(void)
632 {
633 	struct domain *dp;
634 	struct protosw *pr;
635 
636 	crit_enter();
637 	SLIST_FOREACH(dp, &domains, dom_next) {
638 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
639 			if (pr->pr_drain)
640 				(*pr->pr_drain)();
641 		}
642 	}
643 	crit_exit();
644 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_drain, 1);
645 }
646 
647 static void __inline
648 updatestats(struct mbuf *m, int type)
649 {
650 	struct globaldata *gd = mycpu;
651 	m->m_type = type;
652 
653 	mbuftrack(m);
654 
655 	atomic_add_long_nonlocked(&mbtypes[gd->gd_cpuid][type], 1);
656 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mbufs, 1);
657 
658 }
659 
660 /*
661  * Allocate an mbuf.
662  */
663 struct mbuf *
664 m_get(int how, int type)
665 {
666 	struct mbuf *m;
667 	int ntries = 0;
668 	int ocf = MBTOM(how);
669 
670 retryonce:
671 
672 	m = objcache_get(mbuf_cache, ocf);
673 
674 	if (m == NULL) {
675 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
676 			struct objcache *reclaimlist[] = {
677 				mbufphdr_cache,
678 				mbufcluster_cache, mbufphdrcluster_cache
679 			};
680 			const int nreclaims = __arysize(reclaimlist);
681 
682 			if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
683 				m_reclaim();
684 			goto retryonce;
685 		}
686 		return (NULL);
687 	}
688 
689 	updatestats(m, type);
690 	return (m);
691 }
692 
693 struct mbuf *
694 m_gethdr(int how, int type)
695 {
696 	struct mbuf *m;
697 	int ocf = MBTOM(how);
698 	int ntries = 0;
699 
700 retryonce:
701 
702 	m = objcache_get(mbufphdr_cache, ocf);
703 
704 	if (m == NULL) {
705 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
706 			struct objcache *reclaimlist[] = {
707 				mbuf_cache,
708 				mbufcluster_cache, mbufphdrcluster_cache
709 			};
710 			const int nreclaims = __arysize(reclaimlist);
711 
712 			if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
713 				m_reclaim();
714 			goto retryonce;
715 		}
716 		return (NULL);
717 	}
718 
719 	updatestats(m, type);
720 	return (m);
721 }
722 
723 /*
724  * Get a mbuf (not a mbuf cluster!) and zero it.
725  * Deprecated.
726  */
727 struct mbuf *
728 m_getclr(int how, int type)
729 {
730 	struct mbuf *m;
731 
732 	m = m_get(how, type);
733 	if (m != NULL)
734 		bzero(m->m_data, MLEN);
735 	return (m);
736 }
737 
738 /*
739  * Returns an mbuf with an attached cluster.
740  * Because many network drivers use this kind of buffers a lot, it is
741  * convenient to keep a small pool of free buffers of this kind.
742  * Even a small size such as 10 gives about 10% improvement in the
743  * forwarding rate in a bridge or router.
744  */
745 struct mbuf *
746 m_getcl(int how, short type, int flags)
747 {
748 	struct mbuf *m;
749 	int ocflags = MBTOM(how);
750 	int ntries = 0;
751 
752 retryonce:
753 
754 	if (flags & M_PKTHDR)
755 		m = objcache_get(mbufphdrcluster_cache, ocflags);
756 	else
757 		m = objcache_get(mbufcluster_cache, ocflags);
758 
759 	if (m == NULL) {
760 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
761 			struct objcache *reclaimlist[1];
762 
763 			if (flags & M_PKTHDR)
764 				reclaimlist[0] = mbufcluster_cache;
765 			else
766 				reclaimlist[0] = mbufphdrcluster_cache;
767 			if (!objcache_reclaimlist(reclaimlist, 1, ocflags))
768 				m_reclaim();
769 			goto retryonce;
770 		}
771 		return (NULL);
772 	}
773 
774 	m->m_type = type;
775 
776 	mbuftrack(m);
777 
778 	atomic_add_long_nonlocked(&mbtypes[mycpu->gd_cpuid][type], 1);
779 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
780 	return (m);
781 }
782 
783 /*
784  * Allocate chain of requested length.
785  */
786 struct mbuf *
787 m_getc(int len, int how, int type)
788 {
789 	struct mbuf *n, *nfirst = NULL, **ntail = &nfirst;
790 	int nsize;
791 
792 	while (len > 0) {
793 		n = m_getl(len, how, type, 0, &nsize);
794 		if (n == NULL)
795 			goto failed;
796 		n->m_len = 0;
797 		*ntail = n;
798 		ntail = &n->m_next;
799 		len -= nsize;
800 	}
801 	return (nfirst);
802 
803 failed:
804 	m_freem(nfirst);
805 	return (NULL);
806 }
807 
808 /*
809  * Allocate len-worth of mbufs and/or mbuf clusters (whatever fits best)
810  * and return a pointer to the head of the allocated chain. If m0 is
811  * non-null, then we assume that it is a single mbuf or an mbuf chain to
812  * which we want len bytes worth of mbufs and/or clusters attached, and so
813  * if we succeed in allocating it, we will just return a pointer to m0.
814  *
815  * If we happen to fail at any point during the allocation, we will free
816  * up everything we have already allocated and return NULL.
