xref: /dragonfly/sys/kern/uipc_mbuf.c (revision a563ca70)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
5  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jeffrey M. Hsu.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1982, 1986, 1988, 1991, 1993
38  *	The Regents of the University of California.  All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  * @(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
69  * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
70  */
71 
72 #include "opt_param.h"
73 #include "opt_mbuf_stress_test.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/file.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/domain.h>
82 #include <sys/objcache.h>
83 #include <sys/tree.h>
84 #include <sys/protosw.h>
85 #include <sys/uio.h>
86 #include <sys/thread.h>
87 #include <sys/globaldata.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/spinlock2.h>
91 
92 #include <machine/atomic.h>
93 #include <machine/limits.h>
94 
95 #include <vm/vm.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 
99 #ifdef INVARIANTS
100 #include <machine/cpu.h>
101 #endif
102 
103 /*
104  * mbuf cluster meta-data
105  */
106 struct mbcluster {
107 	int32_t	mcl_refs;
108 	void	*mcl_data;
109 };
110 
111 /*
112  * mbuf tracking for debugging purposes
113  */
114 #ifdef MBUF_DEBUG
115 
116 static MALLOC_DEFINE(M_MTRACK, "mtrack", "mtrack");
117 
118 struct mbctrack;
119 RB_HEAD(mbuf_rb_tree, mbtrack);
120 RB_PROTOTYPE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *);
121 
122 struct mbtrack {
123 	RB_ENTRY(mbtrack) rb_node;
124 	int trackid;
125 	struct mbuf *m;
126 };
127 
128 static int
129 mbtrack_cmp(struct mbtrack *mb1, struct mbtrack *mb2)
130 {
131 	if (mb1->m < mb2->m)
132 		return(-1);
133 	if (mb1->m > mb2->m)
134 		return(1);
135 	return(0);
136 }
137 
138 RB_GENERATE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *, m);
139 
140 struct mbuf_rb_tree	mbuf_track_root;
141 static struct spinlock	mbuf_track_spin = SPINLOCK_INITIALIZER(mbuf_track_spin);
142 
143 static void
144 mbuftrack(struct mbuf *m)
145 {
146 	struct mbtrack *mbt;
147 
148 	mbt = kmalloc(sizeof(*mbt), M_MTRACK, M_INTWAIT|M_ZERO);
149 	spin_lock(&mbuf_track_spin);
150 	mbt->m = m;
151 	if (mbuf_rb_tree_RB_INSERT(&mbuf_track_root, mbt)) {
152 		spin_unlock(&mbuf_track_spin);
153 		panic("mbuftrack: mbuf %p already being tracked\n", m);
154 	}
155 	spin_unlock(&mbuf_track_spin);
156 }
157 
158 static void
159 mbufuntrack(struct mbuf *m)
160 {
161 	struct mbtrack *mbt;
162 
163 	spin_lock(&mbuf_track_spin);
164 	mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
165 	if (mbt == NULL) {
166 		spin_unlock(&mbuf_track_spin);
167 		panic("mbufuntrack: mbuf %p was not tracked\n", m);
168 	} else {
169 		mbuf_rb_tree_RB_REMOVE(&mbuf_track_root, mbt);
170 		spin_unlock(&mbuf_track_spin);
171 		kfree(mbt, M_MTRACK);
172 	}
173 }
174 
175 void
176 mbuftrackid(struct mbuf *m, int trackid)
177 {
178 	struct mbtrack *mbt;
179 	struct mbuf *n;
180 
181 	spin_lock(&mbuf_track_spin);
182 	while (m) {
183 		n = m->m_nextpkt;
184 		while (m) {
185 			mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
186 			if (mbt == NULL) {
187 				spin_unlock(&mbuf_track_spin);
188 				panic("mbuftrackid: mbuf %p not tracked", m);
189 			}
190 			mbt->trackid = trackid;
191 			m = m->m_next;
192 		}
193 		m = n;
194 	}
195 	spin_unlock(&mbuf_track_spin);
196 }
197 
198 static int
199 mbuftrack_callback(struct mbtrack *mbt, void *arg)
200 {
201 	struct sysctl_req *req = arg;
202 	char buf[64];
203 	int error;
204 
205 	ksnprintf(buf, sizeof(buf), "mbuf %p track %d\n", mbt->m, mbt->trackid);
206 
207 	spin_unlock(&mbuf_track_spin);
208 	error = SYSCTL_OUT(req, buf, strlen(buf));
209 	spin_lock(&mbuf_track_spin);
210 	if (error)
211 		return(-error);
212 	return(0);
213 }
214 
215 static int
216 mbuftrack_show(SYSCTL_HANDLER_ARGS)
217 {
218 	int error;
219 
220 	spin_lock(&mbuf_track_spin);
221 	error = mbuf_rb_tree_RB_SCAN(&mbuf_track_root, NULL,
222 				     mbuftrack_callback, req);
223 	spin_unlock(&mbuf_track_spin);
224 	return (-error);
225 }
226 SYSCTL_PROC(_kern_ipc, OID_AUTO, showmbufs, CTLFLAG_RD|CTLTYPE_STRING,
227 	    0, 0, mbuftrack_show, "A", "Show all in-use mbufs");
228 
229 #else
230 
231 #define mbuftrack(m)
232 #define mbufuntrack(m)
233 
234 #endif
235 
236 static void mbinit(void *);
237 SYSINIT(mbuf, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, mbinit, NULL)
238 
239 static u_long	mbtypes[SMP_MAXCPU][MT_NTYPES];
240 
241 static struct mbstat mbstat[SMP_MAXCPU];
242 int	max_linkhdr;
243 int	max_protohdr;
244 int	max_hdr;
245 int	max_datalen;
246 int	m_defragpackets;
247 int	m_defragbytes;
248 int	m_defraguseless;
249 int	m_defragfailure;
250 #ifdef MBUF_STRESS_TEST
251 int	m_defragrandomfailures;
252 #endif
253 
254 struct objcache *mbuf_cache, *mbufphdr_cache;
255 struct objcache *mclmeta_cache, *mjclmeta_cache;
256 struct objcache *mbufcluster_cache, *mbufphdrcluster_cache;
257 struct objcache *mbufjcluster_cache, *mbufphdrjcluster_cache;
258 
259 int	nmbclusters;
260 int	nmbufs;
261 
262 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
263 	&max_linkhdr, 0, "Max size of a link-level header");
264 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
265 	&max_protohdr, 0, "Max size of a protocol header");
266 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0,
267 	"Max size of link+protocol headers");
268 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
269 	&max_datalen, 0, "Max data payload size without headers");
270 SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
271 	&mbuf_wait, 0, "Time in ticks to sleep after failed mbuf allocations");
272 static int do_mbstat(SYSCTL_HANDLER_ARGS);
273 
274 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLTYPE_STRUCT|CTLFLAG_RD,
275 	0, 0, do_mbstat, "S,mbstat", "mbuf usage statistics");
276 
277 static int do_mbtypes(SYSCTL_HANDLER_ARGS);
278 
279 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtypes, CTLTYPE_ULONG|CTLFLAG_RD,
280 	0, 0, do_mbtypes, "LU", "");
281 
282 static int
283 do_mbstat(SYSCTL_HANDLER_ARGS)
284 {
285 	struct mbstat mbstat_total;
286 	struct mbstat *mbstat_totalp;
287 	int i;
288 
289 	bzero(&mbstat_total, sizeof(mbstat_total));
290 	mbstat_totalp = &mbstat_total;
291 
292 	for (i = 0; i < ncpus; i++)
293 	{
294 		mbstat_total.m_mbufs += mbstat[i].m_mbufs;
295 		mbstat_total.m_clusters += mbstat[i].m_clusters;
296 		mbstat_total.m_spare += mbstat[i].m_spare;
297 		mbstat_total.m_clfree += mbstat[i].m_clfree;
298 		mbstat_total.m_drops += mbstat[i].m_drops;
299 		mbstat_total.m_wait += mbstat[i].m_wait;
300 		mbstat_total.m_drain += mbstat[i].m_drain;
301 		mbstat_total.m_mcfail += mbstat[i].m_mcfail;
302 		mbstat_total.m_mpfail += mbstat[i].m_mpfail;
303 
304 	}
305 	/*
306 	 * The following fields are not cumulative fields so just
307 	 * get their values once.
308 	 */
309 	mbstat_total.m_msize = mbstat[0].m_msize;
310 	mbstat_total.m_mclbytes = mbstat[0].m_mclbytes;
311 	mbstat_total.m_minclsize = mbstat[0].m_minclsize;
312 	mbstat_total.m_mlen = mbstat[0].m_mlen;
313 	mbstat_total.m_mhlen = mbstat[0].m_mhlen;
314 
315 	return(sysctl_handle_opaque(oidp, mbstat_totalp, sizeof(mbstat_total), req));
316 }
317 
318 static int
319 do_mbtypes(SYSCTL_HANDLER_ARGS)
320 {
321 	u_long totals[MT_NTYPES];
322 	int i, j;
323 
324 	for (i = 0; i < MT_NTYPES; i++)
325 		totals[i] = 0;
326 
327 	for (i = 0; i < ncpus; i++)
328 	{
329 		for (j = 0; j < MT_NTYPES; j++)
330 			totals[j] += mbtypes[i][j];
331 	}
332 
333 	return(sysctl_handle_opaque(oidp, totals, sizeof(totals), req));
334 }
335 
336 /*
337  * These are read-only because we do not currently have any code
338  * to adjust the objcache limits after the fact.  The variables
339  * may only be set as boot-time tunables.
