xref: /dragonfly/sys/kern/uipc_msg.c (revision 0dace59e)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/msgport.h>
38 #include <sys/protosw.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/socketops.h>
42 #include <sys/thread.h>
43 #include <sys/thread2.h>
44 #include <sys/msgport2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <vm/pmap.h>
49 
50 #include <net/netmsg2.h>
51 #include <sys/socketvar2.h>
52 
53 #include <net/netisr.h>
54 #include <net/netmsg.h>
55 
56 static int async_rcvd_drop_race = 0;
57 SYSCTL_INT(_kern_ipc, OID_AUTO, async_rcvd_drop_race, CTLFLAG_RW,
58     &async_rcvd_drop_race, 0, "# of asynchronized pru_rcvd msg drop races");
59 
60 /*
61  * Abort a socket and free it.  Called from soabort() only.  soabort()
62  * got a ref on the socket which we must free on reply.
63  */
64 void
65 so_pru_abort(struct socket *so)
66 {
67 	struct netmsg_pru_abort msg;
68 
69 	netmsg_init(&msg.base, so, &curthread->td_msgport,
70 		    0, so->so_proto->pr_usrreqs->pru_abort);
71 	(void)lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
72 	sofree(msg.base.nm_so);
73 }
74 
75 /*
76  * Abort a socket and free it, asynchronously.  Called from
77  * soaborta() only.  soaborta() got a ref on the socket which we must
78  * free on reply.
79  */
80 void
81 so_pru_aborta(struct socket *so)
82 {
83 	struct netmsg_pru_abort *msg;
84 
85 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
86 	netmsg_init(&msg->base, so, &netisr_afree_free_so_rport,
87 		    0, so->so_proto->pr_usrreqs->pru_abort);
88 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
89 }
90 
91 /*
92  * Abort a socket and free it.  Called from soabort_oncpu() only.
93  * Caller must make sure that the current CPU is inpcb's owner CPU.
94  */
95 void
96 so_pru_abort_oncpu(struct socket *so)
97 {
98 	struct netmsg_pru_abort msg;
99 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
100 
101 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
102 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
103 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
104 	func((netmsg_t)&msg);
105 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
106 	sofree(msg.base.nm_so);
107 }
108 
109 int
110 so_pru_accept(struct socket *so, struct sockaddr **nam)
111 {
112 	struct netmsg_pru_accept msg;
113 
114 	netmsg_init(&msg.base, so, &curthread->td_msgport,
115 	    0, so->so_proto->pr_usrreqs->pru_accept);
116 	msg.nm_nam = nam;
117 
118 	return lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
119 }
120 
121 int
122 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
123 {
124 	struct netmsg_pru_attach msg;
125 	int error;
126 
127 	netmsg_init(&msg.base, so, &curthread->td_msgport,
128 		    0, so->so_proto->pr_usrreqs->pru_attach);
129 	msg.nm_proto = proto;
130 	msg.nm_ai = ai;
131 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
132 	return (error);
133 }
134 
135 int
136 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
137 {
138 	struct netmsg_pru_attach msg;
139 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
140 
141 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
142 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
143 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
144 	msg.nm_proto = proto;
145 	msg.nm_ai = ai;
146 	func((netmsg_t)&msg);
147 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
148 	return(msg.base.lmsg.ms_error);
149 }
150 
151 /*
152  * NOTE: If the target port changes the bind operation will deal with it.
153  */
154 int
155 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
156 {
157 	struct netmsg_pru_bind msg;
158 	int error;
159 
160 	netmsg_init(&msg.base, so, &curthread->td_msgport,
161 		    0, so->so_proto->pr_usrreqs->pru_bind);
162 	msg.nm_nam = nam;
163 	msg.nm_td = td;		/* used only for prison_ip() */
164 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
165 	return (error);
166 }
167 
168 int
169 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
170 {
171 	struct netmsg_pru_connect msg;
172 	int error;
173 
174 	netmsg_init(&msg.base, so, &curthread->td_msgport,
175 		    0, so->so_proto->pr_usrreqs->pru_connect);
176 	msg.nm_nam = nam;
177 	msg.nm_td = td;
178 	msg.nm_m = NULL;
179 	msg.nm_sndflags = 0;
180 	msg.nm_flags = 0;
181 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
182 	return (error);
183 }
184 
185 int
186 so_pru_connect_async(struct socket *so, struct sockaddr *nam, struct thread *td)
187 {
188 	struct netmsg_pru_connect *msg;
189 	int error, flags;
190 
191 	KASSERT(so->so_proto->pr_usrreqs->pru_preconnect != NULL,
192 	    ("async pru_connect is not supported"));
193 
194 	/* NOTE: sockaddr immediately follows netmsg */
195 	msg = kmalloc(sizeof(*msg) + nam->sa_len, M_LWKTMSG, M_NOWAIT);
196 	if (msg == NULL) {
197 		/*
198 		 * Fail to allocate address w/o waiting;
199 		 * fallback to synchronized pru_connect.