817  *
818  * Deprecated.  Use m_getc() and m_cat() instead.
819  */
820 struct mbuf *
821 m_getm(struct mbuf *m0, int len, int type, int how)
822 {
823 	struct mbuf *nfirst;
824 
825 	nfirst = m_getc(len, how, type);
826 
827 	if (m0 != NULL) {
828 		m_last(m0)->m_next = nfirst;
829 		return (m0);
830 	}
831 
832 	return (nfirst);
833 }
834 
835 /*
836  * Adds a cluster to a normal mbuf, M_EXT is set on success.
837  * Deprecated.  Use m_getcl() instead.
838  */
839 void
840 m_mclget(struct mbuf *m, int how)
841 {
842 	struct mbcluster *mcl;
843 
844 	KKASSERT((m->m_flags & M_EXT) == 0);
845 	mcl = objcache_get(mclmeta_cache, MBTOM(how));
846 	if (mcl != NULL) {
847 		linkcluster(m, mcl);
848 		atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
849 	}
850 }
851 
852 /*
853  * Updates to mbcluster must be MPSAFE.  Only an entity which already has
854  * a reference to the cluster can ref it, so we are in no danger of
855  * racing an add with a subtract.  But the operation must still be atomic
856  * since multiple entities may have a reference on the cluster.
857  *
858  * m_mclfree() is almost the same but it must contend with two entities
859  * freeing the cluster at the same time.  If there is only one reference
860  * count we are the only entity referencing the cluster and no further
861  * locking is required.  Otherwise we must protect against a race to 0
862  * with the serializer.
863  */
864 static void
865 m_mclref(void *arg)
866 {
867 	struct mbcluster *mcl = arg;
868 
869 	atomic_add_int(&mcl->mcl_refs, 1);
870 }
871 
872 /*
873  * When dereferencing a cluster we have to deal with a N->0 race, where
874  * N entities free their references simultaniously.  To do this we use
875  * atomic_fetchadd_int().
876  */
877 static void
878 m_mclfree(void *arg)
879 {
880 	struct mbcluster *mcl = arg;
881 
882 	if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1)
883 		objcache_put(mclmeta_cache, mcl);
884 }
885 
886 /*
887  * Free a single mbuf and any associated external storage.  The successor,
888  * if any, is returned.
889  *
890  * We do need to check non-first mbuf for m_aux, since some of existing
891  * code does not call M_PREPEND properly.
892  * (example: call to bpf_mtap from drivers)
893  */
894 struct mbuf *
895 m_free(struct mbuf *m)
896 {
897 	struct mbuf *n;
898 	struct globaldata *gd = mycpu;
899 
900 	KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m));
901 	atomic_subtract_long_nonlocked(&mbtypes[gd->gd_cpuid][m->m_type], 1);
902 
903 	n = m->m_next;
904 
905 	/*
906 	 * Make sure the mbuf is in constructed state before returning it
907 	 * to the objcache.
908 	 */
909 	m->m_next = NULL;
910 	mbufuntrack(m);
911 #ifdef notyet
912 	KKASSERT(m->m_nextpkt == NULL);
913 #else
914 	if (m->m_nextpkt != NULL) {
915 		static int afewtimes = 10;
916 
917 		if (afewtimes-- > 0) {
918 			kprintf("mfree: m->m_nextpkt != NULL\n");
919 			print_backtrace();
920 		}
921 		m->m_nextpkt = NULL;
922 	}
923 #endif
924 	if (m->m_flags & M_PKTHDR) {
925 		m_tag_delete_chain(m);		/* eliminate XXX JH */
926 	}
927 
928 	m->m_flags &= (M_EXT | M_EXT_CLUSTER | M_CLCACHE | M_PHCACHE);
929 
930 	/*
931 	 * Clean the M_PKTHDR state so we can return the mbuf to its original
932 	 * cache.  This is based on the PHCACHE flag which tells us whether
933 	 * the mbuf was originally allocated out of a packet-header cache
934 	 * or a non-packet-header cache.
935 	 */
936 	if (m->m_flags & M_PHCACHE) {
937 		m->m_flags |= M_PKTHDR;
938 		m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
939 		m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
940 		m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
941 		SLIST_INIT(&m->m_pkthdr.tags);
942 	}
943 
944 	/*
945 	 * Handle remaining flags combinations.  M_CLCACHE tells us whether
946 	 * the mbuf was originally allocated from a cluster cache or not,
947 	 * and is totally separate from whether the mbuf is currently
948 	 * associated with a cluster.
949 	 */
950 	crit_enter();
951 	switch(m->m_flags & (M_CLCACHE | M_EXT | M_EXT_CLUSTER)) {
952 	case M_CLCACHE | M_EXT | M_EXT_CLUSTER:
953 		/*
954 		 * mbuf+cluster cache case.  The mbuf was allocated from the
955 		 * combined mbuf_cluster cache and can be returned to the
956 		 * cache if the cluster hasn't been shared.
957 		 */
958 		if (m_sharecount(m) == 1) {
959 			/*
960 			 * The cluster has not been shared, we can just
961 			 * reset the data pointer and return the mbuf
962 			 * to the cluster cache.  Note that the reference
963 			 * count is left intact (it is still associated with
964 			 * an mbuf).