340  */
341 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
342 	   &nmbclusters, 0, "Maximum number of mbuf clusters available");
343 SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RD, &nmbufs, 0,
344 	   "Maximum number of mbufs available");
345 
346 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
347 	   &m_defragpackets, 0, "Number of defragment packets");
348 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
349 	   &m_defragbytes, 0, "Number of defragment bytes");
350 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
351 	   &m_defraguseless, 0, "Number of useless defragment mbuf chain operations");
352 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
353 	   &m_defragfailure, 0, "Number of failed defragment mbuf chain operations");
354 #ifdef MBUF_STRESS_TEST
355 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
356 	   &m_defragrandomfailures, 0, "");
357 #endif
358 
359 static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
360 static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl");
361 static MALLOC_DEFINE(M_MJBUFCL, "mbufcl", "mbufcl");
362 static MALLOC_DEFINE(M_MCLMETA, "mclmeta", "mclmeta");
363 static MALLOC_DEFINE(M_MJCLMETA, "mjclmeta", "mjclmeta");
364 
365 static void m_reclaim (void);
366 static void m_mclref(void *arg);
367 static void m_mclfree(void *arg);
368 
369 /*
370  * NOTE: Default NMBUFS must take into account a possible DOS attack
371  *	 using fd passing on unix domain sockets.
372  */
373 #ifndef NMBCLUSTERS
374 #define NMBCLUSTERS	(512 + maxusers * 16)
375 #endif
376 #ifndef NMBUFS
377 #define NMBUFS		(nmbclusters * 2 + maxfiles)
378 #endif
379 
380 /*
381  * Perform sanity checks of tunables declared above.
382  */
383 static void
384 tunable_mbinit(void *dummy)
385 {
386 	/*
387 	 * This has to be done before VM init.
388 	 */
389 	nmbclusters = NMBCLUSTERS;
390 	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
391 	nmbufs = NMBUFS;
392 	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
393 	/* Sanity checks */
394 	if (nmbufs < nmbclusters * 2)
395 		nmbufs = nmbclusters * 2;
396 }
397 SYSINIT(tunable_mbinit, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
398 	tunable_mbinit, NULL);
399 
400 /* "number of clusters of pages" */
401 #define NCL_INIT	1
402 
403 #define NMB_INIT	16
404 
405 /*
406  * The mbuf object cache only guarantees that m_next and m_nextpkt are
407  * NULL and that m_data points to the beginning of the data area.  In
408  * particular, m_len and m_pkthdr.len are uninitialized.  It is the
409  * responsibility of the caller to initialize those fields before use.
410  */
411 
412 static __inline boolean_t
413 mbuf_ctor(void *obj, void *private, int ocflags)
414 {
415 	struct mbuf *m = obj;
416 
417 	m->m_next = NULL;
418 	m->m_nextpkt = NULL;
419 	m->m_data = m->m_dat;
420 	m->m_flags = 0;
421 
422 	return (TRUE);
423 }
424 
425 /*
426  * Initialize the mbuf and the packet header fields.
427  */
428 static boolean_t
429 mbufphdr_ctor(void *obj, void *private, int ocflags)
430 {
431 	struct mbuf *m = obj;
432 
433 	m->m_next = NULL;
434 	m->m_nextpkt = NULL;
435 	m->m_data = m->m_pktdat;
436 	m->m_flags = M_PKTHDR | M_PHCACHE;
437 
438 	m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
439 	SLIST_INIT(&m->m_pkthdr.tags);
440 	m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
441 	m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
442 
443 	return (TRUE);
444 }
445 
446 /*
447  * A mbcluster object consists of 2K (MCLBYTES) cluster and a refcount.
448  */
449 static boolean_t
450 mclmeta_ctor(void *obj, void *private, int ocflags)
451 {
452 	struct mbcluster *cl = obj;
453 	void *buf;
454 
455 	if (ocflags & M_NOWAIT)
456 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_NOWAIT | M_ZERO);
457 	else
458 		buf = kmalloc(MCLBYTES, M_MBUFCL, M_INTWAIT | M_ZERO);
459 	if (buf == NULL)
460 		return (FALSE);
461 	cl->mcl_refs = 0;
462 	cl->mcl_data = buf;
463 	return (TRUE);
464 }
465 
466 static boolean_t
467 mjclmeta_ctor(void *obj, void *private, int ocflags)
468 {
469 	struct mbcluster *cl = obj;
470 	void *buf;
471 
472 	if (ocflags & M_NOWAIT)
473 		buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_NOWAIT | M_ZERO);
474 	else
475 		buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_INTWAIT | M_ZERO);
476 	if (buf == NULL)
477 		return (FALSE);
478 	cl->mcl_refs = 0;
479 	cl->mcl_data = buf;
480 	return (TRUE);
481 }
482 
483 static void
484 mclmeta_dtor(void *obj, void *private)
485 {
486 	struct mbcluster *mcl = obj;
487 
488 	KKASSERT(mcl->mcl_refs == 0);
489 	kfree(mcl->mcl_data, M_MBUFCL);
490 }
491 
492 static void
493 linkjcluster(struct mbuf *m, struct mbcluster *cl, uint size)
494 {
495 	/*
496 	 * Add the cluster to the mbuf.  The caller will detect that the
497 	 * mbuf now has an attached cluster.
498 	 */
499 	m->m_ext.ext_arg = cl;
500 	m->m_ext.ext_buf = cl->mcl_data;
501 	m->m_ext.ext_ref = m_mclref;
502 	m->m_ext.ext_free = m_mclfree;
503 	m->m_ext.ext_size = size;
504 	atomic_add_int(&cl->mcl_refs, 1);
505 
506 	m->m_data = m->m_ext.ext_buf;
507 	m->m_flags |= M_EXT | M_EXT_CLUSTER;
508 }
509 
510 static void
511 linkcluster(struct mbuf *m, struct mbcluster *cl)
512 {
513 	linkjcluster(m, cl, MCLBYTES);
514 }
515 
516 static boolean_t
517 mbufphdrcluster_ctor(void *obj, void *private, int ocflags)
518 {
519 	struct mbuf *m = obj;
520 	struct mbcluster *cl;
521 
522 	mbufphdr_ctor(obj, private, ocflags);
523 	cl = objcache_get(mclmeta_cache, ocflags);
524 	if (cl == NULL) {
525 		++mbstat[mycpu->gd_cpuid].m_drops;
526 		return (FALSE);
527 	}
528 	m->m_flags |= M_CLCACHE;
529 	linkcluster(m, cl);
530 	return (TRUE);
531 }
532 
533 static boolean_t
534 mbufphdrjcluster_ctor(void *obj, void *private, int ocflags)
535 {
536 	struct mbuf *m = obj;
537 	struct mbcluster *cl;
538 
539 	mbufphdr_ctor(obj, private, ocflags);
540 	cl = objcache_get(mjclmeta_cache, ocflags);
541 	if (cl == NULL) {
542 		++mbstat[mycpu->gd_cpuid].m_drops;
543 		return (FALSE);
544 	}
545 	m->m_flags |= M_CLCACHE;
546 	linkjcluster(m, cl, MJUMPAGESIZE);
547 	return (TRUE);
548 }
549 
550 static boolean_t
551 mbufcluster_ctor(void *obj, void *private, int ocflags)
552 {
553 	struct mbuf *m = obj;
554 	struct mbcluster *cl;
555 
556 	mbuf_ctor(obj, private, ocflags);
557 	cl = objcache_get(mclmeta_cache, ocflags);
558 	if (cl == NULL) {
559 		++mbstat[mycpu->gd_cpuid].m_drops;
560 		return (FALSE);
561 	}
562 	m->m_flags |= M_CLCACHE;
563 	linkcluster(m, cl);
564 	return (TRUE);
565 }
566 
567 static boolean_t
568 mbufjcluster_ctor(void *obj, void *private, int ocflags)
569 {
570 	struct mbuf *m = obj;
571 	struct mbcluster *cl;
572 
573 	mbuf_ctor(obj, private, ocflags);
574 	cl = objcache_get(mjclmeta_cache, ocflags);
575 	if (cl == NULL) {
576 		++mbstat[mycpu->gd_cpuid].m_drops;
577 		return (FALSE);
578 	}
579 	m->m_flags |= M_CLCACHE;
580 	linkjcluster(m, cl, MJUMPAGESIZE);
581 	return (TRUE);
582 }
583 
584 /*
585  * Used for both the cluster and cluster PHDR caches.
586  *
587  * The mbuf may have lost its cluster due to sharing, deal
588  * with the situation by checking M_EXT.
589  */
590 static void
591 mbufcluster_dtor(void *obj, void *private)
592 {
593 	struct mbuf *m = obj;
594 	struct mbcluster *mcl;
595 
596 	if (m->m_flags & M_EXT) {
597 		KKASSERT((m->m_flags & M_EXT_CLUSTER) != 0);
598 		mcl = m->m_ext.ext_arg;
599 		KKASSERT(mcl->mcl_refs == 1);
600 		mcl->mcl_refs = 0;
601 		if (m->m_flags & M_EXT && m->m_ext.ext_size != MCLBYTES)
602 			objcache_put(mjclmeta_cache, mcl);
603 		else
604 			objcache_put(mclmeta_cache, mcl);
605 	}
606 }
607 
608 struct objcache_malloc_args mbuf_malloc_args = { MSIZE, M_MBUF };
609 struct objcache_malloc_args mclmeta_malloc_args =
610 	{ sizeof(struct mbcluster), M_MCLMETA };
611 
612 /* ARGSUSED*/
613 static void
614 mbinit(void *dummy)
615 {
616 	int mb_limit, cl_limit;
617 	int limit;
618 	int i;
619 
620 	/*
621 	 * Initialize statistics
622 	 */
623 	for (i = 0; i < ncpus; i++) {
624 		mbstat[i].m_msize = MSIZE;
625 		mbstat[i].m_mclbytes = MCLBYTES;
626 		mbstat[i].m_mjumpagesize = MJUMPAGESIZE;
627 		mbstat[i].m_minclsize = MINCLSIZE;
628 		mbstat[i].m_mlen = MLEN;
629 		mbstat[i].m_mhlen = MHLEN;
630 	}
631 
632 	/*
633 	 * Create objtect caches and save cluster limits, which will
634 	 * be used to adjust backing kmalloc pools' limit later.