200 		 */
201 		return so_pru_connect(so, nam, td);
202 	}
203 
204 	error = so->so_proto->pr_usrreqs->pru_preconnect(so, nam, td);
205 	if (error) {
206 		kfree(msg, M_LWKTMSG);
207 		return error;
208 	}
209 
210 	flags = PRUC_ASYNC;
211 	if (td != NULL && (so->so_proto->pr_flags & PR_ACONN_HOLDTD)) {
212 		lwkt_hold(td);
213 		flags |= PRUC_HELDTD;
214 	}
215 
216 	netmsg_init(&msg->base, so, &netisr_afree_rport, 0,
217 	    so->so_proto->pr_usrreqs->pru_connect);
218 	msg->nm_nam = (struct sockaddr *)(msg + 1);
219 	memcpy(msg->nm_nam, nam, nam->sa_len);
220 	msg->nm_td = td;
221 	msg->nm_m = NULL;
222 	msg->nm_sndflags = 0;
223 	msg->nm_flags = flags;
224 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
225 	return 0;
226 }
227 
228 int
229 so_pru_connect2(struct socket *so1, struct socket *so2)
230 {
231 	struct netmsg_pru_connect2 msg;
232 	int error;
233 
234 	netmsg_init(&msg.base, so1, &curthread->td_msgport,
235 		    0, so1->so_proto->pr_usrreqs->pru_connect2);
236 	msg.nm_so1 = so1;
237 	msg.nm_so2 = so2;
238 	error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
239 	return (error);
240 }
241 
242 /*
243  * WARNING!  Synchronous call from user context.  Control function may do
244  *	     copyin/copyout.
245  */
246 int
247 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
248 		      struct ifnet *ifp)
249 {
250 	struct netmsg_pru_control msg;
251 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
252 
253 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
254 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
255 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
256 	msg.nm_cmd = cmd;
257 	msg.nm_data = data;
258 	msg.nm_ifp = ifp;
259 	msg.nm_td = curthread;
260 	func((netmsg_t)&msg);
261 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
262 	return(msg.base.lmsg.ms_error);
263 }
264 
265 int
266 so_pru_detach(struct socket *so)
267 {
268 	struct netmsg_pru_detach msg;
269 	int error;
270 
271 	netmsg_init(&msg.base, so, &curthread->td_msgport,
272 		    0, so->so_proto->pr_usrreqs->pru_detach);
273 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
274 	return (error);
275 }
276 
277 void
278 so_pru_detach_direct(struct socket *so)
279 {
280 	struct netmsg_pru_detach msg;
281 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_detach;
282 
283 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
284 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
285 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
286 	func((netmsg_t)&msg);
287 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
288 }
289 
290 int
291 so_pru_disconnect(struct socket *so)
292 {
293 	struct netmsg_pru_disconnect msg;
294 	int error;
295 
296 	netmsg_init(&msg.base, so, &curthread->td_msgport,
297 		    0, so->so_proto->pr_usrreqs->pru_disconnect);
298 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
299 	return (error);
300 }
301 
302 void
303 so_pru_disconnect_direct(struct socket *so)
304 {
305 	struct netmsg_pru_disconnect msg;
306 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_disconnect;
307 
308 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
309 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
310 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
311 	func((netmsg_t)&msg);
312 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
313 }
314 
315 int
316 so_pru_listen(struct socket *so, struct thread *td)
317 {
318 	struct netmsg_pru_listen msg;
319 	int error;
320 
321 	netmsg_init(&msg.base, so, &curthread->td_msgport,
322 		    0, so->so_proto->pr_usrreqs->pru_listen);
323 	msg.nm_td = td;		/* used only for prison_ip() XXX JH */
324 	msg.nm_flags = 0;
325 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
326 	return (error);
327 }
328 
329 int
330 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
331 {
332 	struct netmsg_pru_peeraddr msg;
333 	int error;
334 
335 	netmsg_init(&msg.base, so, &curthread->td_msgport,
336 		    0, so->so_proto->pr_usrreqs->pru_peeraddr);
337 	msg.nm_nam = nam;
338 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
339 	return (error);
340 }
341 
342 int
343 so_pru_rcvd(struct socket *so, int flags)
344 {
345 	struct netmsg_pru_rcvd msg;
346 	int error;
347 
348 	netmsg_init(&msg.base, so, &curthread->td_msgport,
349 		    0, so->so_proto->pr_usrreqs->pru_rcvd);
350 	msg.nm_flags = flags;
351 	msg.nm_pru_flags = 0;
352 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
353 	return (error);
354 }
355 
356 void
357 so_pru_rcvd_async(struct socket *so)
358 {
359 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
360 
361 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_RCVD,
362 	    ("async pru_rcvd is not supported"));
363 
364 	/*
365 	 * WARNING!  Spinlock is a bit dodgy, use hacked up sendmsg
366 	 *	     to avoid deadlocking.