965 			 */
966 			m->m_data = m->m_ext.ext_buf;
967 			if (m->m_flags & M_PHCACHE)
968 				objcache_put(mbufphdrcluster_cache, m);
969 			else
970 				objcache_put(mbufcluster_cache, m);
971 			atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
972 		} else {
973 			/*
974 			 * Hell.  Someone else has a ref on this cluster,
975 			 * we have to disconnect it which means we can't
976 			 * put it back into the mbufcluster_cache, we
977 			 * have to destroy the mbuf.
978 			 *
979 			 * Other mbuf references to the cluster will typically
980 			 * be M_EXT | M_EXT_CLUSTER but without M_CLCACHE.
981 			 *
982 			 * XXX we could try to connect another cluster to
983 			 * it.
984 			 */
985 			m->m_ext.ext_free(m->m_ext.ext_arg);
986 			m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
987 			if (m->m_flags & M_PHCACHE)
988 				objcache_dtor(mbufphdrcluster_cache, m);
989 			else
990 				objcache_dtor(mbufcluster_cache, m);
991 		}
992 		break;
993 	case M_EXT | M_EXT_CLUSTER:
994 		/*
995 		 * Normal cluster associated with an mbuf that was allocated
996 		 * from the normal mbuf pool rather then the cluster pool.
997 		 * The cluster has to be independantly disassociated from the
998 		 * mbuf.
999 		 */
1000 		if (m_sharecount(m) == 1)
1001 			atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
1002 		/* fall through */
1003 	case M_EXT:
1004 		/*
1005 		 * Normal cluster association case, disconnect the cluster from
1006 		 * the mbuf.  The cluster may or may not be custom.
1007 		 */
1008 		m->m_ext.ext_free(m->m_ext.ext_arg);
1009 		m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1010 		/* fall through */
1011 	case 0:
1012 		/*
1013 		 * return the mbuf to the mbuf cache.
1014 		 */
1015 		if (m->m_flags & M_PHCACHE) {
1016 			m->m_data = m->m_pktdat;
1017 			objcache_put(mbufphdr_cache, m);
1018 		} else {
1019 			m->m_data = m->m_dat;
1020 			objcache_put(mbuf_cache, m);
1021 		}
1022 		atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mbufs, 1);
1023 		break;
1024 	default:
1025 		if (!panicstr)
1026 			panic("bad mbuf flags %p %08x\n", m, m->m_flags);
1027 		break;
1028 	}
1029 	crit_exit();
1030 	return (n);
1031 }
1032 
1033 void
1034 m_freem(struct mbuf *m)
1035 {
1036 	crit_enter();
1037 	while (m)
1038 		m = m_free(m);
1039 	crit_exit();
1040 }
1041 
1042 /*
1043  * mbuf utility routines
1044  */
1045 
1046 /*
1047  * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain and
1048  * copy junk along.
1049  */
1050 struct mbuf *
1051 m_prepend(struct mbuf *m, int len, int how)
1052 {
1053 	struct mbuf *mn;
1054 
1055 	if (m->m_flags & M_PKTHDR)
1056 	    mn = m_gethdr(how, m->m_type);
1057 	else
1058 	    mn = m_get(how, m->m_type);
1059 	if (mn == NULL) {
1060 		m_freem(m);
1061 		return (NULL);
1062 	}
1063 	if (m->m_flags & M_PKTHDR)
1064 		M_MOVE_PKTHDR(mn, m);
1065 	mn->m_next = m;
1066 	m = mn;
1067 	if (len < MHLEN)
1068 		MH_ALIGN(m, len);
1069 	m->m_len = len;
1070 	return (m);
1071 }
1072 
1073 /*
1074  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
1075  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
1076  * The wait parameter is a choice of MB_WAIT/MB_DONTWAIT from caller.
1077  * Note that the copy is read-only, because clusters are not copied,
1078  * only their reference counts are incremented.
1079  */
1080 struct mbuf *
1081 m_copym(const struct mbuf *m, int off0, int len, int wait)
1082 {
1083 	struct mbuf *n, **np;
1084 	int off = off0;
1085 	struct mbuf *top;
1086 	int copyhdr = 0;
1087 
1088 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
1089 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
1090 	if (off == 0 && m->m_flags & M_PKTHDR)
1091 		copyhdr = 1;
1092 	while (off > 0) {
1093 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
1094 		if (off < m->m_len)
1095 			break;
1096 		off -= m->m_len;
1097 		m = m->m_next;
1098 	}
1099 	np = &top;
1100 	top = 0;
1101 	while (len > 0) {
1102 		if (m == NULL) {
1103 			KASSERT(len == M_COPYALL,
1104 			    ("m_copym, length > size of mbuf chain"));
1105 			break;
1106 		}
1107 		/*
1108 		 * Because we are sharing any cluster attachment below,
1109 		 * be sure to get an mbuf that does not have a cluster
1110 		 * associated with it.
