xref: /dragonfly/sys/kern/uipc_msg.c (revision 7ff0fc30)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/msgport.h>
39 #include <sys/protosw.h>
40 #include <sys/socket.h>
41 #include <sys/socketvar.h>
42 #include <sys/socketops.h>
43 #include <sys/thread.h>
44 #include <sys/msgport2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <vm/pmap.h>
49 
50 #include <net/netmsg2.h>
51 #include <net/netisr2.h>
52 #include <sys/socketvar2.h>
53 
54 #include <net/netisr.h>
55 #include <net/netmsg.h>
56 
57 static int async_rcvd_drop_race = 0;
58 SYSCTL_INT(_kern_ipc, OID_AUTO, async_rcvd_drop_race, CTLFLAG_RW,
59     &async_rcvd_drop_race, 0, "# of asynchronized pru_rcvd msg drop races");
60 
61 /*
62  * Abort a socket and free it, asynchronously.  Called from
63  * soabort_async() only.  soabort_async() got a ref on the
64  * socket which we must free on reply.
65  */
66 void
67 so_pru_abort_async(struct socket *so)
68 {
69 	struct netmsg_pru_abort *msg;
70 
71 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
72 	netmsg_init(&msg->base, so, &netisr_afree_free_so_rport,
73 		    0, so->so_proto->pr_usrreqs->pru_abort);
74 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
75 }
76 
77 /*
78  * Abort a socket and free it.  Called from soabort_direct() only.
79  * Caller must make sure that the current CPU is inpcb's owner CPU.
80  * soabort_direct() got a ref on the socket which we must free.
81  */
82 void
83 so_pru_abort_direct(struct socket *so)
84 {
85 	struct netmsg_pru_abort msg;
86 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
87 
88 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
89 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
90 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
91 	func((netmsg_t)&msg);
92 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
93 	sofree(msg.base.nm_so);
94 }
95 
96 int
97 so_pru_accept(struct socket *so, struct sockaddr **nam)
98 {
99 	struct netmsg_pru_accept msg;
100 
101 	netmsg_init(&msg.base, so, &curthread->td_msgport,
102 	    0, so->so_proto->pr_usrreqs->pru_accept);
103 	msg.nm_nam = nam;
104 
105 	return lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
106 }
107 
108 int
109 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
110 {
111 	struct netmsg_pru_attach msg;
112 	int error;
113 
114 	netmsg_init(&msg.base, so, &curthread->td_msgport,
115 		    0, so->so_proto->pr_usrreqs->pru_attach);
116 	msg.nm_proto = proto;
117 	msg.nm_ai = ai;
118 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
119 	return (error);
120 }
121 
122 int
123 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
124 {
125 	struct netmsg_pru_attach msg;
126 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
127 
128 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
129 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
130 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
131 	msg.nm_proto = proto;
132 	msg.nm_ai = ai;
133 	func((netmsg_t)&msg);
134 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
135 	return(msg.base.lmsg.ms_error);
136 }
137 
138 int
139 so_pru_attach_fast(struct socket *so, int proto, struct pru_attach_info *ai)
140 {
141 	struct netmsg_pru_attach *msg;
142 	int error;
143 
144 	error = so->so_proto->pr_usrreqs->pru_preattach(so, proto, ai);
145 	if (error)
146 		return error;
147 
148 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_NULLOK);
149 	if (msg == NULL) {
150 		/*
151 		 * Fail to allocate message; fallback to
152 		 * synchronized pru_attach.
153 		 */
154 		return so_pru_attach(so, proto, NULL /* postattach */);
155 	}
156 
157 	netmsg_init(&msg->base, so, &netisr_afree_rport, 0,
158 	    so->so_proto->pr_usrreqs->pru_attach);
159 	msg->nm_proto = proto;
160 	msg->nm_ai = NULL; /* postattach */
161 	if (so->so_port == netisr_curport())
162 		lwkt_sendmsg_oncpu(so->so_port, &msg->base.lmsg);
163 	else
164 		lwkt_sendmsg(so->so_port, &msg->base.lmsg);
165 
166 	return 0;
167 }
168 
169 /*
170  * NOTE: If the target port changes the bind operation will deal with it.
