xref: /dragonfly/sys/kern/uipc_msg.c (revision 52f9f0d9)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/msgport.h>
38 #include <sys/protosw.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/socketops.h>
42 #include <sys/thread.h>
43 #include <sys/thread2.h>
44 #include <sys/msgport2.h>
45 #include <sys/mbuf.h>
46 #include <vm/pmap.h>
47 #include <net/netmsg2.h>
48 
49 #include <net/netisr.h>
50 #include <net/netmsg.h>
51 
52 /*
53  * Abort a socket and free it.  Called from soabort() only.  soabort()
54  * got a ref on the socket which we must free on reply.
55  */
56 void
57 so_pru_abort(struct socket *so)
58 {
59 	struct netmsg_pru_abort msg;
60 
61 	netmsg_init(&msg.base, so, &curthread->td_msgport,
62 		    0, so->so_proto->pr_usrreqs->pru_abort);
63 	(void)lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
64 	sofree(msg.base.nm_so);
65 }
66 
67 /*
68  * Abort a socket and free it, asynchronously.  Called from
69  * soaborta() only.  soaborta() got a ref on the socket which we must
70  * free on reply.
71  */
72 void
73 so_pru_aborta(struct socket *so)
74 {
75 	struct netmsg_pru_abort *msg;
76 
77 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
78 	netmsg_init(&msg->base, so, &netisr_afree_free_so_rport,
79 		    0, so->so_proto->pr_usrreqs->pru_abort);
80 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
81 }
82 
83 /*
84  * Abort a socket and free it.  Called from soabort_oncpu() only.
85  * Caller must make sure that the current CPU is inpcb's owner CPU.
86  */
87 void
88 so_pru_abort_oncpu(struct socket *so)
89 {
90 	struct netmsg_pru_abort msg;
91 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
92 
93 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
94 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
95 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
96 	func((netmsg_t)&msg);
97 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
98 	sofree(msg.base.nm_so);
99 }
100 
101 int
102 so_pru_accept(struct socket *so, struct sockaddr **nam)
103 {
104 	struct netmsg_pru_accept msg;
105 
106 	netmsg_init(&msg.base, so, &curthread->td_msgport,
107 	    0, so->so_proto->pr_usrreqs->pru_accept);
108 	msg.nm_nam = nam;
109 
110 	return lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
111 }
112 
113 int
114 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
115 {
116 	struct netmsg_pru_attach msg;
117 	int error;
118 
119 	netmsg_init(&msg.base, so, &curthread->td_msgport,
120 		    0, so->so_proto->pr_usrreqs->pru_attach);
121 	msg.nm_proto = proto;
122 	msg.nm_ai = ai;
123 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
124 	return (error);
125 }
126 
127 int
128 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
129 {
130 	struct netmsg_pru_attach msg;
131 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
132 
133 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
134 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
135 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
136 	msg.nm_proto = proto;
137 	msg.nm_ai = ai;
138 	func((netmsg_t)&msg);
139 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
140 	return(msg.base.lmsg.ms_error);
141 }
142 
143 /*
144  * NOTE: If the target port changes the bind operation will deal with it.
145  */
146 int
147 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
148 {
149 	struct netmsg_pru_bind msg;
150 	int error;
151 
152 	netmsg_init(&msg.base, so, &curthread->td_msgport,
153 		    0, so->so_proto->pr_usrreqs->pru_bind);
154 	msg.nm_nam = nam;
155 	msg.nm_td = td;		/* used only for prison_ip() */
156 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
157 	return (error);
158 }
159 
160 int
161 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
162 {
163 	struct netmsg_pru_connect msg;
164 	int error;
165 
166 	netmsg_init(&msg.base, so, &curthread->td_msgport,
167 		    0, so->so_proto->pr_usrreqs->pru_connect);
168 	msg.nm_nam = nam;
169 	msg.nm_td = td;
170 	msg.nm_m = NULL;
171 	msg.nm_flags = 0;
172 	msg.nm_reconnect = 0;
173 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
174 	return (error);
175 }
176 
177 int
178 so_pru_connect2(struct socket *so1, struct socket *so2)
179 {
180 	struct netmsg_pru_connect2 msg;
181 	int error;
182 
183 	netmsg_init(&msg.base, so1, &curthread->td_msgport,
184 		    0, so1->so_proto->pr_usrreqs->pru_connect2);
185 	msg.nm_so1 = so1;
186 	msg.nm_so2 = so2;
187 	error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
188 	return (error);
189 }
190 
191 /*
192  * WARNING!  Synchronous call from user context.  Control function may do
193  *	     copyin/copyout.