1111 		 */
1112 		if (copyhdr)
1113 			n = m_gethdr(wait, m->m_type);
1114 		else
1115 			n = m_get(wait, m->m_type);
1116 		*np = n;
1117 		if (n == NULL)
1118 			goto nospace;
1119 		if (copyhdr) {
1120 			if (!m_dup_pkthdr(n, m, wait))
1121 				goto nospace;
1122 			if (len == M_COPYALL)
1123 				n->m_pkthdr.len -= off0;
1124 			else
1125 				n->m_pkthdr.len = len;
1126 			copyhdr = 0;
1127 		}
1128 		n->m_len = min(len, m->m_len - off);
1129 		if (m->m_flags & M_EXT) {
1130 			KKASSERT((n->m_flags & M_EXT) == 0);
1131 			n->m_data = m->m_data + off;
1132 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1133 			n->m_ext = m->m_ext;
1134 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1135 		} else {
1136 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
1137 			    (unsigned)n->m_len);
1138 		}
1139 		if (len != M_COPYALL)
1140 			len -= n->m_len;
1141 		off = 0;
1142 		m = m->m_next;
1143 		np = &n->m_next;
1144 	}
1145 	if (top == NULL)
1146 		atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1147 	return (top);
1148 nospace:
1149 	m_freem(top);
1150 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1151 	return (NULL);
1152 }
1153 
1154 /*
1155  * Copy an entire packet, including header (which must be present).
1156  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
1157  * Note that the copy is read-only, because clusters are not copied,
1158  * only their reference counts are incremented.
1159  * Preserve alignment of the first mbuf so if the creator has left
1160  * some room at the beginning (e.g. for inserting protocol headers)
1161  * the copies also have the room available.
1162  */
1163 struct mbuf *
1164 m_copypacket(struct mbuf *m, int how)
1165 {
1166 	struct mbuf *top, *n, *o;
1167 
1168 	n = m_gethdr(how, m->m_type);
1169 	top = n;
1170 	if (!n)
1171 		goto nospace;
1172 
1173 	if (!m_dup_pkthdr(n, m, how))
1174 		goto nospace;
1175 	n->m_len = m->m_len;
1176 	if (m->m_flags & M_EXT) {
1177 		KKASSERT((n->m_flags & M_EXT) == 0);
1178 		n->m_data = m->m_data;
1179 		m->m_ext.ext_ref(m->m_ext.ext_arg);
1180 		n->m_ext = m->m_ext;
1181 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1182 	} else {
1183 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
1184 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1185 	}
1186 
1187 	m = m->m_next;
1188 	while (m) {
1189 		o = m_get(how, m->m_type);
1190 		if (!o)
1191 			goto nospace;
1192 
1193 		n->m_next = o;
1194 		n = n->m_next;
1195 
1196 		n->m_len = m->m_len;
1197 		if (m->m_flags & M_EXT) {
1198 			KKASSERT((n->m_flags & M_EXT) == 0);
1199 			n->m_data = m->m_data;
1200 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1201 			n->m_ext = m->m_ext;
1202 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1203 		} else {
1204 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1205 		}
1206 
1207 		m = m->m_next;
1208 	}
1209 	return top;
1210 nospace:
1211 	m_freem(top);
1212 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1213 	return (NULL);
1214 }
1215 
1216 /*
1217  * Copy data from an mbuf chain starting "off" bytes from the beginning,
1218  * continuing for "len" bytes, into the indicated buffer.
1219  */
1220 void
1221 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
1222 {
1223 	unsigned count;
1224 
1225 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
1226 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1227 	while (off > 0) {
1228 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1229 		if (off < m->m_len)
1230 			break;
1231 		off -= m->m_len;
1232 		m = m->m_next;
1233 	}
1234 	while (len > 0) {
1235 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1236 		count = min(m->m_len - off, len);
1237 		bcopy(mtod(m, caddr_t) + off, cp, count);
1238 		len -= count;
1239 		cp += count;
1240 		off = 0;
1241 		m = m->m_next;
1242 	}
1243 }
1244 
1245 /*
1246  * Copy a packet header mbuf chain into a completely new chain, including
1247  * copying any mbuf clusters.  Use this instead of m_copypacket() when
1248  * you need a writable copy of an mbuf chain.
1249  */
1250 struct mbuf *
1251 m_dup(struct mbuf *m, int how)
1252 {
1253 	struct mbuf **p, *top = NULL;
1254 	int remain, moff, nsize;
1255 
1256 	/* Sanity check */
1257 	if (m == NULL)
1258 		return (NULL);
1259 	KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __func__));
1260 
1261 	/* While there's more data, get a new mbuf, tack it on, and fill it */
1262 	remain = m->m_pkthdr.len;
1263 	moff = 0;
1264 	p = &top;
1265 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
1266 		struct mbuf *n;
1267 
1268 		/* Get the next new mbuf */
1269 		n = m_getl(remain, how, m->m_type, top == NULL ? M_PKTHDR : 0,
1270 			   &nsize);
1271 		if (n == NULL)
1272 			goto nospace;
1273 		if (top == NULL)
1274 			if (!m_dup_pkthdr(n, m, how))
1275 				goto nospace0;
1276 
1277 		/* Link it into the new chain */
1278 		*p = n;
1279 		p = &n->m_next;
1280 
1281 		/* Copy data from original mbuf(s) into new mbuf */
1282 		n->m_len = 0;
1283 		while (n->m_len < nsize && m != NULL) {
1284 			int chunk = min(nsize - n->m_len, m->m_len - moff);
1285 
1286 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1287 			moff += chunk;
1288 			n->m_len += chunk;
1289 			remain -= chunk;
1290 			if (moff == m->m_len) {
1291 				m = m->m_next;
1292 				moff = 0;
1293 			}
1294 		}
1295 
1296 		/* Check correct total mbuf length */
1297 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1298 			("%s: bogus m_pkthdr.len", __func__));
1299 	}
1300 	return (top);
1301 
1302 nospace:
1303 	m_freem(top);
1304 nospace0:
1305 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1306 	return (NULL);
1307 }
1308 
1309 /*
1310  * Concatenate mbuf chain n to m.