635 	 */
636 
637 	mb_limit = cl_limit = 0;
638 
639 	limit = nmbufs;
640 	mbuf_cache = objcache_create("mbuf",
641 	    &limit, 0,
642 	    mbuf_ctor, NULL, NULL,
643 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
644 	mb_limit += limit;
645 
646 	limit = nmbufs;
647 	mbufphdr_cache = objcache_create("mbuf pkt hdr",
648 	    &limit, nmbufs / 4,
649 	    mbufphdr_ctor, NULL, NULL,
650 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
651 	mb_limit += limit;
652 
653 	cl_limit = nmbclusters;
654 	mclmeta_cache = objcache_create("cluster mbuf",
655 	    &cl_limit, 0,
656 	    mclmeta_ctor, mclmeta_dtor, NULL,
657 	    objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
658 
659 	cl_limit = nmbclusters;
660 	mjclmeta_cache = objcache_create("jcluster mbuf",
661 	    &cl_limit, 0,
662 	    mjclmeta_ctor, mclmeta_dtor, NULL,
663 	    objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
664 
665 	limit = nmbclusters;
666 	mbufcluster_cache = objcache_create("mbuf + cluster",
667 	    &limit, 0,
668 	    mbufcluster_ctor, mbufcluster_dtor, NULL,
669 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
670 	mb_limit += limit;
671 
672 	limit = nmbclusters;
673 	mbufphdrcluster_cache = objcache_create("mbuf pkt hdr + cluster",
674 	    &limit, nmbclusters / 16,
675 	    mbufphdrcluster_ctor, mbufcluster_dtor, NULL,
676 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
677 	mb_limit += limit;
678 
679 	limit = nmbclusters;
680 	mbufjcluster_cache = objcache_create("mbuf + jcluster",
681 	    &limit, 0,
682 	    mbufjcluster_ctor, mbufcluster_dtor, NULL,
683 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
684 	mb_limit += limit;
685 
686 	limit = nmbclusters;
687 	mbufphdrjcluster_cache = objcache_create("mbuf pkt hdr + jcluster",
688 	    &limit, nmbclusters / 16,
689 	    mbufphdrjcluster_ctor, mbufcluster_dtor, NULL,
690 	    objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
691 	mb_limit += limit;
692 
693 	/*
694 	 * Adjust backing kmalloc pools' limit
695 	 *
696 	 * NOTE: We raise the limit by another 1/8 to take the effect
697 	 * of loosememuse into account.
698 	 */
699 	cl_limit += cl_limit / 8;
700 	kmalloc_raise_limit(mclmeta_malloc_args.mtype,
701 			    mclmeta_malloc_args.objsize * cl_limit);
702 	kmalloc_raise_limit(M_MBUFCL, MCLBYTES * cl_limit * 3/4 + MJUMPAGESIZE * cl_limit / 4);
703 	/*kmalloc_raise_limit(M_MBUFCL, MCLBYTES * cl_limit);*/
704 
705 	mb_limit += mb_limit / 8;
706 	kmalloc_raise_limit(mbuf_malloc_args.mtype,
707 			    mbuf_malloc_args.objsize * mb_limit);
708 }
709 
710 /*
711  * Return the number of references to this mbuf's data.  0 is returned
712  * if the mbuf is not M_EXT, a reference count is returned if it is
713  * M_EXT | M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT.
714  */
715 int
716 m_sharecount(struct mbuf *m)
717 {
718 	switch (m->m_flags & (M_EXT | M_EXT_CLUSTER)) {
719 	case 0:
720 		return (0);
721 	case M_EXT:
722 		return (99);
723 	case M_EXT | M_EXT_CLUSTER:
724 		return (((struct mbcluster *)m->m_ext.ext_arg)->mcl_refs);
725 	}
726 	/* NOTREACHED */
727 	return (0);		/* to shut up compiler */
728 }
729 
730 /*
731  * change mbuf to new type
732  */
733 void
734 m_chtype(struct mbuf *m, int type)
735 {
736 	struct globaldata *gd = mycpu;
737 
738 	++mbtypes[gd->gd_cpuid][type];
739 	--mbtypes[gd->gd_cpuid][m->m_type];
740 	m->m_type = type;
741 }
742 
743 static void
744 m_reclaim(void)
745 {
746 	struct domain *dp;
747 	struct protosw *pr;
748 
749 	kprintf("Debug: m_reclaim() called\n");
750 
751 	SLIST_FOREACH(dp, &domains, dom_next) {
752 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
753 			if (pr->pr_drain)
754 				(*pr->pr_drain)();
755 		}
756 	}
757 	++mbstat[mycpu->gd_cpuid].m_drain;
758 }
759 
760 static __inline void
761 updatestats(struct mbuf *m, int type)
762 {
763 	struct globaldata *gd = mycpu;
764 
765 	m->m_type = type;
766 	mbuftrack(m);
767 #ifdef MBUF_DEBUG
768 	KASSERT(m->m_next == NULL, ("mbuf %p: bad m_next in get", m));
769 	KASSERT(m->m_nextpkt == NULL, ("mbuf %p: bad m_nextpkt in get", m));
770 #endif
771 
772 	++mbtypes[gd->gd_cpuid][type];
773 	++mbstat[gd->gd_cpuid].m_mbufs;
774 
775 }
776 
777 /*
778  * Allocate an mbuf.
779  */
780 struct mbuf *
781 m_get(int how, int type)
782 {
783 	struct mbuf *m;
784 	int ntries = 0;
785 	int ocf = MBTOM(how);
786 
787 retryonce:
788 
789 	m = objcache_get(mbuf_cache, ocf);
790 
791 	if (m == NULL) {
792 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
793 			struct objcache *reclaimlist[] = {
794 				mbufphdr_cache,
795 				mbufcluster_cache,
796 				mbufphdrcluster_cache,
797 				mbufjcluster_cache,
798 				mbufphdrjcluster_cache
799 			};
800 			const int nreclaims = NELEM(reclaimlist);
801 
802 			if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
803 				m_reclaim();
804 			goto retryonce;
805 		}
806 		++mbstat[mycpu->gd_cpuid].m_drops;
807 		return (NULL);
808 	}
809 #ifdef MBUF_DEBUG
810 	KASSERT(m->m_data == m->m_dat, ("mbuf %p: bad m_data in get", m));
811 #endif
812 	m->m_len = 0;
813 
814 	updatestats(m, type);
815 	return (m);
816 }
817 
818 struct mbuf *
819 m_gethdr(int how, int type)
820 {
821 	struct mbuf *m;
822 	int ocf = MBTOM(how);
823 	int ntries = 0;
824 
825 retryonce:
826 
827 	m = objcache_get(mbufphdr_cache, ocf);
828 
829 	if (m == NULL) {
830 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
831 			struct objcache *reclaimlist[] = {
832 				mbuf_cache,
833 				mbufcluster_cache, mbufphdrcluster_cache,
834 				mbufjcluster_cache, mbufphdrjcluster_cache
835 			};
836 			const int nreclaims = NELEM(reclaimlist);
837 
838 			if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
839 				m_reclaim();
840 			goto retryonce;
841 		}
842 		++mbstat[mycpu->gd_cpuid].m_drops;
843 		return (NULL);
844 	}
845 #ifdef MBUF_DEBUG
846 	KASSERT(m->m_data == m->m_pktdat, ("mbuf %p: bad m_data in get", m));
847 #endif
848 	m->m_len = 0;
849 	m->m_pkthdr.len = 0;
850 
851 	updatestats(m, type);
852 	return (m);
853 }
854 
855 /*
856  * Get a mbuf (not a mbuf cluster!) and zero it.
857  * Deprecated.
858  */
859 struct mbuf *
860 m_getclr(int how, int type)
861 {
862 	struct mbuf *m;
863 
864 	m = m_get(how, type);
865 	if (m != NULL)
866 		bzero(m->m_data, MLEN);
867 	return (m);
868 }
869 
870 struct mbuf *
871 m_getjcl(int how, short type, int flags, size_t size)
872 {
873 	struct mbuf *m = NULL;
874 	struct objcache *mbclc, *mbphclc;
875 	int ocflags = MBTOM(how);
876 	int ntries = 0;
877 
878 	switch (size) {
879 		case MCLBYTES:
880 			mbclc = mbufcluster_cache;
881 			mbphclc = mbufphdrcluster_cache;
882 			break;
883 		default:
884 			mbclc = mbufjcluster_cache;
885 			mbphclc = mbufphdrjcluster_cache;
886 			break;
887 	}
888 
889 retryonce:
890 
891 	if (flags & M_PKTHDR)
892 		m = objcache_get(mbphclc, ocflags);
893 	else
894 		m = objcache_get(mbclc, ocflags);
895 
896 	if (m == NULL) {
897 		if ((how & MB_TRYWAIT) && ntries++ == 0) {
898 			struct objcache *reclaimlist[1];
899 
900 			if (flags & M_PKTHDR)
901 				reclaimlist[0] = mbclc;
902 			else
903 				reclaimlist[0] = mbphclc;
904 			if (!objcache_reclaimlist(reclaimlist, 1, ocflags))
905 				m_reclaim();
906 			goto retryonce;
907 		}
908 		++mbstat[mycpu->gd_cpuid].m_drops;
909 		return (NULL);
910 	}
911 
912 #ifdef MBUF_DEBUG
913 	KASSERT(m->m_data == m->m_ext.ext_buf,
914 		("mbuf %p: bad m_data in get", m));
915 #endif
916 	m->m_type = type;
917 	m->m_len = 0;
918 	m->m_pkthdr.len = 0;	/* just do it unconditonally */
919 
920 	mbuftrack(m);
921 
922 	++mbtypes[mycpu->gd_cpuid][type];
923 	++mbstat[mycpu->gd_cpuid].m_clusters;
924 	return (m);
925 }
926 
927 /*
928  * Returns an mbuf with an attached cluster.