171  */
172 int
173 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
174 {
175 	struct netmsg_pru_bind msg;
176 	int error;
177 
178 	netmsg_init(&msg.base, so, &curthread->td_msgport,
179 		    0, so->so_proto->pr_usrreqs->pru_bind);
180 	msg.nm_nam = nam;
181 	msg.nm_td = td;		/* used only for prison_ip() */
182 	msg.nm_flags = 0;
183 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
184 	return (error);
185 }
186 
187 int
188 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
189 {
190 	struct netmsg_pru_connect msg;
191 	int error;
192 
193 	netmsg_init(&msg.base, so, &curthread->td_msgport,
194 		    0, so->so_proto->pr_usrreqs->pru_connect);
195 	msg.nm_nam = nam;
196 	msg.nm_td = td;
197 	msg.nm_m = NULL;
198 	msg.nm_sndflags = 0;
199 	msg.nm_flags = 0;
200 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
201 	return (error);
202 }
203 
204 int
205 so_pru_connect_async(struct socket *so, struct sockaddr *nam, struct thread *td)
206 {
207 	struct netmsg_pru_connect *msg;
208 	int error, flags;
209 
210 	KASSERT(so->so_proto->pr_usrreqs->pru_preconnect != NULL,
211 	    ("async pru_connect is not supported"));
212 
213 	/* NOTE: sockaddr immediately follows netmsg */
214 	msg = kmalloc(sizeof(*msg) + nam->sa_len, M_LWKTMSG,
215 	    M_WAITOK | M_NULLOK);
216 	if (msg == NULL) {
217 		/*
218 		 * Fail to allocate message; fallback to
219 		 * synchronized pru_connect.
220 		 */
221 		return so_pru_connect(so, nam, td);
222 	}
223 
224 	error = so->so_proto->pr_usrreqs->pru_preconnect(so, nam, td);
225 	if (error) {
226 		kfree(msg, M_LWKTMSG);
227 		return error;
228 	}
229 
230 	flags = PRUC_ASYNC;
231 	if (td != NULL && (so->so_proto->pr_flags & PR_ACONN_HOLDTD)) {
232 		lwkt_hold(td);
233 		flags |= PRUC_HELDTD;
234 	}
235 
236 	netmsg_init(&msg->base, so, &netisr_afree_rport, 0,
237 	    so->so_proto->pr_usrreqs->pru_connect);
238 	msg->nm_nam = (struct sockaddr *)(msg + 1);
239 	memcpy(msg->nm_nam, nam, nam->sa_len);
240 	msg->nm_td = td;
241 	msg->nm_m = NULL;
242 	msg->nm_sndflags = 0;
243 	msg->nm_flags = flags;
244 	if (so->so_port == netisr_curport())
245 		lwkt_sendmsg_oncpu(so->so_port, &msg->base.lmsg);
246 	else
247 		lwkt_sendmsg(so->so_port, &msg->base.lmsg);
248 	return 0;
249 }
250 
251 int
252 so_pru_connect2(struct socket *so1, struct socket *so2)
253 {
254 	struct netmsg_pru_connect2 msg;
255 	int error;
256 
257 	netmsg_init(&msg.base, so1, &curthread->td_msgport,
258 		    0, so1->so_proto->pr_usrreqs->pru_connect2);
259 	msg.nm_so1 = so1;
260 	msg.nm_so2 = so2;
261 	error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
262 	return (error);
263 }
264 
265 /*
266  * WARNING!  Synchronous call from user context.  Control function may do
267  *	     copyin/copyout.
