xref: /dragonfly/sys/kern/uipc_msg.c (revision b29f78b5)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/msgport.h>
38 #include <sys/protosw.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/socketops.h>
42 #include <sys/thread.h>
43 #include <sys/thread2.h>
44 #include <sys/msgport2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <vm/pmap.h>
49 
50 #include <net/netmsg2.h>
51 #include <sys/socketvar2.h>
52 
53 #include <net/netisr.h>
54 #include <net/netmsg.h>
55 
56 static int async_rcvd_drop_race = 0;
57 SYSCTL_INT(_kern_ipc, OID_AUTO, async_rcvd_drop_race, CTLFLAG_RW,
58     &async_rcvd_drop_race, 0, "# of asynchronized pru_rcvd msg drop races");
59 
60 /*
61  * Abort a socket and free it.  Called from soabort() only.  soabort()
62  * got a ref on the socket which we must free on reply.
63  */
64 void
65 so_pru_abort(struct socket *so)
66 {
67 	struct netmsg_pru_abort msg;
68 
69 	netmsg_init(&msg.base, so, &curthread->td_msgport,
70 		    0, so->so_proto->pr_usrreqs->pru_abort);
71 	lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
72 	sofree(msg.base.nm_so);
73 }
74 
75 /*
76  * Abort a socket and free it, asynchronously.  Called from
77  * soabort_async() only.  soabort_async() got a ref on the
78  * socket which we must free on reply.
79  */
80 void
81 so_pru_abort_async(struct socket *so)
82 {
83 	struct netmsg_pru_abort *msg;
84 
85 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
86 	netmsg_init(&msg->base, so, &netisr_afree_free_so_rport,
87 		    0, so->so_proto->pr_usrreqs->pru_abort);
88 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
89 }
90 
91 /*
92  * Abort a socket and free it.  Called from soabort_oncpu() only.
93  * Caller must make sure that the current CPU is inpcb's owner CPU.
94  */
95 void
96 so_pru_abort_direct(struct socket *so)
97 {
98 	struct netmsg_pru_abort msg;
99 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
100 
101 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
102 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
103 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
104 	func((netmsg_t)&msg);
105 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
106 	sofree(msg.base.nm_so);
107 }
108 
109 int
110 so_pru_accept(struct socket *so, struct sockaddr **nam)
111 {
112 	struct netmsg_pru_accept msg;
113 
114 	netmsg_init(&msg.base, so, &curthread->td_msgport,
115 	    0, so->so_proto->pr_usrreqs->pru_accept);
116 	msg.nm_nam = nam;
117 
118 	return lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
119 }
120 
121 int
122 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
123 {
124 	struct netmsg_pru_attach msg;
125 	int error;
126 
127 	netmsg_init(&msg.base, so, &curthread->td_msgport,
128 		    0, so->so_proto->pr_usrreqs->pru_attach);
129 	msg.nm_proto = proto;
130 	msg.nm_ai = ai;
131 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
132 	return (error);
133 }
134 
135 int
136 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
137 {
138 	struct netmsg_pru_attach msg;
139 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
140 
141 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
142 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
143 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
144 	msg.nm_proto = proto;
145 	msg.nm_ai = ai;
146 	func((netmsg_t)&msg);
147 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
148 	return(msg.base.lmsg.ms_error);
149 }
150 
151 /*
152  * NOTE: If the target port changes the bind operation will deal with it.
153  */
154 int
155 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
156 {
157 	struct netmsg_pru_bind msg;
158 	int error;
159 
160 	netmsg_init(&msg.base, so, &curthread->td_msgport,
161 		    0, so->so_proto->pr_usrreqs->pru_bind);
162 	msg.nm_nam = nam;
163 	msg.nm_td = td;		/* used only for prison_ip() */
164 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
165 	return (error);
166 }
167 
168 int
169 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
170 {
171 	struct netmsg_pru_connect msg;
172 	int error;
173 
174 	netmsg_init(&msg.base, so, &curthread->td_msgport,
175 		    0, so->so_proto->pr_usrreqs->pru_connect);
176 	msg.nm_nam = nam;
177 	msg.nm_td = td;
178 	msg.nm_m = NULL;
179 	msg.nm_sndflags = 0;
180 	msg.nm_flags = 0;
181 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
182 	return (error);
183 }
184 
185 int
186 so_pru_connect_async(struct socket *so, struct sockaddr *nam, struct thread *td)
187 {
188 	struct netmsg_pru_connect *msg;
189 	int error, flags;
190 
191 	KASSERT(so->so_proto->pr_usrreqs->pru_preconnect != NULL,
192 	    ("async pru_connect is not supported"));
193 
194 	/* NOTE: sockaddr immediately follows netmsg */
195 	msg = kmalloc(sizeof(*msg) + nam->sa_len, M_LWKTMSG, M_NOWAIT);
196 	if (msg == NULL) {
197 		/*
198 		 * Fail to allocate message w/o waiting;
199 		 * fallback to synchronized pru_connect.