929  * Because many network drivers use this kind of buffers a lot, it is
930  * convenient to keep a small pool of free buffers of this kind.
931  * Even a small size such as 10 gives about 10% improvement in the
932  * forwarding rate in a bridge or router.
933  */
934 struct mbuf *
935 m_getcl(int how, short type, int flags)
936 {
937 	return (m_getjcl(how, type, flags, MCLBYTES));
938 }
939 
940 /*
941  * Allocate chain of requested length.
942  */
943 struct mbuf *
944 m_getc(int len, int how, int type)
945 {
946 	struct mbuf *n, *nfirst = NULL, **ntail = &nfirst;
947 	int nsize;
948 
949 	while (len > 0) {
950 		n = m_getl(len, how, type, 0, &nsize);
951 		if (n == NULL)
952 			goto failed;
953 		n->m_len = 0;
954 		*ntail = n;
955 		ntail = &n->m_next;
956 		len -= nsize;
957 	}
958 	return (nfirst);
959 
960 failed:
961 	m_freem(nfirst);
962 	return (NULL);
963 }
964 
965 /*
966  * Allocate len-worth of mbufs and/or mbuf clusters (whatever fits best)
967  * and return a pointer to the head of the allocated chain. If m0 is
968  * non-null, then we assume that it is a single mbuf or an mbuf chain to
969  * which we want len bytes worth of mbufs and/or clusters attached, and so
970  * if we succeed in allocating it, we will just return a pointer to m0.
971  *
972  * If we happen to fail at any point during the allocation, we will free
973  * up everything we have already allocated and return NULL.
974  *
975  * Deprecated.  Use m_getc() and m_cat() instead.
976  */
977 struct mbuf *
978 m_getm(struct mbuf *m0, int len, int type, int how)
979 {
980 	struct mbuf *nfirst;
981 
982 	nfirst = m_getc(len, how, type);
983 
984 	if (m0 != NULL) {
985 		m_last(m0)->m_next = nfirst;
986 		return (m0);
987 	}
988 
989 	return (nfirst);
990 }
991 
992 /*
993  * Adds a cluster to a normal mbuf, M_EXT is set on success.
994  * Deprecated.  Use m_getcl() instead.
995  */
996 void
997 m_mclget(struct mbuf *m, int how)
998 {
999 	struct mbcluster *mcl;
1000 
1001 	KKASSERT((m->m_flags & M_EXT) == 0);
1002 	mcl = objcache_get(mclmeta_cache, MBTOM(how));
1003 	if (mcl != NULL) {
1004 		linkcluster(m, mcl);
1005 		++mbstat[mycpu->gd_cpuid].m_clusters;
1006 	} else {
1007 		++mbstat[mycpu->gd_cpuid].m_drops;
1008 	}
1009 }
1010 
1011 /*
1012  * Updates to mbcluster must be MPSAFE.  Only an entity which already has
1013  * a reference to the cluster can ref it, so we are in no danger of
1014  * racing an add with a subtract.  But the operation must still be atomic
1015  * since multiple entities may have a reference on the cluster.
1016  *
1017  * m_mclfree() is almost the same but it must contend with two entities
1018  * freeing the cluster at the same time.
1019  */
1020 static void
1021 m_mclref(void *arg)
1022 {
1023 	struct mbcluster *mcl = arg;
1024 
1025 	atomic_add_int(&mcl->mcl_refs, 1);
1026 }
1027 
1028 /*
1029  * When dereferencing a cluster we have to deal with a N->0 race, where
1030  * N entities free their references simultaniously.  To do this we use
1031  * atomic_fetchadd_int().
1032  */
1033 static void
1034 m_mclfree(void *arg)
1035 {
1036 	struct mbcluster *mcl = arg;
1037 
1038 	if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1) {
1039 		--mbstat[mycpu->gd_cpuid].m_clusters;
1040 		objcache_put(mclmeta_cache, mcl);
1041 	}
1042 }
1043 
1044 /*
1045  * Free a single mbuf and any associated external storage.  The successor,
1046  * if any, is returned.
1047  *
1048  * We do need to check non-first mbuf for m_aux, since some of existing
1049  * code does not call M_PREPEND properly.
1050  * (example: call to bpf_mtap from drivers)
1051  */
1052 
1053 #ifdef MBUF_DEBUG
1054 
1055 struct mbuf  *
1056 _m_free(struct mbuf *m, const char *func)
1057 
1058 #else
1059 
1060 struct mbuf *
1061 m_free(struct mbuf *m)
1062 
1063 #endif
1064 {
1065 	struct mbuf *n;
1066 	struct globaldata *gd = mycpu;
1067 
1068 	KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m));
1069 	KASSERT(M_TRAILINGSPACE(m) >= 0, ("overflowed mbuf %p", m));
1070 	--mbtypes[gd->gd_cpuid][m->m_type];
1071 
1072 	n = m->m_next;
1073 
1074 	/*
1075 	 * Make sure the mbuf is in constructed state before returning it
1076 	 * to the objcache.
1077 	 */
1078 	m->m_next = NULL;
1079 	mbufuntrack(m);
1080 #ifdef MBUF_DEBUG
1081 	m->m_hdr.mh_lastfunc = func;
1082 #endif
1083 #ifdef notyet
1084 	KKASSERT(m->m_nextpkt == NULL);
1085 #else
1086 	if (m->m_nextpkt != NULL) {
1087 		static int afewtimes = 10;
1088 
1089 		if (afewtimes-- > 0) {
1090 			kprintf("mfree: m->m_nextpkt != NULL\n");
1091 			print_backtrace(-1);
1092 		}
1093 		m->m_nextpkt = NULL;
1094 	}
1095 #endif
1096 	if (m->m_flags & M_PKTHDR) {
1097 		m_tag_delete_chain(m);		/* eliminate XXX JH */
1098 	}
1099 
1100 	m->m_flags &= (M_EXT | M_EXT_CLUSTER | M_CLCACHE | M_PHCACHE);
1101 
1102 	/*
1103 	 * Clean the M_PKTHDR state so we can return the mbuf to its original
1104 	 * cache.  This is based on the PHCACHE flag which tells us whether
1105 	 * the mbuf was originally allocated out of a packet-header cache
1106 	 * or a non-packet-header cache.
1107 	 */
1108 	if (m->m_flags & M_PHCACHE) {
1109 		m->m_flags |= M_PKTHDR;
1110 		m->m_pkthdr.rcvif = NULL;	/* eliminate XXX JH */
1111 		m->m_pkthdr.csum_flags = 0;	/* eliminate XXX JH */
1112 		m->m_pkthdr.fw_flags = 0;	/* eliminate XXX JH */
1113 		SLIST_INIT(&m->m_pkthdr.tags);
1114 	}
1115 
1116 	/*
1117 	 * Handle remaining flags combinations.  M_CLCACHE tells us whether
1118 	 * the mbuf was originally allocated from a cluster cache or not,
1119 	 * and is totally separate from whether the mbuf is currently
1120 	 * associated with a cluster.
1121 	 */
1122 	switch(m->m_flags & (M_CLCACHE | M_EXT | M_EXT_CLUSTER)) {
1123 	case M_CLCACHE | M_EXT | M_EXT_CLUSTER:
1124 		/*
1125 		 * mbuf+cluster cache case.  The mbuf was allocated from the
1126 		 * combined mbuf_cluster cache and can be returned to the
1127 		 * cache if the cluster hasn't been shared.
1128 		 */
1129 		if (m_sharecount(m) == 1) {
1130 			/*
1131 			 * The cluster has not been shared, we can just
1132 			 * reset the data pointer and return the mbuf
1133 			 * to the cluster cache.  Note that the reference
1134 			 * count is left intact (it is still associated with
1135 			 * an mbuf).
1136 			 */
1137 			m->m_data = m->m_ext.ext_buf;
1138 			if (m->m_flags & M_EXT && m->m_ext.ext_size != MCLBYTES) {
1139 				if (m->m_flags & M_PHCACHE)
1140 					objcache_put(mbufphdrjcluster_cache, m);
1141 				else
1142 					objcache_put(mbufjcluster_cache, m);
1143 			} else {
1144 				if (m->m_flags & M_PHCACHE)
1145 					objcache_put(mbufphdrcluster_cache, m);
1146 				else
1147 					objcache_put(mbufcluster_cache, m);
1148 			}
1149 			--mbstat[mycpu->gd_cpuid].m_clusters;
1150 		} else {
1151 			/*
1152 			 * Hell.  Someone else has a ref on this cluster,
1153 			 * we have to disconnect it which means we can't
1154 			 * put it back into the mbufcluster_cache, we
1155 			 * have to destroy the mbuf.