268  */
269 int
270 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
271 		      struct ifnet *ifp)
272 {
273 	struct netmsg_pru_control msg;
274 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
275 
276 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
277 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
278 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
279 	msg.nm_cmd = cmd;
280 	msg.nm_data = data;
281 	msg.nm_ifp = ifp;
282 	msg.nm_td = curthread;
283 	func((netmsg_t)&msg);
284 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
285 	return(msg.base.lmsg.ms_error);
286 }
287 
288 int
289 so_pru_detach(struct socket *so)
290 {
291 	struct netmsg_pru_detach msg;
292 	int error;
293 
294 	netmsg_init(&msg.base, so, &curthread->td_msgport,
295 		    0, so->so_proto->pr_usrreqs->pru_detach);
296 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
297 	return (error);
298 }
299 
300 int
301 so_pru_detach_direct(struct socket *so)
302 {
303 	struct netmsg_pru_detach msg;
304 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_detach;
305 
306 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
307 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
308 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
309 	func((netmsg_t)&msg);
310 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
311 	return(msg.base.lmsg.ms_error);
312 }
313 
314 int
315 so_pru_disconnect(struct socket *so)
316 {
317 	struct netmsg_pru_disconnect msg;
318 	int error;
319 
320 	netmsg_init(&msg.base, so, &curthread->td_msgport,
321 		    0, so->so_proto->pr_usrreqs->pru_disconnect);
322 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
323 	return (error);
324 }
325 
326 void
327 so_pru_disconnect_direct(struct socket *so)
328 {
329 	struct netmsg_pru_disconnect msg;
330 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_disconnect;
331 
332 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
333 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
334 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
335 	func((netmsg_t)&msg);
336 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
337 }
338 
339 int
340 so_pru_listen(struct socket *so, struct thread *td)
341 {
342 	struct netmsg_pru_listen msg;
343 	int error;
344 
345 	netmsg_init(&msg.base, so, &curthread->td_msgport,
346 		    0, so->so_proto->pr_usrreqs->pru_listen);
347 	msg.nm_td = td;		/* used only for prison_ip() XXX JH */
348 	msg.nm_flags = 0;
349 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
350 	return (error);
351 }
352 
353 int
354 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
355 {
356 	struct netmsg_pru_peeraddr msg;
357 	int error;
358 
359 	netmsg_init(&msg.base, so, &curthread->td_msgport,
360 		    0, so->so_proto->pr_usrreqs->pru_peeraddr);
361 	msg.nm_nam = nam;
362 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
363 	return (error);
364 }
365 
366 int
367 so_pru_rcvd(struct socket *so, int flags)
368 {
369 	struct netmsg_pru_rcvd msg;
370 	int error;
371 
372 	netmsg_init(&msg.base, so, &curthread->td_msgport,
373 		    0, so->so_proto->pr_usrreqs->pru_rcvd);
374 	msg.nm_flags = flags;
375 	msg.nm_pru_flags = 0;
376 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
377 	return (error);
378 }
379 
380 void
381 so_pru_rcvd_async(struct socket *so)
382 {
383 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
384 
385 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_RCVD,
386 	    ("async pru_rcvd is not supported"));
387 
388 	/*
389 	 * WARNING!  Spinlock is a bit dodgy, use hacked up sendmsg
390 	 *	     to avoid deadlocking.
391 	 */
392 	spin_lock(&so->so_rcvd_spin);
393 	if ((so->so_rcvd_msg.nm_pru_flags & PRUR_DEAD) == 0) {
394 		if (lmsg->ms_flags & MSGF_DONE) {
395 			lwkt_sendmsg_prepare(so->so_port, lmsg);
396 			spin_unlock(&so->so_rcvd_spin);
397 			if (so->so_port == netisr_curport())
398 				lwkt_sendmsg_start_oncpu(so->so_port, lmsg);
399 			else
400 				lwkt_sendmsg_start(so->so_port, lmsg);
401 		} else {
402 			spin_unlock(&so->so_rcvd_spin);
403 		}
404 	} else {
405 		spin_unlock(&so->so_rcvd_spin);
406 	}
407 }
408 
409 int
410 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
411 {
412 	struct netmsg_pru_rcvoob msg;
413 	int error;
414 
415 	netmsg_init(&msg.base, so, &curthread->td_msgport,
416 		    0, so->so_proto->pr_usrreqs->pru_rcvoob);
417 	msg.nm_m = m;
418 	msg.nm_flags = flags;
419 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
420 	return (error);
421 }
422 
423 /*
424  * NOTE: If the target port changes the implied connect will deal with it.