200 		 */
201 		return so_pru_connect(so, nam, td);
202 	}
203 
204 	error = so->so_proto->pr_usrreqs->pru_preconnect(so, nam, td);
205 	if (error) {
206 		kfree(msg, M_LWKTMSG);
207 		return error;
208 	}
209 
210 	flags = PRUC_ASYNC;
211 	if (td != NULL && (so->so_proto->pr_flags & PR_ACONN_HOLDTD)) {
212 		lwkt_hold(td);
213 		flags |= PRUC_HELDTD;
214 	}
215 
216 	netmsg_init(&msg->base, so, &netisr_afree_rport, 0,
217 	    so->so_proto->pr_usrreqs->pru_connect);
218 	msg->nm_nam = (struct sockaddr *)(msg + 1);
219 	memcpy(msg->nm_nam, nam, nam->sa_len);
220 	msg->nm_td = td;
221 	msg->nm_m = NULL;
222 	msg->nm_sndflags = 0;
223 	msg->nm_flags = flags;
224 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
225 	return 0;
226 }
227 
228 int
229 so_pru_connect2(struct socket *so1, struct socket *so2)
230 {
231 	struct netmsg_pru_connect2 msg;
232 	int error;
233 
234 	netmsg_init(&msg.base, so1, &curthread->td_msgport,
235 		    0, so1->so_proto->pr_usrreqs->pru_connect2);
236 	msg.nm_so1 = so1;
237 	msg.nm_so2 = so2;
238 	error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
239 	return (error);
240 }
241 
242 /*
243  * WARNING!  Synchronous call from user context.  Control function may do
244  *	     copyin/copyout.
245  */
246 int
247 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
248 		      struct ifnet *ifp)
249 {
250 	struct netmsg_pru_control msg;
251 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
252 
253 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
254 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
255 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
256 	msg.nm_cmd = cmd;
257 	msg.nm_data = data;
258 	msg.nm_ifp = ifp;
259 	msg.nm_td = curthread;
260 	func((netmsg_t)&msg);
261 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
262 	return(msg.base.lmsg.ms_error);
263 }
264 
265 int
266 so_pru_detach(struct socket *so)
267 {
268 	struct netmsg_pru_detach msg;
269 	int error;
270 
271 	netmsg_init(&msg.base, so, &curthread->td_msgport,
272 		    0, so->so_proto->pr_usrreqs->pru_detach);
273 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
274 	return (error);
275 }
276 
277 int
278 so_pru_detach_direct(struct socket *so)
279 {
280 	struct netmsg_pru_detach msg;
281 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_detach;
282 
283 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
284 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
285 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
286 	func((netmsg_t)&msg);
287 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
288 	return(msg.base.lmsg.ms_error);
289 }
290 
291 int
292 so_pru_disconnect(struct socket *so)
293 {
294 	struct netmsg_pru_disconnect msg;
295 	int error;
296 
297 	netmsg_init(&msg.base, so, &curthread->td_msgport,
298 		    0, so->so_proto->pr_usrreqs->pru_disconnect);
299 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
300 	return (error);
301 }
302 
303 void
304 so_pru_disconnect_direct(struct socket *so)
305 {
306 	struct netmsg_pru_disconnect msg;
307 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_disconnect;
308 
309 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
310 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
311 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
312 	func((netmsg_t)&msg);
313 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
314 }
315 
316 int
317 so_pru_listen(struct socket *so, struct thread *td)
318 {
319 	struct netmsg_pru_listen msg;
320 	int error;
321 
322 	netmsg_init(&msg.base, so, &curthread->td_msgport,
323 		    0, so->so_proto->pr_usrreqs->pru_listen);
324 	msg.nm_td = td;		/* used only for prison_ip() XXX JH */
325 	msg.nm_flags = 0;
326 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
327 	return (error);
328 }
329 
330 int
331 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
332 {
333 	struct netmsg_pru_peeraddr msg;
334 	int error;
335 
336 	netmsg_init(&msg.base, so, &curthread->td_msgport,
337 		    0, so->so_proto->pr_usrreqs->pru_peeraddr);
338 	msg.nm_nam = nam;
339 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
340 	return (error);
341 }
342 
343 int
344 so_pru_rcvd(struct socket *so, int flags)
345 {
346 	struct netmsg_pru_rcvd msg;
347 	int error;
348 
349 	netmsg_init(&msg.base, so, &curthread->td_msgport,
350 		    0, so->so_proto->pr_usrreqs->pru_rcvd);
351 	msg.nm_flags = flags;
352 	msg.nm_pru_flags = 0;
353 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
354 	return (error);
355 }
356 
357 void
358 so_pru_rcvd_async(struct socket *so)
359 {
360 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
361 
362 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_RCVD,
363 	    ("async pru_rcvd is not supported"));
364 
365 	/*
366 	 * WARNING!  Spinlock is a bit dodgy, use hacked up sendmsg
367 	 *	     to avoid deadlocking.