1311  * Both chains must be of the same type (e.g. MT_DATA).
1312  * Any m_pkthdr is not updated.
1313  */
1314 void
1315 m_cat(struct mbuf *m, struct mbuf *n)
1316 {
1317 	m = m_last(m);
1318 	while (n) {
1319 		if (m->m_flags & M_EXT ||
1320 		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1321 			/* just join the two chains */
1322 			m->m_next = n;
1323 			return;
1324 		}
1325 		/* splat the data from one into the other */
1326 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1327 		    (u_int)n->m_len);
1328 		m->m_len += n->m_len;
1329 		n = m_free(n);
1330 	}
1331 }
1332 
1333 void
1334 m_adj(struct mbuf *mp, int req_len)
1335 {
1336 	int len = req_len;
1337 	struct mbuf *m;
1338 	int count;
1339 
1340 	if ((m = mp) == NULL)
1341 		return;
1342 	if (len >= 0) {
1343 		/*
1344 		 * Trim from head.
1345 		 */
1346 		while (m != NULL && len > 0) {
1347 			if (m->m_len <= len) {
1348 				len -= m->m_len;
1349 				m->m_len = 0;
1350 				m = m->m_next;
1351 			} else {
1352 				m->m_len -= len;
1353 				m->m_data += len;
1354 				len = 0;
1355 			}
1356 		}
1357 		m = mp;
1358 		if (mp->m_flags & M_PKTHDR)
1359 			m->m_pkthdr.len -= (req_len - len);
1360 	} else {
1361 		/*
1362 		 * Trim from tail.  Scan the mbuf chain,
1363 		 * calculating its length and finding the last mbuf.
1364 		 * If the adjustment only affects this mbuf, then just
1365 		 * adjust and return.  Otherwise, rescan and truncate
1366 		 * after the remaining size.
1367 		 */
1368 		len = -len;
1369 		count = 0;
1370 		for (;;) {
1371 			count += m->m_len;
1372 			if (m->m_next == NULL)
1373 				break;
1374 			m = m->m_next;
1375 		}
1376 		if (m->m_len >= len) {
1377 			m->m_len -= len;
1378 			if (mp->m_flags & M_PKTHDR)
1379 				mp->m_pkthdr.len -= len;
1380 			return;
1381 		}
1382 		count -= len;
1383 		if (count < 0)
1384 			count = 0;
1385 		/*
1386 		 * Correct length for chain is "count".
1387 		 * Find the mbuf with last data, adjust its length,
1388 		 * and toss data from remaining mbufs on chain.
1389 		 */
1390 		m = mp;
1391 		if (m->m_flags & M_PKTHDR)
1392 			m->m_pkthdr.len = count;
1393 		for (; m; m = m->m_next) {
1394 			if (m->m_len >= count) {
1395 				m->m_len = count;
1396 				break;
1397 			}
1398 			count -= m->m_len;
1399 		}
1400 		while (m->m_next)
1401 			(m = m->m_next) ->m_len = 0;
1402 	}
1403 }
1404 
1405 /*
1406  * Rearrange an mbuf chain so that len bytes are contiguous
1407  * and in the data area of an mbuf (so that mtod will work for a structure
1408  * of size len).  Returns the resulting mbuf chain on success, frees it and
1409  * returns null on failure.  If there is room, it will add up to
1410  * max_protohdr-len extra bytes to the contiguous region in an attempt to
1411  * avoid being called next time.
1412  */
1413 struct mbuf *
1414 m_pullup(struct mbuf *n, int len)
1415 {
1416 	struct mbuf *m;
1417 	int count;
1418 	int space;
1419 
1420 	/*
1421 	 * If first mbuf has no cluster, and has room for len bytes
1422 	 * without shifting current data, pullup into it,
1423 	 * otherwise allocate a new mbuf to prepend to the chain.