425  */
426 int
427 so_pru_send(struct socket *so, int flags, struct mbuf *m,
428 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
429 {
430 	struct netmsg_pru_send msg;
431 	int error;
432 
433 	netmsg_init(&msg.base, so, &curthread->td_msgport,
434 		    0, so->so_proto->pr_usrreqs->pru_send);
435 	msg.nm_flags = flags;
436 	msg.nm_m = m;
437 	msg.nm_addr = addr;
438 	msg.nm_control = control;
439 	msg.nm_td = td;
440 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
441 	return (error);
442 }
443 
444 void
445 so_pru_sync(struct socket *so)
446 {
447 	struct netmsg_base msg;
448 
449 	netmsg_init(&msg, so, &curthread->td_msgport, 0,
450 	    netmsg_sync_handler);
451 	lwkt_domsg(so->so_port, &msg.lmsg, 0);
452 }
453 
454 void
455 so_pru_send_async(struct socket *so, int flags, struct mbuf *m,
456     struct sockaddr *addr0, struct mbuf *control, struct thread *td)
457 {
458 	struct netmsg_pru_send *msg;
459 	struct sockaddr *addr = NULL;
460 
461 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_SEND,
462 	    ("async pru_send is not supported"));
463 
464 	if (addr0 != NULL) {
465 		addr = kmalloc(addr0->sa_len, M_SONAME, M_WAITOK | M_NULLOK);
466 		if (addr == NULL) {
467 			/*
468 			 * Fail to allocate address; fallback to
469 			 * synchronized pru_send.
470 			 */
471 			so_pru_send(so, flags, m, addr0, control, td);
472 			return;
473 		}
474 		memcpy(addr, addr0, addr0->sa_len);
475 		flags |= PRUS_FREEADDR;
476 	}
477 	flags |= PRUS_NOREPLY;
478 
479 	if (td != NULL && (so->so_proto->pr_flags & PR_ASEND_HOLDTD)) {
480 		lwkt_hold(td);
481 		flags |= PRUS_HELDTD;
482 	}
483 
484 	msg = &m->m_hdr.mh_sndmsg;
485 	netmsg_init(&msg->base, so, &netisr_apanic_rport,
486 		    0, so->so_proto->pr_usrreqs->pru_send);
487 	msg->nm_flags = flags;
488 	msg->nm_m = m;
489 	msg->nm_addr = addr;
490 	msg->nm_control = control;
491 	msg->nm_td = td;
492 	if (so->so_port == netisr_curport())
493 		lwkt_sendmsg_oncpu(so->so_port, &msg->base.lmsg);
494 	else
495 		lwkt_sendmsg(so->so_port, &msg->base.lmsg);
496 }
497 
498 int
499 so_pru_sense(struct socket *so, struct stat *sb)
500 {
501 	struct netmsg_pru_sense msg;
502 	int error;
503 
504 	netmsg_init(&msg.base, so, &curthread->td_msgport,
505 		    0, so->so_proto->pr_usrreqs->pru_sense);
506 	msg.nm_stat = sb;
507 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
508 	return (error);
509 }
510 
511 int
512 so_pru_shutdown(struct socket *so)
513 {
514 	struct netmsg_pru_shutdown msg;
515 	int error;
516 
517 	netmsg_init(&msg.base, so, &curthread->td_msgport,
518 		    0, so->so_proto->pr_usrreqs->pru_shutdown);
519 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
520 	return (error);
521 }
522 
523 int
524 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
525 {
526 	struct netmsg_pru_sockaddr msg;
527 	int error;
528 
529 	netmsg_init(&msg.base, so, &curthread->td_msgport,
530 		    0, so->so_proto->pr_usrreqs->pru_sockaddr);
531 	msg.nm_nam = nam;
532 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
533 	return (error);
534 }
535 
536 int
537 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
538 {
539 	struct netmsg_pr_ctloutput msg;
540 	int error;
541 
542 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
543 
544 	if (sopt->sopt_dir == SOPT_SET && so->so_proto->pr_ctloutmsg != NULL) {
545 		struct netmsg_pr_ctloutput *amsg;
546 
547 		/* Fast path: asynchronous pr_ctloutput */
548 		amsg = so->so_proto->pr_ctloutmsg(sopt);
549 		if (amsg != NULL) {
550 			netmsg_init(&amsg->base, so, &netisr_afree_rport, 0,
551 			    so->so_proto->pr_ctloutput);
552 			/* nm_flags and nm_sopt are setup by pr_ctloutmsg */
553 			if (so->so_port == netisr_curport()) {
554 				lwkt_sendmsg_oncpu(so->so_port,
555 				    &amsg->base.lmsg);
556 			} else {
557 				lwkt_sendmsg(so->so_port, &amsg->base.lmsg);
558 			}
559 			return 0;
560 		}
561 		/* FALLTHROUGH */
562 	}
563 
564 	netmsg_init(&msg.base, so, &curthread->td_msgport,
565 		    0, so->so_proto->pr_ctloutput);
566 	msg.nm_flags = 0;
567 	msg.nm_sopt = sopt;
568 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
569 	return (error);
570 }
571 
572 struct lwkt_port *
573 so_pr_ctlport(struct protosw *pr, int cmd, struct sockaddr *arg,
574     void *extra, int *cpuid)
575 {
576 	if (pr->pr_ctlport == NULL)
577 		return NULL;
578 	KKASSERT(pr->pr_ctlinput != NULL);
579 
580 	return pr->pr_ctlport(cmd, arg, extra, cpuid);
581 }
582 
583 /*
584  * Protocol control input, typically via icmp.
