xref: /dragonfly/sys/kern/uipc_socket.c (revision a32bc35d)
1 /*
2  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
67  * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_sctp.h"
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/fcntl.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/domain.h>
79 #include <sys/file.h>			/* for struct knote */
80 #include <sys/kernel.h>
81 #include <sys/event.h>
82 #include <sys/proc.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/socketops.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/sysctl.h>
90 #include <sys/uio.h>
91 #include <sys/jail.h>
92 #include <vm/vm_zone.h>
93 #include <vm/pmap.h>
94 #include <net/netmsg2.h>
95 
96 #include <sys/thread2.h>
97 #include <sys/socketvar2.h>
98 
99 #include <machine/limits.h>
100 
101 extern int tcp_sosend_agglim;
102 extern int tcp_sosend_async;
103 extern int udp_sosend_async;
104 
105 #ifdef INET
106 static int	 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
107 #endif /* INET */
108 
109 static void 	filt_sordetach(struct knote *kn);
110 static int 	filt_soread(struct knote *kn, long hint);
111 static void 	filt_sowdetach(struct knote *kn);
112 static int	filt_sowrite(struct knote *kn, long hint);
113 static int	filt_solisten(struct knote *kn, long hint);
114 
115 static void	sodiscard(struct socket *so);
116 static int	soclose_sync(struct socket *so, int fflag);
117 static void	soclose_fast(struct socket *so);
118 
119 static struct filterops solisten_filtops =
120 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_solisten };
121 static struct filterops soread_filtops =
122 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
123 static struct filterops sowrite_filtops =
124 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sowdetach, filt_sowrite };
125 static struct filterops soexcept_filtops =
126 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
127 
128 MALLOC_DEFINE(M_SOCKET, "socket", "socket struct");
129 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
130 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
131 
132 
133 static int somaxconn = SOMAXCONN;
134 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
135     &somaxconn, 0, "Maximum pending socket connection queue size");
136 
137 static int use_soclose_fast = 1;
138 SYSCTL_INT(_kern_ipc, OID_AUTO, soclose_fast, CTLFLAG_RW,
139     &use_soclose_fast, 0, "Fast socket close");
140 
141 int use_soaccept_pred_fast = 1;
142 SYSCTL_INT(_kern_ipc, OID_AUTO, soaccept_pred_fast, CTLFLAG_RW,
143     &use_soaccept_pred_fast, 0, "Fast socket accept predication");
144 
145 int use_sendfile_async = 1;
146 SYSCTL_INT(_kern_ipc, OID_AUTO, sendfile_async, CTLFLAG_RW,
147     &use_sendfile_async, 0, "sendfile uses asynchronized pru_send");
148 
149 /*
150  * Socket operation routines.
151  * These routines are called by the routines in
152  * sys_socket.c or from a system process, and
153  * implement the semantics of socket operations by
154  * switching out to the protocol specific routines.
155  */
156 
157 /*
158  * Get a socket structure, and initialize it.
159  * Note that it would probably be better to allocate socket
160  * and PCB at the same time, but I'm not convinced that all
161  * the protocols can be easily modified to do this.
162  */
163 struct socket *
164 soalloc(int waitok)
165 {
166 	struct socket *so;
167 	unsigned waitmask;
168 
169 	waitmask = waitok ? M_WAITOK : M_NOWAIT;
170 	so = kmalloc(sizeof(struct socket), M_SOCKET, M_ZERO|waitmask);
171 	if (so) {
172 		/* XXX race condition for reentrant kernel */
173 		TAILQ_INIT(&so->so_aiojobq);
174 		TAILQ_INIT(&so->so_rcv.ssb_kq.ki_mlist);
175 		TAILQ_INIT(&so->so_snd.ssb_kq.ki_mlist);
176 		lwkt_token_init(&so->so_rcv.ssb_token, "rcvtok");
177 		lwkt_token_init(&so->so_snd.ssb_token, "sndtok");
178 		so->so_state = SS_NOFDREF;
179 		so->so_refs = 1;
180 	}
181 	return so;
182 }
183 
184 int
185 socreate(int dom, struct socket **aso, int type,
186 	int proto, struct thread *td)
187 {
188 	struct proc *p = td->td_proc;
189 	struct protosw *prp;
190 	struct socket *so;
191 	struct pru_attach_info ai;
192 	int error;
193 
194 	if (proto)
195 		prp = pffindproto(dom, proto, type);
196 	else
197 		prp = pffindtype(dom, type);
198 
199 	if (prp == NULL || prp->pr_usrreqs->pru_attach == 0)
200 		return (EPROTONOSUPPORT);
201 
202 	if (p->p_ucred->cr_prison && jail_socket_unixiproute_only &&
203 	    prp->pr_domain->dom_family != PF_LOCAL &&
204 	    prp->pr_domain->dom_family != PF_INET &&
205 	    prp->pr_domain->dom_family != PF_INET6 &&
206 	    prp->pr_domain->dom_family != PF_ROUTE) {
207 		return (EPROTONOSUPPORT);
208 	}
209 
210 	if (prp->pr_type != type)
211 		return (EPROTOTYPE);
212 	so = soalloc(p != NULL);
213 	if (so == NULL)
214 		return (ENOBUFS);
215 
216 	/*
217 	 * Callers of socreate() presumably will connect up a descriptor
218 	 * and call soclose() if they cannot.  This represents our so_refs
219 	 * (which should be 1) from soalloc().