368 	 */
369 	spin_lock(&so->so_rcvd_spin);
370 	if ((so->so_rcvd_msg.nm_pru_flags & PRUR_DEAD) == 0) {
371 		if (lmsg->ms_flags & MSGF_DONE) {
372 			lwkt_sendmsg_prepare(so->so_port, lmsg);
373 			spin_unlock(&so->so_rcvd_spin);
374 			lwkt_sendmsg_start(so->so_port, lmsg);
375 		} else {
376 			spin_unlock(&so->so_rcvd_spin);
377 		}
378 	} else {
379 		spin_unlock(&so->so_rcvd_spin);
380 	}
381 }
382 
383 int
384 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
385 {
386 	struct netmsg_pru_rcvoob msg;
387 	int error;
388 
389 	netmsg_init(&msg.base, so, &curthread->td_msgport,
390 		    0, so->so_proto->pr_usrreqs->pru_rcvoob);
391 	msg.nm_m = m;
392 	msg.nm_flags = flags;
393 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
394 	return (error);
395 }
396 
397 /*
398  * NOTE: If the target port changes the implied connect will deal with it.
399  */
400 int
401 so_pru_send(struct socket *so, int flags, struct mbuf *m,
402 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
403 {
404 	struct netmsg_pru_send msg;
405 	int error;
406 
407 	netmsg_init(&msg.base, so, &curthread->td_msgport,
408 		    0, so->so_proto->pr_usrreqs->pru_send);
409 	msg.nm_flags = flags;
410 	msg.nm_m = m;
411 	msg.nm_addr = addr;
412 	msg.nm_control = control;
413 	msg.nm_td = td;
414 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
415 	return (error);
416 }
417 
418 void
419 so_pru_sync(struct socket *so)
420 {
421 	struct netmsg_base msg;
422 
423 	netmsg_init(&msg, so, &curthread->td_msgport, 0,
424 	    netmsg_sync_handler);
425 	lwkt_domsg(so->so_port, &msg.lmsg, 0);
426 }
427 
428 void
429 so_pru_send_async(struct socket *so, int flags, struct mbuf *m,
430     struct sockaddr *addr0, struct mbuf *control, struct thread *td)
431 {
432 	struct netmsg_pru_send *msg;
433 	struct sockaddr *addr = NULL;
434 
435 	KASSERT(so->so_proto->pr_flags & PR_ASYNC_SEND,
436 	    ("async pru_send is not supported"));
437 
438 	if (addr0 != NULL) {
439 		addr = kmalloc(addr0->sa_len, M_SONAME, M_WAITOK | M_NULLOK);
440 		if (addr == NULL) {
441 			/*
442 			 * Fail to allocate address; fallback to
443 			 * synchronized pru_send.