1424 	 */
1425 	if (!(n->m_flags & M_EXT) &&
1426 	    n->m_data + len < &n->m_dat[MLEN] &&
1427 	    n->m_next) {
1428 		if (n->m_len >= len)
1429 			return (n);
1430 		m = n;
1431 		n = n->m_next;
1432 		len -= m->m_len;
1433 	} else {
1434 		if (len > MHLEN)
1435 			goto bad;
1436 		if (n->m_flags & M_PKTHDR)
1437 			m = m_gethdr(MB_DONTWAIT, n->m_type);
1438 		else
1439 			m = m_get(MB_DONTWAIT, n->m_type);
1440 		if (m == NULL)
1441 			goto bad;
1442 		m->m_len = 0;
1443 		if (n->m_flags & M_PKTHDR)
1444 			M_MOVE_PKTHDR(m, n);
1445 	}
1446 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1447 	do {
1448 		count = min(min(max(len, max_protohdr), space), n->m_len);
1449 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1450 		  (unsigned)count);
1451 		len -= count;
1452 		m->m_len += count;
1453 		n->m_len -= count;
1454 		space -= count;
1455 		if (n->m_len)
1456 			n->m_data += count;
1457 		else
1458 			n = m_free(n);
1459 	} while (len > 0 && n);
1460 	if (len > 0) {
1461 		m_free(m);
1462 		goto bad;
1463 	}
1464 	m->m_next = n;
1465 	return (m);
1466 bad:
1467 	m_freem(n);
1468 	atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1469 	return (NULL);
1470 }
1471 
1472 /*
1473  * Partition an mbuf chain in two pieces, returning the tail --
1474  * all but the first len0 bytes.  In case of failure, it returns NULL and
1475  * attempts to restore the chain to its original state.
1476  *
1477  * Note that the resulting mbufs might be read-only, because the new
1478  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1479  * the "breaking point" happens to lie within a cluster mbuf. Use the
1480  * M_WRITABLE() macro to check for this case.
1481  */
1482 struct mbuf *
1483 m_split(struct mbuf *m0, int len0, int wait)
1484 {
1485 	struct mbuf *m, *n;
1486 	unsigned len = len0, remain;
1487 
1488 	for (m = m0; m && len > m->m_len; m = m->m_next)
1489 		len -= m->m_len;
1490 	if (m == NULL)
1491 		return (NULL);
1492 	remain = m->m_len - len;
1493 	if (m0->m_flags & M_PKTHDR) {
1494 		n = m_gethdr(wait, m0->m_type);
1495 		if (n == NULL)
1496 			return (NULL);
1497 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1498 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1499 		m0->m_pkthdr.len = len0;
1500 		if (m->m_flags & M_EXT)
1501 			goto extpacket;
1502 		if (remain > MHLEN) {
1503 			/* m can't be the lead packet */
1504 			MH_ALIGN(n, 0);
1505 			n->m_next = m_split(m, len, wait);
1506 			if (n->m_next == NULL) {
1507 				m_free(n);
1508 				return (NULL);
1509 			} else {
1510 				n->m_len = 0;
1511 				return (n);
1512 			}
1513 		} else
1514 			MH_ALIGN(n, remain);
1515 	} else if (remain == 0) {
1516 		n = m->m_next;
1517 		m->m_next = 0;
1518 		return (n);
1519 	} else {
1520 		n = m_get(wait, m->m_type);
1521 		if (n == NULL)
1522 			return (NULL);
1523 		M_ALIGN(n, remain);
1524 	}
1525 extpacket:
1526 	if (m->m_flags & M_EXT) {
1527 		KKASSERT((n->m_flags & M_EXT) == 0);
1528 		n->m_data = m->m_data + len;
1529 		m->m_ext.ext_ref(m->m_ext.ext_arg);
1530 		n->m_ext = m->m_ext;
1531 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1532 	} else {
1533 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1534 	}
1535 	n->m_len = remain;
1536 	m->m_len = len;
1537 	n->m_next = m->m_next;
1538 	m->m_next = 0;
1539 	return (n);
1540 }
1541 
1542 /*
1543  * Routine to copy from device local memory into mbufs.
1544  * Note: "offset" is ill-defined and always called as 0, so ignore it.
1545  */
1546 struct mbuf *
1547 m_devget(char *buf, int len, int offset, struct ifnet *ifp,
1548     void (*copy)(volatile const void *from, volatile void *to, size_t length))
1549 {
1550 	struct mbuf *m, *mfirst = NULL, **mtail;
1551 	int nsize, flags;
1552 
1553 	if (copy == NULL)
1554 		copy = bcopy;
1555 	mtail = &mfirst;
1556 	flags = M_PKTHDR;
1557 
1558 	while (len > 0) {
1559 		m = m_getl(len, MB_DONTWAIT, MT_DATA, flags, &nsize);
1560 		if (m == NULL) {
1561 			m_freem(mfirst);
1562 			return (NULL);
1563 		}
1564 		m->m_len = min(len, nsize);
1565 
1566 		if (flags & M_PKTHDR) {
1567 			if (len + max_linkhdr <= nsize)
1568 				m->m_data += max_linkhdr;
1569 			m->m_pkthdr.rcvif = ifp;
1570 			m->m_pkthdr.len = len;
1571 			flags = 0;
1572 		}
1573 
1574 		copy(buf, m->m_data, (unsigned)m->m_len);
1575 		buf += m->m_len;
1576 		len -= m->m_len;
1577 		*mtail = m;
1578 		mtail = &m->m_next;
1579 	}
1580 
1581 	return (mfirst);
1582 }
1583 
1584 /*
1585  * Routine to pad mbuf to the specified length 'padto'.