194  */
195 int
196 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
197 		      struct ifnet *ifp)
198 {
199 	struct netmsg_pru_control msg;
200 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
201 
202 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
203 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
204 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
205 	msg.nm_cmd = cmd;
206 	msg.nm_data = data;
207 	msg.nm_ifp = ifp;
208 	msg.nm_td = curthread;
209 	func((netmsg_t)&msg);
210 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
211 	return(msg.base.lmsg.ms_error);
212 }
213 
214 int
215 so_pru_detach(struct socket *so)
216 {
217 	struct netmsg_pru_detach msg;
218 	int error;
219 
220 	netmsg_init(&msg.base, so, &curthread->td_msgport,
221 		    0, so->so_proto->pr_usrreqs->pru_detach);
222 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
223 	return (error);
224 }
225 
226 void
227 so_pru_detach_direct(struct socket *so)
228 {
229 	struct netmsg_pru_detach msg;
230 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_detach;
231 
232 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
233 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
234 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
235 	func((netmsg_t)&msg);
236 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
237 }
238 
239 int
240 so_pru_disconnect(struct socket *so)
241 {
242 	struct netmsg_pru_disconnect msg;
243 	int error;
244 
245 	netmsg_init(&msg.base, so, &curthread->td_msgport,
246 		    0, so->so_proto->pr_usrreqs->pru_disconnect);
247 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
248 	return (error);
249 }
250 
251 void
252 so_pru_disconnect_direct(struct socket *so)
253 {
254 	struct netmsg_pru_disconnect msg;
255 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_disconnect;
256 
257 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
258 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
259 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
260 	func((netmsg_t)&msg);
261 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
262 }
263 
264 int
265 so_pru_listen(struct socket *so, struct thread *td)
266 {
267 	struct netmsg_pru_listen msg;
268 	int error;
269 
270 	netmsg_init(&msg.base, so, &curthread->td_msgport,
271 		    0, so->so_proto->pr_usrreqs->pru_listen);
272 	msg.nm_td = td;		/* used only for prison_ip() XXX JH */
273 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
274 	return (error);
275 }
276 
277 int
278 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
279 {
280 	struct netmsg_pru_peeraddr msg;
281 	int error;
282 
283 	netmsg_init(&msg.base, so, &curthread->td_msgport,
284 		    0, so->so_proto->pr_usrreqs->pru_peeraddr);
285 	msg.nm_nam = nam;
286 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
287 	return (error);
288 }
289 
290 int
291 so_pru_rcvd(struct socket *so, int flags)
292 {
293 	struct netmsg_pru_rcvd msg;
294 	int error;
295 
296 	netmsg_init(&msg.base, so, &curthread->td_msgport,
297 		    0, so->so_proto->pr_usrreqs->pru_rcvd);
298 	msg.nm_flags = flags;
299 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
300 	return (error);
301 }
302 
303 int
304 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
305 {
306 	struct netmsg_pru_rcvoob msg;
307 	int error;
308 
309 	netmsg_init(&msg.base, so, &curthread->td_msgport,
310 		    0, so->so_proto->pr_usrreqs->pru_rcvoob);
311 	msg.nm_m = m;
312 	msg.nm_flags = flags;
313 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
314 	return (error);
315 }
316 
317 /*
318  * NOTE: If the target port changes the implied connect will deal with it.