444 			 */
445 			so_pru_send(so, flags, m, addr0, control, td);
446 			return;
447 		}
448 		memcpy(addr, addr0, addr0->sa_len);
449 		flags |= PRUS_FREEADDR;
450 	}
451 	flags |= PRUS_NOREPLY;
452 
453 	if (td != NULL && (so->so_proto->pr_flags & PR_ASEND_HOLDTD)) {
454 		lwkt_hold(td);
455 		flags |= PRUS_HELDTD;
456 	}
457 
458 	msg = &m->m_hdr.mh_sndmsg;
459 	netmsg_init(&msg->base, so, &netisr_apanic_rport,
460 		    0, so->so_proto->pr_usrreqs->pru_send);
461 	msg->nm_flags = flags;
462 	msg->nm_m = m;
463 	msg->nm_addr = addr;
464 	msg->nm_control = control;
465 	msg->nm_td = td;
466 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
467 }
468 
469 int
470 so_pru_sense(struct socket *so, struct stat *sb)
471 {
472 	struct netmsg_pru_sense msg;
473 	int error;
474 
475 	netmsg_init(&msg.base, so, &curthread->td_msgport,
476 		    0, so->so_proto->pr_usrreqs->pru_sense);
477 	msg.nm_stat = sb;
478 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
479 	return (error);
480 }
481 
482 int
483 so_pru_shutdown(struct socket *so)
484 {
485 	struct netmsg_pru_shutdown msg;
486 	int error;
487 
488 	netmsg_init(&msg.base, so, &curthread->td_msgport,
489 		    0, so->so_proto->pr_usrreqs->pru_shutdown);
490 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
491 	return (error);
492 }
493 
494 int
495 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
496 {
497 	struct netmsg_pru_sockaddr msg;
498 	int error;
499 
500 	netmsg_init(&msg.base, so, &curthread->td_msgport,
501 		    0, so->so_proto->pr_usrreqs->pru_sockaddr);
502 	msg.nm_nam = nam;
503 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
504 	return (error);
505 }
506 
507 int
508 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
509 {
510 	struct netmsg_pr_ctloutput msg;
511 	int error;
512 
513 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
514 	netmsg_init(&msg.base, so, &curthread->td_msgport,
515 		    0, so->so_proto->pr_ctloutput);
516 	msg.nm_sopt = sopt;
517 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
518 	return (error);
519 }
520 
521 struct lwkt_port *
522 so_pr_ctlport(struct protosw *pr, int cmd, struct sockaddr *arg,
523     void *extra, int *cpuid)
524 {
525 	if (pr->pr_ctlport == NULL)
526 		return NULL;
527 	KKASSERT(pr->pr_ctlinput != NULL);
528 
529 	return pr->pr_ctlport(cmd, arg, extra, cpuid);
530 }
531 
532 /*
533  * Protocol control input, typically via icmp.
534  *
535  * If the protocol pr_ctlport is not NULL we call it to figure out the
536  * protocol port.  If NULL is returned we can just return, otherwise
537  * we issue a netmsg to call pr_ctlinput in the proper thread.
538  *
539  * This must be done synchronously as arg and/or extra may point to
540  * temporary data.
541  */
542 void
543 so_pr_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
544 {
545 	struct netmsg_pr_ctlinput msg;
546 	lwkt_port_t port;
547 	int cpuid;
548 
549 	port = so_pr_ctlport(pr, cmd, arg, extra, &cpuid);
550 	if (port == NULL)
551 		return;
552 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
553 		    0, pr->pr_ctlinput);
554 	msg.nm_cmd = cmd;
555 	msg.nm_direct = 0;
556 	msg.nm_arg = arg;
557 	msg.nm_extra = extra;
558 	lwkt_domsg(port, &msg.base.lmsg, 0);
559 }
560 
561 void
562 so_pr_ctlinput_direct(struct protosw *pr, int cmd, struct sockaddr *arg,
563     void *extra)
564 {
565 	struct netmsg_pr_ctlinput msg;
566 	netisr_fn_t func;
567 	lwkt_port_t port;
568 	int cpuid;
569 
570 	port = so_pr_ctlport(pr, cmd, arg, extra, &cpuid);
571 	if (port == NULL)
572 		return;
573 	if (cpuid != ncpus && cpuid != mycpuid)
574 		return;
575 
576 	func = pr->pr_ctlinput;
577 	netmsg_init(&msg.base, NULL, &netisr_adone_rport, 0, func);
578 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
579 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
580 	msg.nm_cmd = cmd;
581 	msg.nm_direct = 1;
582 	msg.nm_arg = arg;
583 	msg.nm_extra = extra;
584 	func((netmsg_t)&msg);
585 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
586 }
587 
588 /*
589  * If we convert all the protosw pr_ functions for all the protocols
590  * to take a message directly, this layer can go away.  For the moment
591  * our dispatcher ignores the return value, but since we are handling
592  * the replymsg ourselves we return EASYNC by convention.
593  */
594 
595 /*
596  * Handle a predicate event request.  This function is only called once
597  * when the predicate message queueing request is received.
598  */
599 void
600 netmsg_so_notify(netmsg_t msg)
601 {
602 	struct lwkt_token *tok;
603 	struct signalsockbuf *ssb;
604 
605 	ssb = (msg->notify.nm_etype & NM_REVENT) ?
606 			&msg->base.nm_so->so_rcv :
607 			&msg->base.nm_so->so_snd;
608 
609 	/*
610 	 * Reply immediately if the event has occured, otherwise queue the
611 	 * request.
612 	 *
613 	 * NOTE: Socket can change if this is an accept predicate so cache
614 	 *	 the token.