220 	 */
221 	soclrstate(so, SS_NOFDREF);
222 
223 	/*
224 	 * Set a default port for protocol processing.  No action will occur
225 	 * on the socket on this port until an inpcb is attached to it and
226 	 * is able to match incoming packets, or until the socket becomes
227 	 * available to userland.
228 	 *
229 	 * We normally default the socket to the protocol thread on cpu 0.
230 	 * If PR_SYNC_PORT is set (unix domain sockets) there is no protocol
231 	 * thread and all pr_*()/pru_*() calls are executed synchronously.
232 	 */
233 	if (prp->pr_flags & PR_SYNC_PORT)
234 		so->so_port = &netisr_sync_port;
235 	else
236 		so->so_port = cpu_portfn(0);
237 
238 	TAILQ_INIT(&so->so_incomp);
239 	TAILQ_INIT(&so->so_comp);
240 	so->so_type = type;
241 	so->so_cred = crhold(p->p_ucred);
242 	so->so_proto = prp;
243 	ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE];
244 	ai.p_ucred = p->p_ucred;
245 	ai.fd_rdir = p->p_fd->fd_rdir;
246 
247 	/*
248 	 * Auto-sizing of socket buffers is managed by the protocols and
249 	 * the appropriate flags must be set in the pru_attach function.
250 	 */
251 	error = so_pru_attach(so, proto, &ai);
252 	if (error) {
253 		sosetstate(so, SS_NOFDREF);
254 		sofree(so);	/* from soalloc */
255 		return error;
256 	}
257 
258 	/*
259 	 * NOTE: Returns referenced socket.
260 	 */
261 	*aso = so;
262 	return (0);
263 }
264 
265 int
266 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
267 {
268 	int error;
269 
270 	error = so_pru_bind(so, nam, td);
271 	return (error);
272 }
273 
274 static void
275 sodealloc(struct socket *so)
276 {
277 	if (so->so_rcv.ssb_hiwat)
278 		(void)chgsbsize(so->so_cred->cr_uidinfo,
279 		    &so->so_rcv.ssb_hiwat, 0, RLIM_INFINITY);
280 	if (so->so_snd.ssb_hiwat)
281 		(void)chgsbsize(so->so_cred->cr_uidinfo,
282 		    &so->so_snd.ssb_hiwat, 0, RLIM_INFINITY);
283 #ifdef INET
284 	/* remove accept filter if present */
285 	if (so->so_accf != NULL)
286 		do_setopt_accept_filter(so, NULL);
287 #endif /* INET */
288 	crfree(so->so_cred);
289 	if (so->so_faddr != NULL)
290 		kfree(so->so_faddr, M_SONAME);
291 	kfree(so, M_SOCKET);
292 }
293 
294 int
295 solisten(struct socket *so, int backlog, struct thread *td)
296 {
297 	int error;
298 #ifdef SCTP
299 	short oldopt, oldqlimit;
300 #endif /* SCTP */
301 
302 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING))
303 		return (EINVAL);
304 
305 #ifdef SCTP
306 	oldopt = so->so_options;
307 	oldqlimit = so->so_qlimit;
308 #endif /* SCTP */
309 
310 	lwkt_gettoken(&so->so_rcv.ssb_token);
311 	if (TAILQ_EMPTY(&so->so_comp))
312 		so->so_options |= SO_ACCEPTCONN;
313 	lwkt_reltoken(&so->so_rcv.ssb_token);
314 	if (backlog < 0 || backlog > somaxconn)
315 		backlog = somaxconn;
316 	so->so_qlimit = backlog;
317 	/* SCTP needs to look at tweak both the inbound backlog parameter AND
318 	 * the so_options (UDP model both connect's and gets inbound
319 	 * connections .. implicitly).