367 	 */
368 	spin_lock(&so->so_rcvd_spin);
369 	if ((so->so_rcvd_msg.nm_pru_flags & PRUR_DEAD) == 0) {
370 		if (lmsg->ms_flags & MSGF_DONE) {
371 			lwkt_sendmsg_stage1(so->so_port, lmsg);
372 			spin_unlock(&so->so_rcvd_spin);
373 			lwkt_sendmsg_stage2(so->so_port, lmsg);
374 		} else {
375 			spin_unlock(&so->so_rcvd_spin);
376 		}
377 	} else {
378 		spin_unlock(&so->so_rcvd_spin);
379 	}
380 }
381 
382 int
383 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
384 {
385 	struct netmsg_pru_rcvoob msg;
386 	int error;
387 
388 	netmsg_init(&msg.base, so, &curthread->td_msgport,
389 		    0, so->so_proto->pr_usrreqs->pru_rcvoob);
390 	msg.nm_m = m;
391 	msg.nm_flags = flags;
392 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
393 	return (error);
394 }
395 
396 /*
397  * NOTE: If the target port changes the implied connect will deal with it.
398  */
399 int
400 so_pru_send(struct socket *so, int flags, struct mbuf *m,
401 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
402 {
403 	struct netmsg_pru_send msg;
404 	int error;
405 
406 	netmsg_init(&msg.base, so, &curthread->td_msgport,
407 		    0, so->so_proto->pr_usrreqs->pru_send);
408 	msg.nm_flags = flags;
409 	msg.nm_m = m;
410 	msg.nm_addr = addr;
411 	msg.nm_control = control;
412 	msg.nm_td = td;
413 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
414 	return (error);
415 }
416 
417 void
418 so_pru_sync(struct socket *so)
419 {
420 	struct netmsg_base msg;
421 
422 	netmsg_init(&msg, so, &curthread->td_msgport, 0,
423 	    netmsg_sync_handler);
424 	lwkt_domsg(so->so_port, &msg.lmsg, 0);
425 }
426 
427 void
428 so_pru_send_async(struct socket *so, int flags, struct mbuf *m,
429     struct sockaddr *addr0, struct mbuf *control, struct thread *td)
430 {
431 	struct netmsg_pru_send *msg;
432 	struct sockaddr *addr = NULL;
433 
434 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_SEND,
435 	    ("async pru_send is not supported"));
436 
437 	if (addr0 != NULL) {
438 		addr = kmalloc(addr0->sa_len, M_SONAME, M_NOWAIT);
439 		if (addr == NULL) {
440 			/*
441 			 * Fail to allocate address w/o waiting;
442 			 * fallback to synchronized pru_send.