1586  */
1587 int
1588 m_devpad(struct mbuf *m, int padto)
1589 {
1590 	struct mbuf *last = NULL;
1591 	int padlen;
1592 
1593 	if (padto <= m->m_pkthdr.len)
1594 		return 0;
1595 
1596 	padlen = padto - m->m_pkthdr.len;
1597 
1598 	/* if there's only the packet-header and we can pad there, use it. */
1599 	if (m->m_pkthdr.len == m->m_len && M_TRAILINGSPACE(m) >= padlen) {
1600 		last = m;
1601 	} else {
1602 		/*
1603 		 * Walk packet chain to find last mbuf. We will either
1604 		 * pad there, or append a new mbuf and pad it
1605 		 */
1606 		for (last = m; last->m_next != NULL; last = last->m_next)
1607 			; /* EMPTY */
1608 
1609 		/* `last' now points to last in chain. */
1610 		if (M_TRAILINGSPACE(last) < padlen) {
1611 			struct mbuf *n;
1612 
1613 			/* Allocate new empty mbuf, pad it.  Compact later. */
1614 			MGET(n, MB_DONTWAIT, MT_DATA);
1615 			if (n == NULL)
1616 				return ENOBUFS;
1617 			n->m_len = 0;
1618 			last->m_next = n;
1619 			last = n;
1620 		}
1621 	}
1622 	KKASSERT(M_TRAILINGSPACE(last) >= padlen);
1623 	KKASSERT(M_WRITABLE(last));
1624 
1625 	/* Now zero the pad area */
1626 	bzero(mtod(last, char *) + last->m_len, padlen);
1627 	last->m_len += padlen;
1628 	m->m_pkthdr.len += padlen;
1629 	return 0;
1630 }
1631 
1632 /*
1633  * Copy data from a buffer back into the indicated mbuf chain,
1634  * starting "off" bytes from the beginning, extending the mbuf
1635  * chain if necessary.
1636  */
1637 void
1638 m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
1639 {
1640 	int mlen;
1641 	struct mbuf *m = m0, *n;
1642 	int totlen = 0;
1643 
1644 	if (m0 == NULL)
1645 		return;
1646 	while (off > (mlen = m->m_len)) {
1647 		off -= mlen;
1648 		totlen += mlen;
1649 		if (m->m_next == NULL) {
1650 			n = m_getclr(MB_DONTWAIT, m->m_type);
1651 			if (n == NULL)
1652 				goto out;
1653 			n->m_len = min(MLEN, len + off);
1654 			m->m_next = n;
1655 		}
1656 		m = m->m_next;
1657 	}
1658 	while (len > 0) {
1659 		mlen = min (m->m_len - off, len);
1660 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
1661 		cp += mlen;
1662 		len -= mlen;
1663 		mlen += off;
1664 		off = 0;
1665 		totlen += mlen;
1666 		if (len == 0)
1667 			break;
1668 		if (m->m_next == NULL) {
1669 			n = m_get(MB_DONTWAIT, m->m_type);
1670 			if (n == NULL)
1671 				break;
1672 			n->m_len = min(MLEN, len);
1673 			m->m_next = n;
1674 		}
1675 		m = m->m_next;
1676 	}
1677 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1678 		m->m_pkthdr.len = totlen;
1679 }
1680 
1681 void
1682 m_print(const struct mbuf *m)
1683 {
1684 	int len;
1685 	const struct mbuf *m2;
1686 
1687 	len = m->m_pkthdr.len;
1688 	m2 = m;
1689 	while (len) {
1690 		kprintf("%p %*D\n", m2, m2->m_len, (u_char *)m2->m_data, "-");
1691 		len -= m2->m_len;
1692 		m2 = m2->m_next;
1693 	}
1694 	return;
1695 }
1696 
1697 /*
1698  * "Move" mbuf pkthdr from "from" to "to".
1699  * "from" must have M_PKTHDR set, and "to" must be empty.
1700  */
1701 void
1702 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
1703 {
1704 	KASSERT((to->m_flags & M_PKTHDR), ("m_move_pkthdr: not packet header"));
1705 
1706 	to->m_flags |= from->m_flags & M_COPYFLAGS;
1707 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
1708 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
1709 }
1710 
1711 /*
1712  * Duplicate "from"'s mbuf pkthdr in "to".
1713  * "from" must have M_PKTHDR set, and "to" must be empty.
1714  * In particular, this does a deep copy of the packet tags.
1715  */
1716 int
1717 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
1718 {
1719 	KASSERT((to->m_flags & M_PKTHDR), ("m_dup_pkthdr: not packet header"));
1720 
1721 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
1722 		      (to->m_flags & ~M_COPYFLAGS);
1723 	to->m_pkthdr = from->m_pkthdr;
1724 	SLIST_INIT(&to->m_pkthdr.tags);
1725 	return (m_tag_copy_chain(to, from, how));
1726 }
1727 
1728 /*
1729  * Defragment a mbuf chain, returning the shortest possible
1730  * chain of mbufs and clusters.  If allocation fails and
1731  * this cannot be completed, NULL will be returned, but
1732  * the passed in chain will be unchanged.  Upon success,
1733  * the original chain will be freed, and the new chain
1734  * will be returned.
1735  *
1736  * If a non-packet header is passed in, the original
1737  * mbuf (chain?) will be returned unharmed.
1738  *
1739  * m_defrag_nofree doesn't free the passed in mbuf.