319  */
320 int
321 so_pru_send(struct socket *so, int flags, struct mbuf *m,
322 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
323 {
324 	struct netmsg_pru_send msg;
325 	int error;
326 
327 	netmsg_init(&msg.base, so, &curthread->td_msgport,
328 		    0, so->so_proto->pr_usrreqs->pru_send);
329 	msg.nm_flags = flags;
330 	msg.nm_m = m;
331 	msg.nm_addr = addr;
332 	msg.nm_control = control;
333 	msg.nm_td = td;
334 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
335 	return (error);
336 }
337 
338 void
339 so_pru_sync(struct socket *so)
340 {
341 	struct netmsg_base msg;
342 
343 	netmsg_init(&msg, so, &curthread->td_msgport, 0,
344 	    netmsg_sync_handler);
345 	lwkt_domsg(so->so_port, &msg.lmsg, 0);
346 }
347 
348 void
349 so_pru_send_async(struct socket *so, int flags, struct mbuf *m,
350 	    struct sockaddr *addr0, struct mbuf *control, struct thread *td)
351 {
352 	struct netmsg_pru_send *msg;
353 	struct sockaddr *addr = NULL;
354 
355 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_SEND,
356 	    ("async pru_send is not supported"));
357 
358 	flags |= PRUS_NOREPLY;
359 	if (addr0 != NULL) {
360 		addr = kmalloc(addr0->sa_len, M_SONAME, M_WAITOK);
361 		memcpy(addr, addr0, addr0->sa_len);
362 		flags |= PRUS_FREEADDR;
363 	}
364 
365 	msg = &m->m_hdr.mh_sndmsg;
366 	netmsg_init(&msg->base, so, &netisr_apanic_rport,
367 		    0, so->so_proto->pr_usrreqs->pru_send);
368 	msg->nm_flags = flags;
369 	msg->nm_m = m;
370 	msg->nm_addr = addr;
371 	msg->nm_control = control;
372 	msg->nm_td = td;
373 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
374 }
375 
376 int
377 so_pru_sense(struct socket *so, struct stat *sb)
378 {
379 	struct netmsg_pru_sense msg;
380 	int error;
381 
382 	netmsg_init(&msg.base, so, &curthread->td_msgport,
383 		    0, so->so_proto->pr_usrreqs->pru_sense);
384 	msg.nm_stat = sb;
385 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
386 	return (error);
387 }
388 
389 int
390 so_pru_shutdown(struct socket *so)
391 {
392 	struct netmsg_pru_shutdown msg;
393 	int error;
394 
395 	netmsg_init(&msg.base, so, &curthread->td_msgport,
396 		    0, so->so_proto->pr_usrreqs->pru_shutdown);
397 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
398 	return (error);
399 }
400 
401 int
402 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
403 {
404 	struct netmsg_pru_sockaddr msg;
405 	int error;
406 
407 	netmsg_init(&msg.base, so, &curthread->td_msgport,
408 		    0, so->so_proto->pr_usrreqs->pru_sockaddr);
409 	msg.nm_nam = nam;
410 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
411 	return (error);
412 }
413 
414 int
415 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
416 {
417 	struct netmsg_pr_ctloutput msg;
418 	int error;
419 
420 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
421 	netmsg_init(&msg.base, so, &curthread->td_msgport,
422 		    0, so->so_proto->pr_ctloutput);
423 	msg.nm_sopt = sopt;
424 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
425 	return (error);
426 }
427 
428 /*
429  * Protocol control input, typically via icmp.
430  *
431  * If the protocol pr_ctlport is not NULL we call it to figure out the
432  * protocol port.  If NULL is returned we can just return, otherwise
433  * we issue a netmsg to call pr_ctlinput in the proper thread.
434  *
435  * This must be done synchronously as arg and/or extra may point to
436  * temporary data.
437  */
438 void
439 so_pru_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
440 {
441 	struct netmsg_pru_ctlinput msg;
442 	lwkt_port_t port;
443 
444 	if (pr->pr_ctlport == NULL)
445 		return;
446 	KKASSERT(pr->pr_ctlinput != NULL);
447 	port = pr->pr_ctlport(cmd, arg, extra);
448 	if (port == NULL)
449 		return;
450 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
451 		    0, pr->pr_ctlinput);
452 	msg.nm_cmd = cmd;
453 	msg.nm_arg = arg;
454 	msg.nm_extra = extra;
455 	lwkt_domsg(port, &msg.base.lmsg, 0);
456 }
457 
458 /*
459  * If we convert all the protosw pr_ functions for all the protocols
460  * to take a message directly, this layer can go away.  For the moment
461  * our dispatcher ignores the return value, but since we are handling
462  * the replymsg ourselves we return EASYNC by convention.