443 			 */
444 			so_pru_send(so, flags, m, addr0, control, td);
445 			return;
446 		}
447 		memcpy(addr, addr0, addr0->sa_len);
448 		flags |= PRUS_FREEADDR;
449 	}
450 	flags |= PRUS_NOREPLY;
451 
452 	if (td != NULL && (so->so_proto->pr_flags & PR_ASEND_HOLDTD)) {
453 		lwkt_hold(td);
454 		flags |= PRUS_HELDTD;
455 	}
456 
457 	msg = &m->m_hdr.mh_sndmsg;
458 	netmsg_init(&msg->base, so, &netisr_apanic_rport,
459 		    0, so->so_proto->pr_usrreqs->pru_send);
460 	msg->nm_flags = flags;
461 	msg->nm_m = m;
462 	msg->nm_addr = addr;
463 	msg->nm_control = control;
464 	msg->nm_td = td;
465 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
466 }
467 
468 int
469 so_pru_sense(struct socket *so, struct stat *sb)
470 {
471 	struct netmsg_pru_sense msg;
472 	int error;
473 
474 	netmsg_init(&msg.base, so, &curthread->td_msgport,
475 		    0, so->so_proto->pr_usrreqs->pru_sense);
476 	msg.nm_stat = sb;
477 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
478 	return (error);
479 }
480 
481 int
482 so_pru_shutdown(struct socket *so)
483 {
484 	struct netmsg_pru_shutdown msg;
485 	int error;
486 
487 	netmsg_init(&msg.base, so, &curthread->td_msgport,
488 		    0, so->so_proto->pr_usrreqs->pru_shutdown);
489 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
490 	return (error);
491 }
492 
493 int
494 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
495 {
496 	struct netmsg_pru_sockaddr msg;
497 	int error;
498 
499 	netmsg_init(&msg.base, so, &curthread->td_msgport,
500 		    0, so->so_proto->pr_usrreqs->pru_sockaddr);
501 	msg.nm_nam = nam;
502 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
503 	return (error);
504 }
505 
506 int
507 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
508 {
509 	struct netmsg_pr_ctloutput msg;
510 	int error;
511 
512 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
513 	netmsg_init(&msg.base, so, &curthread->td_msgport,
514 		    0, so->so_proto->pr_ctloutput);
515 	msg.nm_sopt = sopt;
516 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
517 	return (error);
518 }
519 
520 /*
521  * Protocol control input, typically via icmp.
522  *
523  * If the protocol pr_ctlport is not NULL we call it to figure out the
524  * protocol port.  If NULL is returned we can just return, otherwise
525  * we issue a netmsg to call pr_ctlinput in the proper thread.
526  *
527  * This must be done synchronously as arg and/or extra may point to
528  * temporary data.
529  */
530 void
531 so_pru_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
532 {
533 	struct netmsg_pru_ctlinput msg;
534 	lwkt_port_t port;
535 
536 	if (pr->pr_ctlport == NULL)
537 		return;
538 	KKASSERT(pr->pr_ctlinput != NULL);
539 	port = pr->pr_ctlport(cmd, arg, extra);
540 	if (port == NULL)
541 		return;
542 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
543 		    0, pr->pr_ctlinput);
544 	msg.nm_cmd = cmd;
545 	msg.nm_arg = arg;
546 	msg.nm_extra = extra;
547 	lwkt_domsg(port, &msg.base.lmsg, 0);
548 }
549 
550 /*
551  * If we convert all the protosw pr_ functions for all the protocols
552  * to take a message directly, this layer can go away.  For the moment
553  * our dispatcher ignores the return value, but since we are handling
554  * the replymsg ourselves we return EASYNC by convention.
555  */
556 
557 /*
558  * Handle a predicate event request.  This function is only called once
559  * when the predicate message queueing request is received.
560  */
561 void
562 netmsg_so_notify(netmsg_t msg)
563 {
564 	struct lwkt_token *tok;
565 	struct signalsockbuf *ssb;
566 
567 	ssb = (msg->notify.nm_etype & NM_REVENT) ?
568 			&msg->base.nm_so->so_rcv :
569 			&msg->base.nm_so->so_snd;
570 
571 	/*
572 	 * Reply immediately if the event has occured, otherwise queue the
573 	 * request.
574 	 *
575 	 * NOTE: Socket can change if this is an accept predicate so cache
576 	 *	 the token.