585  *
586  * If the protocol pr_ctlport is not NULL we call it to figure out the
587  * protocol port.  If NULL is returned we can just return, otherwise
588  * we issue a netmsg to call pr_ctlinput in the proper thread.
589  *
590  * This must be done synchronously as arg and/or extra may point to
591  * temporary data.
592  */
593 void
594 so_pr_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
595 {
596 	struct netmsg_pr_ctlinput msg;
597 	lwkt_port_t port;
598 	int cpuid;
599 
600 	port = so_pr_ctlport(pr, cmd, arg, extra, &cpuid);
601 	if (port == NULL)
602 		return;
603 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
604 		    0, pr->pr_ctlinput);
605 	msg.nm_cmd = cmd;
606 	msg.nm_direct = 0;
607 	msg.nm_arg = arg;
608 	msg.nm_extra = extra;
609 	lwkt_domsg(port, &msg.base.lmsg, 0);
610 }
611 
612 void
613 so_pr_ctlinput_direct(struct protosw *pr, int cmd, struct sockaddr *arg,
614     void *extra)
615 {
616 	struct netmsg_pr_ctlinput msg;
617 	netisr_fn_t func;
618 	lwkt_port_t port;
619 	int cpuid;
620 
621 	port = so_pr_ctlport(pr, cmd, arg, extra, &cpuid);
622 	if (port == NULL)
623 		return;
624 	if (cpuid != netisr_ncpus && cpuid != mycpuid)
625 		return;
626 
627 	func = pr->pr_ctlinput;
628 	netmsg_init(&msg.base, NULL, &netisr_adone_rport, 0, func);
629 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
630 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
631 	msg.nm_cmd = cmd;
632 	msg.nm_direct = 1;
633 	msg.nm_arg = arg;
634 	msg.nm_extra = extra;
635 	func((netmsg_t)&msg);
636 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
637 }
638 
639 /*
640  * If we convert all the protosw pr_ functions for all the protocols
641  * to take a message directly, this layer can go away.  For the moment
642  * our dispatcher ignores the return value, but since we are handling
643  * the replymsg ourselves we return EASYNC by convention.
644  */
645 
646 /*
647  * Handle a predicate event request.  This function is only called once
648  * when the predicate message queueing request is received.
649  */
650 void
651 netmsg_so_notify(netmsg_t msg)
652 {
653 	struct socket *so = msg->base.nm_so;
654 	struct signalsockbuf *ssb;
655 
656 	ssb = (msg->notify.nm_etype & NM_REVENT) ? &so->so_rcv : &so->so_snd;
657 
658 	/*
659 	 * Reply immediately if the event has occured, otherwise queue the
660 	 * request.
661 	 *
662 	 * NOTE: Socket can change if this is an accept predicate so cache
663 	 *	 the token.
664 	 */
665 	lwkt_getpooltoken(so);
666 	atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
667 	if (msg->notify.nm_predicate(&msg->notify)) {
668 		if (TAILQ_EMPTY(&ssb->ssb_mlist))
669 			atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
670 		lwkt_relpooltoken(so);
671 		lwkt_replymsg(&msg->base.lmsg,
672 			      msg->base.lmsg.ms_error);
673 	} else {
674 		TAILQ_INSERT_TAIL(&ssb->ssb_mlist, &msg->notify, nm_list);
675 		/*
676 		 * NOTE:
677 		 * If predict ever blocks, 'tok' will be released, so
678 		 * SSB_MEVENT set beforehand could have been cleared
679 		 * when we reach here.  In case that happens, we set
680 		 * SSB_MEVENT again, after the notify has been queued.