1156 			 *
1157 			 * Other mbuf references to the cluster will typically
1158 			 * be M_EXT | M_EXT_CLUSTER but without M_CLCACHE.
1159 			 *
1160 			 * XXX we could try to connect another cluster to
1161 			 * it.
1162 			 */
1163 			m->m_ext.ext_free(m->m_ext.ext_arg);
1164 			m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1165 			if (m->m_ext.ext_size == MCLBYTES) {
1166 				if (m->m_flags & M_PHCACHE)
1167 					objcache_dtor(mbufphdrcluster_cache, m);
1168 				else
1169 					objcache_dtor(mbufcluster_cache, m);
1170 			} else {
1171 				if (m->m_flags & M_PHCACHE)
1172 					objcache_dtor(mbufphdrjcluster_cache, m);
1173 				else
1174 					objcache_dtor(mbufjcluster_cache, m);
1175 			}
1176 		}
1177 		break;
1178 	case M_EXT | M_EXT_CLUSTER:
1179 	case M_EXT:
1180 		/*
1181 		 * Normal cluster association case, disconnect the cluster from
1182 		 * the mbuf.  The cluster may or may not be custom.
1183 		 */
1184 		m->m_ext.ext_free(m->m_ext.ext_arg);
1185 		m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1186 		/* fall through */
1187 	case 0:
1188 		/*
1189 		 * return the mbuf to the mbuf cache.
1190 		 */
1191 		if (m->m_flags & M_PHCACHE) {
1192 			m->m_data = m->m_pktdat;
1193 			objcache_put(mbufphdr_cache, m);
1194 		} else {
1195 			m->m_data = m->m_dat;
1196 			objcache_put(mbuf_cache, m);
1197 		}
1198 		--mbstat[mycpu->gd_cpuid].m_mbufs;
1199 		break;
1200 	default:
1201 		if (!panicstr)
1202 			panic("bad mbuf flags %p %08x\n", m, m->m_flags);
1203 		break;
1204 	}
1205 	return (n);
1206 }
1207 
1208 #ifdef MBUF_DEBUG
1209 
1210 void
1211 _m_freem(struct mbuf *m, const char *func)
1212 {
1213 	while (m)
1214 		m = _m_free(m, func);
1215 }
1216 
1217 #else
1218 
1219 void
1220 m_freem(struct mbuf *m)
1221 {
1222 	while (m)
1223 		m = m_free(m);
1224 }
1225 
1226 #endif
1227 
1228 void
1229 m_extadd(struct mbuf *m, caddr_t buf, u_int size,  void (*reff)(void *),
1230     void (*freef)(void *), void *arg)
1231 {
1232 	m->m_ext.ext_arg = arg;
1233 	m->m_ext.ext_buf = buf;
1234 	m->m_ext.ext_ref = reff;
1235 	m->m_ext.ext_free = freef;
1236 	m->m_ext.ext_size = size;
1237 	reff(arg);
1238 	m->m_data = buf;
1239 	m->m_flags |= M_EXT;
1240 }
1241 
1242 /*
1243  * mbuf utility routines
1244  */
1245 
1246 /*
1247  * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain and
1248  * copy junk along.
1249  */
1250 struct mbuf *
1251 m_prepend(struct mbuf *m, int len, int how)
1252 {
1253 	struct mbuf *mn;
1254 
1255 	if (m->m_flags & M_PKTHDR)
1256 	    mn = m_gethdr(how, m->m_type);
1257 	else
1258 	    mn = m_get(how, m->m_type);
1259 	if (mn == NULL) {
1260 		m_freem(m);
1261 		return (NULL);
1262 	}
1263 	if (m->m_flags & M_PKTHDR)
1264 		M_MOVE_PKTHDR(mn, m);
1265 	mn->m_next = m;
1266 	m = mn;
1267 	if (len < MHLEN)
1268 		MH_ALIGN(m, len);
1269 	m->m_len = len;
1270 	return (m);
1271 }
1272 
1273 /*
1274  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
1275  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
1276  * The wait parameter is a choice of MB_WAIT/MB_DONTWAIT from caller.
1277  * Note that the copy is read-only, because clusters are not copied,
1278  * only their reference counts are incremented.
1279  */
1280 struct mbuf *
1281 m_copym(const struct mbuf *m, int off0, int len, int wait)
1282 {
1283 	struct mbuf *n, **np;
1284 	int off = off0;
1285 	struct mbuf *top;
1286 	int copyhdr = 0;
1287 
1288 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
1289 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
1290 	if (off == 0 && (m->m_flags & M_PKTHDR))
1291 		copyhdr = 1;
1292 	while (off > 0) {
1293 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
1294 		if (off < m->m_len)
1295 			break;
1296 		off -= m->m_len;
1297 		m = m->m_next;
1298 	}
1299 	np = &top;
1300 	top = NULL;
1301 	while (len > 0) {
1302 		if (m == NULL) {
1303 			KASSERT(len == M_COPYALL,
1304 			    ("m_copym, length > size of mbuf chain"));
1305 			break;
1306 		}
1307 		/*
1308 		 * Because we are sharing any cluster attachment below,
1309 		 * be sure to get an mbuf that does not have a cluster
1310 		 * associated with it.
1311 		 */
1312 		if (copyhdr)
1313 			n = m_gethdr(wait, m->m_type);
1314 		else
1315 			n = m_get(wait, m->m_type);
1316 		*np = n;
1317 		if (n == NULL)
1318 			goto nospace;
1319 		if (copyhdr) {
1320 			if (!m_dup_pkthdr(n, m, wait))
1321 				goto nospace;
1322 			if (len == M_COPYALL)
1323 				n->m_pkthdr.len -= off0;
1324 			else
1325 				n->m_pkthdr.len = len;
1326 			copyhdr = 0;
1327 		}
1328 		n->m_len = min(len, m->m_len - off);
1329 		if (m->m_flags & M_EXT) {
1330 			KKASSERT((n->m_flags & M_EXT) == 0);
1331 			n->m_data = m->m_data + off;
1332 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1333 			n->m_ext = m->m_ext;
1334 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1335 		} else {
1336 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
1337 			    (unsigned)n->m_len);
1338 		}
1339 		if (len != M_COPYALL)
1340 			len -= n->m_len;
1341 		off = 0;
1342 		m = m->m_next;
1343 		np = &n->m_next;
1344 	}
1345 	if (top == NULL)
1346 		++mbstat[mycpu->gd_cpuid].m_mcfail;
1347 	return (top);
1348 nospace:
1349 	m_freem(top);
1350 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1351 	return (NULL);
1352 }
1353 
1354 /*
1355  * Copy an entire packet, including header (which must be present).
1356  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
1357  * Note that the copy is read-only, because clusters are not copied,
1358  * only their reference counts are incremented.
1359  * Preserve alignment of the first mbuf so if the creator has left
1360  * some room at the beginning (e.g. for inserting protocol headers)
1361  * the copies also have the room available.
1362  */
1363 struct mbuf *
1364 m_copypacket(struct mbuf *m, int how)
1365 {
1366 	struct mbuf *top, *n, *o;
1367 
1368 	n = m_gethdr(how, m->m_type);
1369 	top = n;
1370 	if (!n)
1371 		goto nospace;
1372 
1373 	if (!m_dup_pkthdr(n, m, how))
1374 		goto nospace;
1375 	n->m_len = m->m_len;
1376 	if (m->m_flags & M_EXT) {
1377 		KKASSERT((n->m_flags & M_EXT) == 0);
1378 		n->m_data = m->m_data;
1379 		m->m_ext.ext_ref(m->m_ext.ext_arg);
1380 		n->m_ext = m->m_ext;
1381 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1382 	} else {
1383 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
1384 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1385 	}
1386 
1387 	m = m->m_next;
1388 	while (m) {
1389 		o = m_get(how, m->m_type);
1390 		if (!o)
1391 			goto nospace;
1392 
1393 		n->m_next = o;
1394 		n = n->m_next;
1395 
1396 		n->m_len = m->m_len;
1397 		if (m->m_flags & M_EXT) {
1398 			KKASSERT((n->m_flags & M_EXT) == 0);
1399 			n->m_data = m->m_data;
1400 			m->m_ext.ext_ref(m->m_ext.ext_arg);
1401 			n->m_ext = m->m_ext;
1402 			n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1403 		} else {
1404 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1405 		}
1406 
1407 		m = m->m_next;
1408 	}
1409 	return top;
1410 nospace:
1411 	m_freem(top);
1412 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1413 	return (NULL);
1414 }
1415 
1416 /*
1417  * Copy data from an mbuf chain starting "off" bytes from the beginning,
1418  * continuing for "len" bytes, into the indicated buffer.
1419  */
1420 void
1421 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
1422 {
1423 	unsigned count;
1424 
1425 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
1426 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1427 	while (off > 0) {
1428 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1429 		if (off < m->m_len)
1430 			break;
1431 		off -= m->m_len;
1432 		m = m->m_next;
1433 	}
1434 	while (len > 0) {
1435 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1436 		count = min(m->m_len - off, len);
1437 		bcopy(mtod(m, caddr_t) + off, cp, count);
1438 		len -= count;
1439 		cp += count;
1440 		off = 0;
1441 		m = m->m_next;
1442 	}
1443 }
1444 
1445 /*
1446  * Copy a packet header mbuf chain into a completely new chain, including
1447  * copying any mbuf clusters.  Use this instead of m_copypacket() when
1448  * you need a writable copy of an mbuf chain.