1740  */
1741 struct mbuf *
1742 m_defrag(struct mbuf *m0, int how)
1743 {
1744 	struct mbuf *m_new;
1745 
1746 	if ((m_new = m_defrag_nofree(m0, how)) == NULL)
1747 		return (NULL);
1748 	if (m_new != m0)
1749 		m_freem(m0);
1750 	return (m_new);
1751 }
1752 
1753 struct mbuf *
1754 m_defrag_nofree(struct mbuf *m0, int how)
1755 {
1756 	struct mbuf	*m_new = NULL, *m_final = NULL;
1757 	int		progress = 0, length, nsize;
1758 
1759 	if (!(m0->m_flags & M_PKTHDR))
1760 		return (m0);
1761 
1762 #ifdef MBUF_STRESS_TEST
1763 	if (m_defragrandomfailures) {
1764 		int temp = karc4random() & 0xff;
1765 		if (temp == 0xba)
1766 			goto nospace;
1767 	}
1768 #endif
1769 
1770 	m_final = m_getl(m0->m_pkthdr.len, how, MT_DATA, M_PKTHDR, &nsize);
1771 	if (m_final == NULL)
1772 		goto nospace;
1773 	m_final->m_len = 0;	/* in case m0->m_pkthdr.len is zero */
1774 
1775 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1776 		goto nospace;
1777 
1778 	m_new = m_final;
1779 
1780 	while (progress < m0->m_pkthdr.len) {
1781 		length = m0->m_pkthdr.len - progress;
1782 		if (length > MCLBYTES)
1783 			length = MCLBYTES;
1784 
1785 		if (m_new == NULL) {
1786 			m_new = m_getl(length, how, MT_DATA, 0, &nsize);
1787 			if (m_new == NULL)
1788 				goto nospace;
1789 		}
1790 
1791 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1792 		progress += length;
1793 		m_new->m_len = length;
1794 		if (m_new != m_final)
1795 			m_cat(m_final, m_new);
1796 		m_new = NULL;
1797 	}
1798 	if (m0->m_next == NULL)
1799 		m_defraguseless++;
1800 	m_defragpackets++;
1801 	m_defragbytes += m_final->m_pkthdr.len;
1802 	return (m_final);
1803 nospace:
1804 	m_defragfailure++;
1805 	if (m_new)
1806 		m_free(m_new);
1807 	m_freem(m_final);
1808 	return (NULL);
1809 }
1810 
1811 /*
1812  * Move data from uio into mbufs.
1813  */
1814 struct mbuf *
1815 m_uiomove(struct uio *uio)
1816 {
1817 	struct mbuf *m;			/* current working mbuf */
1818 	struct mbuf *head = NULL;	/* result mbuf chain */
1819 	struct mbuf **mp = &head;
1820 	int resid = uio->uio_resid, nsize, flags = M_PKTHDR, error;
1821 
1822 	do {
1823 		m = m_getl(resid, MB_WAIT, MT_DATA, flags, &nsize);
1824 		if (flags) {
1825 			m->m_pkthdr.len = 0;
1826 			/* Leave room for protocol headers. */
1827 			if (resid < MHLEN)
1828 				MH_ALIGN(m, resid);
1829 			flags = 0;
1830 		}
1831 		m->m_len = min(nsize, resid);
1832 		error = uiomove(mtod(m, caddr_t), m->m_len, uio);
1833 		if (error) {
1834 			m_free(m);
1835 			goto failed;
1836 		}
1837 		*mp = m;
1838 		mp = &m->m_next;
1839 		head->m_pkthdr.len += m->m_len;
1840 		resid -= m->m_len;
1841 	} while (resid > 0);
1842 
1843 	return (head);
1844 
1845 failed:
1846 	m_freem(head);
1847 	return (NULL);
1848 }
1849 
1850 struct mbuf *
1851 m_last(struct mbuf *m)
1852 {
1853 	while (m->m_next)
1854 		m = m->m_next;
1855 	return (m);
1856 }
1857 
1858 /*
1859  * Return the number of bytes in an mbuf chain.
1860  * If lastm is not NULL, also return the last mbuf.
1861  */
1862 u_int
1863 m_lengthm(struct mbuf *m, struct mbuf **lastm)
1864 {
1865 	u_int len = 0;
1866 	struct mbuf *prev = m;
1867 
1868 	while (m) {
1869 		len += m->m_len;
1870 		prev = m;
1871 		m = m->m_next;
1872 	}
1873 	if (lastm != NULL)
1874 		*lastm = prev;
1875 	return (len);
1876 }
1877 
1878 /*
1879  * Like m_lengthm(), except also keep track of mbuf usage.
1880  */
1881 u_int
1882 m_countm(struct mbuf *m, struct mbuf **lastm, u_int *pmbcnt)
1883 {
1884 	u_int len = 0, mbcnt = 0;
1885 	struct mbuf *prev = m;
1886 
1887 	while (m) {
1888 		len += m->m_len;
1889 		mbcnt += MSIZE;
1890 		if (m->m_flags & M_EXT)
1891 			mbcnt += m->m_ext.ext_size;
1892 		prev = m;
1893 		m = m->m_next;
1894 	}
1895 	if (lastm != NULL)
1896 		*lastm = prev;
1897 	*pmbcnt = mbcnt;
1898 	return (len);
1899 }
1900