463  */
464 
465 /*
466  * Handle a predicate event request.  This function is only called once
467  * when the predicate message queueing request is received.
468  */
469 void
470 netmsg_so_notify(netmsg_t msg)
471 {
472 	struct lwkt_token *tok;
473 	struct signalsockbuf *ssb;
474 
475 	ssb = (msg->notify.nm_etype & NM_REVENT) ?
476 			&msg->base.nm_so->so_rcv :
477 			&msg->base.nm_so->so_snd;
478 
479 	/*
480 	 * Reply immediately if the event has occured, otherwise queue the
481 	 * request.
482 	 *
483 	 * NOTE: Socket can change if this is an accept predicate so cache
484 	 *	 the token.
485 	 */
486 	tok = lwkt_token_pool_lookup(msg->base.nm_so);
487 	lwkt_gettoken(tok);
488 	if (msg->notify.nm_predicate(&msg->notify)) {
489 		lwkt_reltoken(tok);
490 		lwkt_replymsg(&msg->base.lmsg,
491 			      msg->base.lmsg.ms_error);
492 	} else {
493 		TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list);
494 		atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
495 		lwkt_reltoken(tok);
496 	}
497 }
498 
499 /*
500  * Called by doio when trying to abort a netmsg_so_notify message.
501  * Unlike the other functions this one is dispatched directly by
502  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
503  *
504  * The original message, lmsg, is under the control of the caller and
505  * will not be destroyed until we return so we can safely reference it
506  * in our synchronous abort request.
507  *
508  * This part of the abort request occurs on the originating cpu which
509  * means we may race the message flags and the original message may
510  * not even have been processed by the target cpu yet.
511  */
512 void
513 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
514 {
515 	struct netmsg_so_notify_abort msg;
516 
517 	if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
518 		netmsg_init(&msg.base, NULL, &curthread->td_msgport,
519 			    0, netmsg_so_notify_abort);
520 		msg.nm_notifymsg = (void *)lmsg;
521 		lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
522 	}
523 }
524 
525 /*
526  * Predicate requests can be aborted.  This function is only called once
527  * and will interlock against processing/reply races (since such races
528  * occur on the same thread that controls the port where the abort is
529  * requeued).
530  *
531  * This part of the abort request occurs on the target cpu.  The message
532  * flags must be tested again in case the test that we did on the
533  * originating cpu raced.  Since messages are handled in sequence, the
534  * original message will have already been handled by the loop and either
535  * replied to or queued.
536  *
537  * We really only need to interlock with MSGF_REPLY (a bit that is set on
538  * our cpu when we reply).  Note that MSGF_DONE is not set until the
539  * reply reaches the originating cpu.  Test both bits anyway.
540  */
541 void
542 netmsg_so_notify_abort(netmsg_t msg)
543 {
544 	struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
545 	struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
546 	struct signalsockbuf *ssb;
547 
548 	/*
549 	 * The original notify message is not destroyed until after the
550 	 * abort request is returned, so we can check its state.
551 	 */
552 	lwkt_getpooltoken(nmsg->base.nm_so);
553 	if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
554 		ssb = (nmsg->nm_etype & NM_REVENT) ?
555 				&nmsg->base.nm_so->so_rcv :
556 				&nmsg->base.nm_so->so_snd;
557 		TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list);
558 		lwkt_relpooltoken(nmsg->base.nm_so);
559 		lwkt_replymsg(&nmsg->base.lmsg, EINTR);
560 	} else {
561 		lwkt_relpooltoken(nmsg->base.nm_so);
562 	}
563 
564 	/*
565 	 * Reply to the abort message
566 	 */
567 	lwkt_replymsg(&abrtmsg->base.lmsg, 0);
568 }
569