1449  */
1450 struct mbuf *
1451 m_dup(struct mbuf *m, int how)
1452 {
1453 	struct mbuf **p, *top = NULL;
1454 	int remain, moff, nsize;
1455 
1456 	/* Sanity check */
1457 	if (m == NULL)
1458 		return (NULL);
1459 	KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __func__));
1460 
1461 	/* While there's more data, get a new mbuf, tack it on, and fill it */
1462 	remain = m->m_pkthdr.len;
1463 	moff = 0;
1464 	p = &top;
1465 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
1466 		struct mbuf *n;
1467 
1468 		/* Get the next new mbuf */
1469 		n = m_getl(remain, how, m->m_type, top == NULL ? M_PKTHDR : 0,
1470 			   &nsize);
1471 		if (n == NULL)
1472 			goto nospace;
1473 		if (top == NULL)
1474 			if (!m_dup_pkthdr(n, m, how))
1475 				goto nospace0;
1476 
1477 		/* Link it into the new chain */
1478 		*p = n;
1479 		p = &n->m_next;
1480 
1481 		/* Copy data from original mbuf(s) into new mbuf */
1482 		n->m_len = 0;
1483 		while (n->m_len < nsize && m != NULL) {
1484 			int chunk = min(nsize - n->m_len, m->m_len - moff);
1485 
1486 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1487 			moff += chunk;
1488 			n->m_len += chunk;
1489 			remain -= chunk;
1490 			if (moff == m->m_len) {
1491 				m = m->m_next;
1492 				moff = 0;
1493 			}
1494 		}
1495 
1496 		/* Check correct total mbuf length */
1497 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1498 			("%s: bogus m_pkthdr.len", __func__));
1499 	}
1500 	return (top);
1501 
1502 nospace:
1503 	m_freem(top);
1504 nospace0:
1505 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1506 	return (NULL);
1507 }
1508 
1509 /*
1510  * Copy the non-packet mbuf data chain into a new set of mbufs, including
1511  * copying any mbuf clusters.  This is typically used to realign a data
1512  * chain by nfs_realign().
1513  *
1514  * The original chain is left intact.  how should be MB_WAIT or MB_DONTWAIT
1515  * and NULL can be returned if MB_DONTWAIT is passed.
1516  *
1517  * Be careful to use cluster mbufs, a large mbuf chain converted to non
1518  * cluster mbufs can exhaust our supply of mbufs.
1519  */
1520 struct mbuf *
1521 m_dup_data(struct mbuf *m, int how)
1522 {
1523 	struct mbuf **p, *n, *top = NULL;
1524 	int mlen, moff, chunk, gsize, nsize;
1525 
1526 	/*
1527 	 * Degenerate case
1528 	 */
1529 	if (m == NULL)
1530 		return (NULL);
1531 
1532 	/*
1533 	 * Optimize the mbuf allocation but do not get too carried away.
1534 	 */
1535 	if (m->m_next || m->m_len > MLEN)
1536 		if (m->m_flags & M_EXT && m->m_ext.ext_size == MCLBYTES)
1537 			gsize = MCLBYTES;
1538 		else
1539 			gsize = MJUMPAGESIZE;
1540 	else
1541 		gsize = MLEN;
1542 
1543 	/* Chain control */
1544 	p = &top;
1545 	n = NULL;
1546 	nsize = 0;
1547 
1548 	/*
1549 	 * Scan the mbuf chain until nothing is left, the new mbuf chain
1550 	 * will be allocated on the fly as needed.
1551 	 */
1552 	while (m) {
1553 		mlen = m->m_len;
1554 		moff = 0;
1555 
1556 		while (mlen) {
1557 			KKASSERT(m->m_type == MT_DATA);
1558 			if (n == NULL) {
1559 				n = m_getl(gsize, how, MT_DATA, 0, &nsize);
1560 				n->m_len = 0;
1561 				if (n == NULL)
1562 					goto nospace;
1563 				*p = n;
1564 				p = &n->m_next;
1565 			}
1566 			chunk = imin(mlen, nsize);
1567 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1568 			mlen -= chunk;
1569 			moff += chunk;
1570 			n->m_len += chunk;
1571 			nsize -= chunk;
1572 			if (nsize == 0)
1573 				n = NULL;
1574 		}
1575 		m = m->m_next;
1576 	}
1577 	*p = NULL;
1578 	return(top);
1579 nospace:
1580 	*p = NULL;
1581 	m_freem(top);
1582 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1583 	return (NULL);
1584 }
1585 
1586 /*
1587  * Concatenate mbuf chain n to m.
1588  * Both chains must be of the same type (e.g. MT_DATA).
1589  * Any m_pkthdr is not updated.
1590  */
1591 void
1592 m_cat(struct mbuf *m, struct mbuf *n)
1593 {
1594 	m = m_last(m);
1595 	while (n) {
1596 		if (m->m_flags & M_EXT ||
1597 		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1598 			/* just join the two chains */
1599 			m->m_next = n;
1600 			return;
1601 		}
1602 		/* splat the data from one into the other */
1603 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1604 		    (u_int)n->m_len);
1605 		m->m_len += n->m_len;
1606 		n = m_free(n);
1607 	}
1608 }
1609 
1610 void
1611 m_adj(struct mbuf *mp, int req_len)
1612 {
1613 	int len = req_len;
1614 	struct mbuf *m;
1615 	int count;
1616 
1617 	if ((m = mp) == NULL)
1618 		return;
1619 	if (len >= 0) {
1620 		/*
1621 		 * Trim from head.
1622 		 */
1623 		while (m != NULL && len > 0) {
1624 			if (m->m_len <= len) {
1625 				len -= m->m_len;
1626 				m->m_len = 0;
1627 				m = m->m_next;
1628 			} else {
1629 				m->m_len -= len;
1630 				m->m_data += len;
1631 				len = 0;
1632 			}
1633 		}
1634 		m = mp;
1635 		if (mp->m_flags & M_PKTHDR)
1636 			m->m_pkthdr.len -= (req_len - len);
1637 	} else {
1638 		/*
1639 		 * Trim from tail.  Scan the mbuf chain,
1640 		 * calculating its length and finding the last mbuf.
1641 		 * If the adjustment only affects this mbuf, then just
1642 		 * adjust and return.  Otherwise, rescan and truncate
1643 		 * after the remaining size.
1644 		 */
1645 		len = -len;
1646 		count = 0;
1647 		for (;;) {
1648 			count += m->m_len;
1649 			if (m->m_next == NULL)
1650 				break;
1651 			m = m->m_next;
1652 		}
1653 		if (m->m_len >= len) {
1654 			m->m_len -= len;
1655 			if (mp->m_flags & M_PKTHDR)
1656 				mp->m_pkthdr.len -= len;
1657 			return;
1658 		}
1659 		count -= len;
1660 		if (count < 0)
1661 			count = 0;
1662 		/*
1663 		 * Correct length for chain is "count".
1664 		 * Find the mbuf with last data, adjust its length,
1665 		 * and toss data from remaining mbufs on chain.
1666 		 */
1667 		m = mp;
1668 		if (m->m_flags & M_PKTHDR)
1669 			m->m_pkthdr.len = count;
1670 		for (; m; m = m->m_next) {
1671 			if (m->m_len >= count) {
1672 				m->m_len = count;
1673 				break;
1674 			}
1675 			count -= m->m_len;
1676 		}
1677 		while (m->m_next)
1678 			(m = m->m_next) ->m_len = 0;
1679 	}
1680 }
1681 
1682 /*
1683  * Set the m_data pointer of a newly-allocated mbuf
1684  * to place an object of the specified size at the
1685  * end of the mbuf, longword aligned.
1686  */
1687 void
1688 m_align(struct mbuf *m, int len)
1689 {
1690 	int adjust;
1691 
1692 	if (m->m_flags & M_EXT)
1693 		adjust = m->m_ext.ext_size - len;
1694 	else if (m->m_flags & M_PKTHDR)
1695 		adjust = MHLEN - len;
1696 	else
1697 		adjust = MLEN - len;
1698 	m->m_data += adjust &~ (sizeof(long)-1);
1699 }
1700 
1701 /*
1702  * Rearrange an mbuf chain so that len bytes are contiguous
1703  * and in the data area of an mbuf (so that mtod will work for a structure
1704  * of size len).  Returns the resulting mbuf chain on success, frees it and
1705  * returns null on failure.  If there is room, it will add up to
1706  * max_protohdr-len extra bytes to the contiguous region in an attempt to
1707  * avoid being called next time.
1708  */
1709 struct mbuf *
1710 m_pullup(struct mbuf *n, int len)
1711 {
1712 	struct mbuf *m;
1713 	int count;
1714 	int space;
1715 
1716 	/*
1717 	 * If first mbuf has no cluster, and has room for len bytes
1718 	 * without shifting current data, pullup into it,
1719 	 * otherwise allocate a new mbuf to prepend to the chain.