577 	 */
578 	tok = lwkt_token_pool_lookup(msg->base.nm_so);
579 	lwkt_gettoken(tok);
580 	atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
581 	if (msg->notify.nm_predicate(&msg->notify)) {
582 		if (TAILQ_EMPTY(&ssb->ssb_kq.ki_mlist))
583 			atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
584 		lwkt_reltoken(tok);
585 		lwkt_replymsg(&msg->base.lmsg,
586 			      msg->base.lmsg.ms_error);
587 	} else {
588 		TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list);
589 		/*
590 		 * NOTE:
591 		 * If predict ever blocks, 'tok' will be released, so
592 		 * SSB_MEVENT set beforehand could have been cleared
593 		 * when we reach here.  In case that happens, we set
594 		 * SSB_MEVENT again, after the notify has been queued.
595 		 */
596 		atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
597 		lwkt_reltoken(tok);
598 	}
599 }
600 
601 /*
602  * Called by doio when trying to abort a netmsg_so_notify message.
603  * Unlike the other functions this one is dispatched directly by
604  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
605  *
606  * The original message, lmsg, is under the control of the caller and
607  * will not be destroyed until we return so we can safely reference it
608  * in our synchronous abort request.
609  *
610  * This part of the abort request occurs on the originating cpu which
611  * means we may race the message flags and the original message may
612  * not even have been processed by the target cpu yet.
613  */
614 void
615 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
616 {
617 	struct netmsg_so_notify_abort msg;
618 
619 	if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
620 		const struct netmsg_base *nmsg =
621 		    (const struct netmsg_base *)lmsg;
622 
623 		netmsg_init(&msg.base, nmsg->nm_so, &curthread->td_msgport,
624 			    0, netmsg_so_notify_abort);
625 		msg.nm_notifymsg = (void *)lmsg;
626 		lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
627 	}
628 }
629 
630 /*
631  * Predicate requests can be aborted.  This function is only called once
632  * and will interlock against processing/reply races (since such races
633  * occur on the same thread that controls the port where the abort is
634  * requeued).
635  *
636  * This part of the abort request occurs on the target cpu.  The message
637  * flags must be tested again in case the test that we did on the
638  * originating cpu raced.  Since messages are handled in sequence, the
639  * original message will have already been handled by the loop and either
640  * replied to or queued.
641  *
642  * We really only need to interlock with MSGF_REPLY (a bit that is set on
643  * our cpu when we reply).  Note that MSGF_DONE is not set until the
644  * reply reaches the originating cpu.  Test both bits anyway.
645  */
646 void
647 netmsg_so_notify_abort(netmsg_t msg)
648 {
649 	struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
650 	struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
651 	struct signalsockbuf *ssb;
652 
653 	/*
654 	 * The original notify message is not destroyed until after the
655 	 * abort request is returned, so we can check its state.
656 	 */
657 	lwkt_getpooltoken(nmsg->base.nm_so);
658 	if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
659 		ssb = (nmsg->nm_etype & NM_REVENT) ?
660 				&nmsg->base.nm_so->so_rcv :
661 				&nmsg->base.nm_so->so_snd;
662 		TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list);
663 		lwkt_relpooltoken(nmsg->base.nm_so);
664 		lwkt_replymsg(&nmsg->base.lmsg, EINTR);
665 	} else {
666 		lwkt_relpooltoken(nmsg->base.nm_so);
667 	}
668 
669 	/*
670 	 * Reply to the abort message
671 	 */
672 	lwkt_replymsg(&abrtmsg->base.lmsg, 0);
673 }
674 
675 void
676 so_async_rcvd_reply(struct socket *so)
677 {
678 	/*
679 	 * Spinlock safe, reply runs to degenerate lwkt_null_replyport()
680 	 */
681 	spin_lock(&so->so_rcvd_spin);
682 	lwkt_replymsg(&so->so_rcvd_msg.base.lmsg, 0);
683 	spin_unlock(&so->so_rcvd_spin);
684 }
685 
686 void
687 so_async_rcvd_drop(struct socket *so)
688 {
689 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
690 
691 	/*
692 	 * Spinlock safe, drop runs to degenerate lwkt_spin_dropmsg()
693 	 */
694 	spin_lock(&so->so_rcvd_spin);
695 	so->so_rcvd_msg.nm_pru_flags |= PRUR_DEAD;
696 again:
697 	lwkt_dropmsg(lmsg);
698 	if ((lmsg->ms_flags & MSGF_DONE) == 0) {
699 		++async_rcvd_drop_race;
700 		ssleep(so, &so->so_rcvd_spin, 0, "soadrop", 1);
701 		goto again;
702 	}
703 	spin_unlock(&so->so_rcvd_spin);
704 }
705