681 		 */
682 		atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
683 		lwkt_relpooltoken(so);
684 	}
685 }
686 
687 /*
688  * Called by doio when trying to abort a netmsg_so_notify message.
689  * Unlike the other functions this one is dispatched directly by
690  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
691  *
692  * The original message, lmsg, is under the control of the caller and
693  * will not be destroyed until we return so we can safely reference it
694  * in our synchronous abort request.
695  *
696  * This part of the abort request occurs on the originating cpu which
697  * means we may race the message flags and the original message may
698  * not even have been processed by the target cpu yet.
699  */
700 void
701 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
702 {
703 	struct netmsg_so_notify_abort msg;
704 
705 	if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
706 		const struct netmsg_base *nmsg =
707 		    (const struct netmsg_base *)lmsg;
708 
709 		netmsg_init(&msg.base, nmsg->nm_so, &curthread->td_msgport,
710 			    0, netmsg_so_notify_abort);
711 		msg.nm_notifymsg = (void *)lmsg;
712 		lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
713 	}
714 }
715 
716 /*
717  * Predicate requests can be aborted.  This function is only called once
718  * and will interlock against processing/reply races (since such races
719  * occur on the same thread that controls the port where the abort is
720  * requeued).
721  *
722  * This part of the abort request occurs on the target cpu.  The message
723  * flags must be tested again in case the test that we did on the
724  * originating cpu raced.  Since messages are handled in sequence, the
725  * original message will have already been handled by the loop and either
726  * replied to or queued.
727  *
728  * We really only need to interlock with MSGF_REPLY (a bit that is set on
729  * our cpu when we reply).  Note that MSGF_DONE is not set until the
730  * reply reaches the originating cpu.  Test both bits anyway.
731  */
732 void
733 netmsg_so_notify_abort(netmsg_t msg)
734 {
735 	struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
736 	struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
737 	struct signalsockbuf *ssb;
738 
739 	/*
740 	 * The original notify message is not destroyed until after the
741 	 * abort request is returned, so we can check its state.
742 	 */
743 	lwkt_getpooltoken(nmsg->base.nm_so);
744 	if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
745 		ssb = (nmsg->nm_etype & NM_REVENT) ?
746 				&nmsg->base.nm_so->so_rcv :
747 				&nmsg->base.nm_so->so_snd;
748 		TAILQ_REMOVE(&ssb->ssb_mlist, nmsg, nm_list);
749 		lwkt_relpooltoken(nmsg->base.nm_so);
750 		lwkt_replymsg(&nmsg->base.lmsg, EINTR);
751 	} else {
752 		lwkt_relpooltoken(nmsg->base.nm_so);
753 	}
754 
755 	/*
756 	 * Reply to the abort message
757 	 */
758 	lwkt_replymsg(&abrtmsg->base.lmsg, 0);
759 }
760 
761 void
762 so_async_rcvd_reply(struct socket *so)
763 {
764 	/*
765 	 * Spinlock safe, reply runs to degenerate lwkt_null_replyport()
766 	 */
767 	spin_lock(&so->so_rcvd_spin);
768 	lwkt_replymsg(&so->so_rcvd_msg.base.lmsg, 0);
769 	spin_unlock(&so->so_rcvd_spin);
770 }
771 
772 void
773 so_async_rcvd_drop(struct socket *so)
774 {
775 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
776 
777 	/*
778 	 * Spinlock safe, drop runs to degenerate lwkt_spin_dropmsg()
779 	 */
780 	spin_lock(&so->so_rcvd_spin);
781 	so->so_rcvd_msg.nm_pru_flags |= PRUR_DEAD;
782 again:
783 	lwkt_dropmsg(lmsg);
784 	if ((lmsg->ms_flags & MSGF_DONE) == 0) {
785 		++async_rcvd_drop_race;
786 		ssleep(so, &so->so_rcvd_spin, 0, "soadrop", 1);
787 		goto again;
788 	}
789 	spin_unlock(&so->so_rcvd_spin);
790 }
791