1720 	 */
1721 	if (!(n->m_flags & M_EXT) &&
1722 	    n->m_data + len < &n->m_dat[MLEN] &&
1723 	    n->m_next) {
1724 		if (n->m_len >= len)
1725 			return (n);
1726 		m = n;
1727 		n = n->m_next;
1728 		len -= m->m_len;
1729 	} else {
1730 		if (len > MHLEN)
1731 			goto bad;
1732 		if (n->m_flags & M_PKTHDR)
1733 			m = m_gethdr(MB_DONTWAIT, n->m_type);
1734 		else
1735 			m = m_get(MB_DONTWAIT, n->m_type);
1736 		if (m == NULL)
1737 			goto bad;
1738 		m->m_len = 0;
1739 		if (n->m_flags & M_PKTHDR)
1740 			M_MOVE_PKTHDR(m, n);
1741 	}
1742 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1743 	do {
1744 		count = min(min(max(len, max_protohdr), space), n->m_len);
1745 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1746 		  (unsigned)count);
1747 		len -= count;
1748 		m->m_len += count;
1749 		n->m_len -= count;
1750 		space -= count;
1751 		if (n->m_len)
1752 			n->m_data += count;
1753 		else
1754 			n = m_free(n);
1755 	} while (len > 0 && n);
1756 	if (len > 0) {
1757 		m_free(m);
1758 		goto bad;
1759 	}
1760 	m->m_next = n;
1761 	return (m);
1762 bad:
1763 	m_freem(n);
1764 	++mbstat[mycpu->gd_cpuid].m_mcfail;
1765 	return (NULL);
1766 }
1767 
1768 /*
1769  * Partition an mbuf chain in two pieces, returning the tail --
1770  * all but the first len0 bytes.  In case of failure, it returns NULL and
1771  * attempts to restore the chain to its original state.
1772  *
1773  * Note that the resulting mbufs might be read-only, because the new
1774  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1775  * the "breaking point" happens to lie within a cluster mbuf. Use the
1776  * M_WRITABLE() macro to check for this case.
1777  */
1778 struct mbuf *
1779 m_split(struct mbuf *m0, int len0, int wait)
1780 {
1781 	struct mbuf *m, *n;
1782 	unsigned len = len0, remain;
1783 
1784 	for (m = m0; m && len > m->m_len; m = m->m_next)
1785 		len -= m->m_len;
1786 	if (m == NULL)
1787 		return (NULL);
1788 	remain = m->m_len - len;
1789 	if (m0->m_flags & M_PKTHDR) {
1790 		n = m_gethdr(wait, m0->m_type);
1791 		if (n == NULL)
1792 			return (NULL);
1793 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1794 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1795 		m0->m_pkthdr.len = len0;
1796 		if (m->m_flags & M_EXT)
1797 			goto extpacket;
1798 		if (remain > MHLEN) {
1799 			/* m can't be the lead packet */
1800 			MH_ALIGN(n, 0);
1801 			n->m_next = m_split(m, len, wait);
1802 			if (n->m_next == NULL) {
1803 				m_free(n);
1804 				return (NULL);
1805 			} else {
1806 				n->m_len = 0;
1807 				return (n);
1808 			}
1809 		} else
1810 			MH_ALIGN(n, remain);
1811 	} else if (remain == 0) {
1812 		n = m->m_next;
1813 		m->m_next = 0;
1814 		return (n);
1815 	} else {
1816 		n = m_get(wait, m->m_type);
1817 		if (n == NULL)
1818 			return (NULL);
1819 		M_ALIGN(n, remain);
1820 	}
1821 extpacket:
1822 	if (m->m_flags & M_EXT) {
1823 		KKASSERT((n->m_flags & M_EXT) == 0);
1824 		n->m_data = m->m_data + len;
1825 		m->m_ext.ext_ref(m->m_ext.ext_arg);
1826 		n->m_ext = m->m_ext;
1827 		n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1828 	} else {
1829 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1830 	}
1831 	n->m_len = remain;
1832 	m->m_len = len;
1833 	n->m_next = m->m_next;
1834 	m->m_next = 0;
1835 	return (n);
1836 }
1837 
1838 /*
1839  * Routine to copy from device local memory into mbufs.
1840  * Note: "offset" is ill-defined and always called as 0, so ignore it.
1841  */
1842 struct mbuf *
1843 m_devget(char *buf, int len, int offset, struct ifnet *ifp,
1844     void (*copy)(volatile const void *from, volatile void *to, size_t length))
1845 {
1846 	struct mbuf *m, *mfirst = NULL, **mtail;
1847 	int nsize, flags;
1848 
1849 	if (copy == NULL)
1850 		copy = bcopy;
1851 	mtail = &mfirst;
1852 	flags = M_PKTHDR;
1853 
1854 	while (len > 0) {
1855 		m = m_getl(len, MB_DONTWAIT, MT_DATA, flags, &nsize);
1856 		if (m == NULL) {
1857 			m_freem(mfirst);
1858 			return (NULL);
1859 		}
1860 		m->m_len = min(len, nsize);
1861 
1862 		if (flags & M_PKTHDR) {
1863 			if (len + max_linkhdr <= nsize)
1864 				m->m_data += max_linkhdr;
1865 			m->m_pkthdr.rcvif = ifp;
1866 			m->m_pkthdr.len = len;
1867 			flags = 0;
1868 		}
1869 
1870 		copy(buf, m->m_data, (unsigned)m->m_len);
1871 		buf += m->m_len;
1872 		len -= m->m_len;
1873 		*mtail = m;
1874 		mtail = &m->m_next;
1875 	}
1876 
1877 	return (mfirst);
1878 }
1879 
1880 /*
1881  * Routine to pad mbuf to the specified length 'padto'.
1882  */
1883 int
1884 m_devpad(struct mbuf *m, int padto)
1885 {
1886 	struct mbuf *last = NULL;
1887 	int padlen;
1888 
1889 	if (padto <= m->m_pkthdr.len)
1890 		return 0;
1891 
1892 	padlen = padto - m->m_pkthdr.len;
1893 
1894 	/* if there's only the packet-header and we can pad there, use it. */
1895 	if (m->m_pkthdr.len == m->m_len && M_TRAILINGSPACE(m) >= padlen) {
1896 		last = m;
1897 	} else {
1898 		/*
1899 		 * Walk packet chain to find last mbuf. We will either
1900 		 * pad there, or append a new mbuf and pad it
1901 		 */
1902 		for (last = m; last->m_next != NULL; last = last->m_next)
1903 			; /* EMPTY */
1904 
1905 		/* `last' now points to last in chain. */
1906 		if (M_TRAILINGSPACE(last) < padlen) {
1907 			struct mbuf *n;
1908 
1909 			/* Allocate new empty mbuf, pad it.  Compact later. */
1910 			MGET(n, MB_DONTWAIT, MT_DATA);
1911 			if (n == NULL)
1912 				return ENOBUFS;
1913 			n->m_len = 0;
1914 			last->m_next = n;
1915 			last = n;
1916 		}
1917 	}
1918 	KKASSERT(M_TRAILINGSPACE(last) >= padlen);
1919 	KKASSERT(M_WRITABLE(last));
1920 
1921 	/* Now zero the pad area */
1922 	bzero(mtod(last, char *) + last->m_len, padlen);
1923 	last->m_len += padlen;
1924 	m->m_pkthdr.len += padlen;
1925 	return 0;
1926 }
1927 
1928 /*
1929  * Copy data from a buffer back into the indicated mbuf chain,
1930  * starting "off" bytes from the beginning, extending the mbuf
1931  * chain if necessary.
1932  */
1933 void
1934 m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
1935 {
1936 	int mlen;
1937 	struct mbuf *m = m0, *n;
1938 	int totlen = 0;
1939 
1940 	if (m0 == NULL)
1941 		return;
1942 	while (off > (mlen = m->m_len)) {
1943 		off -= mlen;
1944 		totlen += mlen;
1945 		if (m->m_next == NULL) {
1946 			n = m_getclr(MB_DONTWAIT, m->m_type);
1947 			if (n == NULL)
1948 				goto out;
1949 			n->m_len = min(MLEN, len + off);
1950 			m->m_next = n;
1951 		}
1952 		m = m->m_next;
1953 	}
1954 	while (len > 0) {
1955 		mlen = min (m->m_len - off, len);
1956 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
1957 		cp += mlen;
1958 		len -= mlen;
1959 		mlen += off;
1960 		off = 0;
1961 		totlen += mlen;
1962 		if (len == 0)
1963 			break;
1964 		if (m->m_next == NULL) {
1965 			n = m_get(MB_DONTWAIT, m->m_type);
1966 			if (n == NULL)
1967 				break;
1968 			n->m_len = min(MLEN, len);
1969 			m->m_next = n;
1970 		}
1971 		m = m->m_next;
1972 	}
1973 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1974 		m->m_pkthdr.len = totlen;
1975 }
1976 
1977 /*
1978  * Append the specified data to the indicated mbuf chain,
1979  * Extend the mbuf chain if the new data does not fit in
1980  * existing space.
1981  *
1982  * Return 1 if able to complete the job; otherwise 0.
1983  */
1984 int
1985 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1986 {
1987 	struct mbuf *m, *n;
1988 	int remainder, space;
1989 
1990 	for (m = m0; m->m_next != NULL; m = m->m_next)
1991 		;
1992 	remainder = len;
1993 	space = M_TRAILINGSPACE(m);
1994 	if (space > 0) {
1995 		/*
1996 		 * Copy into available space.
1997 		 */
1998 		if (space > remainder)
1999 			space = remainder;
2000 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
2001 		m->m_len += space;
2002 		cp += space, remainder -= space;
2003 	}
2004 	while (remainder > 0) {
2005 		/*
2006 		 * Allocate a new mbuf; could check space
2007 		 * and allocate a cluster instead.