615 	 */
616 	tok = lwkt_token_pool_lookup(msg->base.nm_so);
617 	lwkt_gettoken(tok);
618 	atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
619 	if (msg->notify.nm_predicate(&msg->notify)) {
620 		if (TAILQ_EMPTY(&ssb->ssb_kq.ki_mlist))
621 			atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
622 		lwkt_reltoken(tok);
623 		lwkt_replymsg(&msg->base.lmsg,
624 			      msg->base.lmsg.ms_error);
625 	} else {
626 		TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list);
627 		/*
628 		 * NOTE:
629 		 * If predict ever blocks, 'tok' will be released, so
630 		 * SSB_MEVENT set beforehand could have been cleared
631 		 * when we reach here.  In case that happens, we set
632 		 * SSB_MEVENT again, after the notify has been queued.
633 		 */
634 		atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
635 		lwkt_reltoken(tok);
636 	}
637 }
638 
639 /*
640  * Called by doio when trying to abort a netmsg_so_notify message.
641  * Unlike the other functions this one is dispatched directly by
642  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
643  *
644  * The original message, lmsg, is under the control of the caller and
645  * will not be destroyed until we return so we can safely reference it
646  * in our synchronous abort request.
647  *
648  * This part of the abort request occurs on the originating cpu which
649  * means we may race the message flags and the original message may
650  * not even have been processed by the target cpu yet.
651  */
652 void
653 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
654 {
655 	struct netmsg_so_notify_abort msg;
656 
657 	if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
658 		const struct netmsg_base *nmsg =
659 		    (const struct netmsg_base *)lmsg;
660 
661 		netmsg_init(&msg.base, nmsg->nm_so, &curthread->td_msgport,
662 			    0, netmsg_so_notify_abort);
663 		msg.nm_notifymsg = (void *)lmsg;
664 		lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
665 	}
666 }
667 
668 /*
669  * Predicate requests can be aborted.  This function is only called once
670  * and will interlock against processing/reply races (since such races
671  * occur on the same thread that controls the port where the abort is
672  * requeued).
673  *
674  * This part of the abort request occurs on the target cpu.  The message
675  * flags must be tested again in case the test that we did on the
676  * originating cpu raced.  Since messages are handled in sequence, the
677  * original message will have already been handled by the loop and either
678  * replied to or queued.
679  *
680  * We really only need to interlock with MSGF_REPLY (a bit that is set on
681  * our cpu when we reply).  Note that MSGF_DONE is not set until the
682  * reply reaches the originating cpu.  Test both bits anyway.
683  */
684 void
685 netmsg_so_notify_abort(netmsg_t msg)
686 {
687 	struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
688 	struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
689 	struct signalsockbuf *ssb;
690 
691 	/*
692 	 * The original notify message is not destroyed until after the
693 	 * abort request is returned, so we can check its state.
694 	 */
695 	lwkt_getpooltoken(nmsg->base.nm_so);
696 	if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
697 		ssb = (nmsg->nm_etype & NM_REVENT) ?
698 				&nmsg->base.nm_so->so_rcv :
699 				&nmsg->base.nm_so->so_snd;
700 		TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list);
701 		lwkt_relpooltoken(nmsg->base.nm_so);
702 		lwkt_replymsg(&nmsg->base.lmsg, EINTR);
703 	} else {
704 		lwkt_relpooltoken(nmsg->base.nm_so);
705 	}
706 
707 	/*
708 	 * Reply to the abort message
709 	 */
710 	lwkt_replymsg(&abrtmsg->base.lmsg, 0);
711 }
712 
713 void
714 so_async_rcvd_reply(struct socket *so)
715 {
716 	/*
717 	 * Spinlock safe, reply runs to degenerate lwkt_null_replyport()
718 	 */
719 	spin_lock(&so->so_rcvd_spin);
720 	lwkt_replymsg(&so->so_rcvd_msg.base.lmsg, 0);
721 	spin_unlock(&so->so_rcvd_spin);
722 }
723 
724 void
725 so_async_rcvd_drop(struct socket *so)
726 {
727 	lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
728 
729 	/*
730 	 * Spinlock safe, drop runs to degenerate lwkt_spin_dropmsg()
731 	 */
732 	spin_lock(&so->so_rcvd_spin);
733 	so->so_rcvd_msg.nm_pru_flags |= PRUR_DEAD;
734 again:
735 	lwkt_dropmsg(lmsg);
736 	if ((lmsg->ms_flags & MSGF_DONE) == 0) {
737 		++async_rcvd_drop_race;
738 		ssleep(so, &so->so_rcvd_spin, 0, "soadrop", 1);
739 		goto again;
740 	}
741 	spin_unlock(&so->so_rcvd_spin);
742 }
743