2008 		 */
2009 		n = m_get(MB_DONTWAIT, m->m_type);
2010 		if (n == NULL)
2011 			break;
2012 		n->m_len = min(MLEN, remainder);
2013 		bcopy(cp, mtod(n, caddr_t), n->m_len);
2014 		cp += n->m_len, remainder -= n->m_len;
2015 		m->m_next = n;
2016 		m = n;
2017 	}
2018 	if (m0->m_flags & M_PKTHDR)
2019 		m0->m_pkthdr.len += len - remainder;
2020 	return (remainder == 0);
2021 }
2022 
2023 /*
2024  * Apply function f to the data in an mbuf chain starting "off" bytes from
2025  * the beginning, continuing for "len" bytes.
2026  */
2027 int
2028 m_apply(struct mbuf *m, int off, int len,
2029     int (*f)(void *, void *, u_int), void *arg)
2030 {
2031 	u_int count;
2032 	int rval;
2033 
2034 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
2035 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
2036 	while (off > 0) {
2037 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
2038 		if (off < m->m_len)
2039 			break;
2040 		off -= m->m_len;
2041 		m = m->m_next;
2042 	}
2043 	while (len > 0) {
2044 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
2045 		count = min(m->m_len - off, len);
2046 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
2047 		if (rval)
2048 			return (rval);
2049 		len -= count;
2050 		off = 0;
2051 		m = m->m_next;
2052 	}
2053 	return (0);
2054 }
2055 
2056 /*
2057  * Return a pointer to mbuf/offset of location in mbuf chain.
2058  */
2059 struct mbuf *
2060 m_getptr(struct mbuf *m, int loc, int *off)
2061 {
2062 
2063 	while (loc >= 0) {
2064 		/* Normal end of search. */
2065 		if (m->m_len > loc) {
2066 			*off = loc;
2067 			return (m);
2068 		} else {
2069 			loc -= m->m_len;
2070 			if (m->m_next == NULL) {
2071 				if (loc == 0) {
2072 					/* Point at the end of valid data. */
2073 					*off = m->m_len;
2074 					return (m);
2075 				}
2076 				return (NULL);
2077 			}
2078 			m = m->m_next;
2079 		}
2080 	}
2081 	return (NULL);
2082 }
2083 
2084 void
2085 m_print(const struct mbuf *m)
2086 {
2087 	int len;
2088 	const struct mbuf *m2;
2089 
2090 	len = m->m_pkthdr.len;
2091 	m2 = m;
2092 	while (len) {
2093 		kprintf("%p %*D\n", m2, m2->m_len, (u_char *)m2->m_data, "-");
2094 		len -= m2->m_len;
2095 		m2 = m2->m_next;
2096 	}
2097 	return;
2098 }
2099 
2100 /*
2101  * "Move" mbuf pkthdr from "from" to "to".
2102  * "from" must have M_PKTHDR set, and "to" must be empty.
2103  */
2104 void
2105 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
2106 {
2107 	KASSERT((to->m_flags & M_PKTHDR), ("m_move_pkthdr: not packet header"));
2108 
2109 	to->m_flags |= from->m_flags & M_COPYFLAGS;
2110 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
2111 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
2112 }
2113 
2114 /*
2115  * Duplicate "from"'s mbuf pkthdr in "to".
2116  * "from" must have M_PKTHDR set, and "to" must be empty.
2117  * In particular, this does a deep copy of the packet tags.
2118  */
2119 int
2120 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
2121 {
2122 	KASSERT((to->m_flags & M_PKTHDR), ("m_dup_pkthdr: not packet header"));
2123 
2124 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
2125 		      (to->m_flags & ~M_COPYFLAGS);
2126 	to->m_pkthdr = from->m_pkthdr;
2127 	SLIST_INIT(&to->m_pkthdr.tags);
2128 	return (m_tag_copy_chain(to, from, how));
2129 }
2130 
2131 /*
2132  * Defragment a mbuf chain, returning the shortest possible
2133  * chain of mbufs and clusters.  If allocation fails and
2134  * this cannot be completed, NULL will be returned, but
2135  * the passed in chain will be unchanged.  Upon success,
2136  * the original chain will be freed, and the new chain
2137  * will be returned.
2138  *
2139  * If a non-packet header is passed in, the original
2140  * mbuf (chain?) will be returned unharmed.
2141  *
2142  * m_defrag_nofree doesn't free the passed in mbuf.
2143  */
2144 struct mbuf *
2145 m_defrag(struct mbuf *m0, int how)
2146 {
2147 	struct mbuf *m_new;
2148 
2149 	if ((m_new = m_defrag_nofree(m0, how)) == NULL)
2150 		return (NULL);
2151 	if (m_new != m0)
2152 		m_freem(m0);
2153 	return (m_new);
2154 }
2155 
2156 struct mbuf *
2157 m_defrag_nofree(struct mbuf *m0, int how)
2158 {
2159 	struct mbuf	*m_new = NULL, *m_final = NULL;
2160 	int		progress = 0, length, nsize;
2161 
2162 	if (!(m0->m_flags & M_PKTHDR))
2163 		return (m0);
2164 
2165 #ifdef MBUF_STRESS_TEST
2166 	if (m_defragrandomfailures) {
2167 		int temp = karc4random() & 0xff;
2168 		if (temp == 0xba)
2169 			goto nospace;
2170 	}
2171 #endif
2172 
2173 	m_final = m_getl(m0->m_pkthdr.len, how, MT_DATA, M_PKTHDR, &nsize);
2174 	if (m_final == NULL)
2175 		goto nospace;
2176 	m_final->m_len = 0;	/* in case m0->m_pkthdr.len is zero */
2177 
2178 	if (m_dup_pkthdr(m_final, m0, how) == 0)
2179 		goto nospace;
2180 
2181 	m_new = m_final;
2182 
2183 	while (progress < m0->m_pkthdr.len) {
2184 		length = m0->m_pkthdr.len - progress;
2185 		if (length > MCLBYTES)
2186 			length = MCLBYTES;
2187 
2188 		if (m_new == NULL) {
2189 			m_new = m_getl(length, how, MT_DATA, 0, &nsize);
2190 			if (m_new == NULL)
2191 				goto nospace;
2192 		}
2193 
2194 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
2195 		progress += length;
2196 		m_new->m_len = length;
2197 		if (m_new != m_final)
2198 			m_cat(m_final, m_new);
2199 		m_new = NULL;
2200 	}
2201 	if (m0->m_next == NULL)
2202 		m_defraguseless++;
2203 	m_defragpackets++;
2204 	m_defragbytes += m_final->m_pkthdr.len;
2205 	return (m_final);
2206 nospace:
2207 	m_defragfailure++;
2208 	if (m_new)
2209 		m_free(m_new);
2210 	m_freem(m_final);
2211 	return (NULL);
2212 }
2213 
2214 /*
2215  * Move data from uio into mbufs.
2216  */
2217 struct mbuf *
2218 m_uiomove(struct uio *uio)
2219 {
2220 	struct mbuf *m;			/* current working mbuf */
2221 	struct mbuf *head = NULL;	/* result mbuf chain */
2222 	struct mbuf **mp = &head;
2223 	int flags = M_PKTHDR;
2224 	int nsize;
2225 	int error;
2226 	int resid;
2227 
2228 	do {
2229 		if (uio->uio_resid > INT_MAX)
2230 			resid = INT_MAX;
2231 		else
2232 			resid = (int)uio->uio_resid;
2233 		m = m_getl(resid, MB_WAIT, MT_DATA, flags, &nsize);
2234 		if (flags) {
2235 			m->m_pkthdr.len = 0;
2236 			/* Leave room for protocol headers. */
2237 			if (resid < MHLEN)
2238 				MH_ALIGN(m, resid);
2239 			flags = 0;
2240 		}
2241 		m->m_len = imin(nsize, resid);
2242 		error = uiomove(mtod(m, caddr_t), m->m_len, uio);
2243 		if (error) {
2244 			m_free(m);
2245 			goto failed;
2246 		}
2247 		*mp = m;
2248 		mp = &m->m_next;
2249 		head->m_pkthdr.len += m->m_len;
2250 	} while (uio->uio_resid > 0);
2251 
2252 	return (head);
2253 
2254 failed:
2255 	m_freem(head);
2256 	return (NULL);
2257 }
2258 
2259 struct mbuf *
2260 m_last(struct mbuf *m)
2261 {
2262 	while (m->m_next)
2263 		m = m->m_next;
2264 	return (m);
2265 }
2266 
2267 /*
2268  * Return the number of bytes in an mbuf chain.
2269  * If lastm is not NULL, also return the last mbuf.
2270  */
2271 u_int
2272 m_lengthm(struct mbuf *m, struct mbuf **lastm)
2273 {
2274 	u_int len = 0;
2275 	struct mbuf *prev = m;
2276 
2277 	while (m) {
2278 		len += m->m_len;
2279 		prev = m;
2280 		m = m->m_next;
2281 	}
2282 	if (lastm != NULL)
2283 		*lastm = prev;
2284 	return (len);
2285 }
2286 
2287 /*
2288  * Like m_lengthm(), except also keep track of mbuf usage.
2289  */
2290 u_int
2291 m_countm(struct mbuf *m, struct mbuf **lastm, u_int *pmbcnt)
2292 {
2293 	u_int len = 0, mbcnt = 0;
2294 	struct mbuf *prev = m;
2295 
2296 	while (m) {
2297 		len += m->m_len;
2298 		mbcnt += MSIZE;
2299 		if (m->m_flags & M_EXT)
2300 			mbcnt += m->m_ext.ext_size;
2301 		prev = m;
2302 		m = m->m_next;
2303 	}
2304 	if (lastm != NULL)
2305 		*lastm = prev;
2306 	*pmbcnt = mbcnt;
2307 	return (len);
2308 }
2309