320 	 */
321 	error = so_pru_listen(so, td);
322 	if (error) {
323 #ifdef SCTP
324 		/* Restore the params */
325 		so->so_options = oldopt;
326 		so->so_qlimit = oldqlimit;
327 #endif /* SCTP */
328 		return (error);
329 	}
330 	return (0);
331 }
332 
333 /*
334  * Destroy a disconnected socket.  This routine is a NOP if entities
335  * still have a reference on the socket:
336  *
337  *	so_pcb -	The protocol stack still has a reference
338  *	SS_NOFDREF -	There is no longer a file pointer reference
339  */
340 void
341 sofree(struct socket *so)
342 {
343 	struct socket *head;
344 
345 	/*
346 	 * This is a bit hackish at the moment.  We need to interlock
347 	 * any accept queue we are on before we potentially lose the
348 	 * last reference to avoid races against a re-reference from
349 	 * someone operating on the queue.
350 	 */
351 	while ((head = so->so_head) != NULL) {
352 		lwkt_getpooltoken(head);
353 		if (so->so_head == head)
354 			break;
355 		lwkt_relpooltoken(head);
356 	}
357 
358 	/*
359 	 * Arbitrage the last free.
360 	 */
361 	KKASSERT(so->so_refs > 0);
362 	if (atomic_fetchadd_int(&so->so_refs, -1) != 1) {
363 		if (head)
364 			lwkt_relpooltoken(head);
365 		return;
366 	}
367 
368 	KKASSERT(so->so_pcb == NULL && (so->so_state & SS_NOFDREF));
369 	KKASSERT((so->so_state & SS_ASSERTINPROG) == 0);
370 
371 	/*
372 	 * We're done, remove ourselves from the accept queue we are
373 	 * on, if we are on one.
374 	 */
375 	if (head != NULL) {
376 		if (so->so_state & SS_INCOMP) {
377 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
378 			head->so_incqlen--;
379 		} else if (so->so_state & SS_COMP) {
380 			/*
381 			 * We must not decommission a socket that's
382 			 * on the accept(2) queue.  If we do, then
383 			 * accept(2) may hang after select(2) indicated
384 			 * that the listening socket was ready.
385 			 */
386 			lwkt_relpooltoken(head);
387 			return;
388 		} else {
389 			panic("sofree: not queued");
390 		}
391 		soclrstate(so, SS_INCOMP);
392 		so->so_head = NULL;
393 		lwkt_relpooltoken(head);
394 	}
395 	ssb_release(&so->so_snd, so);
396 	sorflush(so);
397 	sodealloc(so);
398 }
399 
400 /*
401  * Close a socket on last file table reference removal.
402  * Initiate disconnect if connected.
403  * Free socket when disconnect complete.
404  */
405 int
406 soclose(struct socket *so, int fflag)
407 {
408 	int error;
409 
410 	funsetown(&so->so_sigio);
411 	if (!use_soclose_fast ||
412 	    (so->so_proto->pr_flags & PR_SYNC_PORT) ||
413 	    (so->so_options & SO_LINGER)) {
414 		error = soclose_sync(so, fflag);
415 	} else {
416 		soclose_fast(so);
417 		error = 0;
418 	}
419 	return error;
420 }
421 
422 static void
423 sodiscard(struct socket *so)
424 {
425 	lwkt_getpooltoken(so);
426 	if (so->so_options & SO_ACCEPTCONN) {
427 		struct socket *sp;
428 
429 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
430 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
431 			soclrstate(sp, SS_INCOMP);
432 			sp->so_head = NULL;
433 			so->so_incqlen--;
434 			soaborta(sp);
435 		}
436 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
437 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
438 			soclrstate(sp, SS_COMP);
439 			sp->so_head = NULL;
440 			so->so_qlen--;
441 			soaborta(sp);
442 		}
443 	}
444 	lwkt_relpooltoken(so);
445 
446 	if (so->so_state & SS_NOFDREF)
447 		panic("soclose: NOFDREF");
448 	sosetstate(so, SS_NOFDREF);	/* take ref */
449 }
450 
451 static int
452 soclose_sync(struct socket *so, int fflag)
453 {
454 	int error = 0;
455 
456 	if (so->so_pcb == NULL)
457 		goto discard;
458 	if (so->so_state & SS_ISCONNECTED) {
459 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
460 			error = sodisconnect(so);
461 			if (error)
462 				goto drop;
463 		}
464 		if (so->so_options & SO_LINGER) {
465 			if ((so->so_state & SS_ISDISCONNECTING) &&
466 			    (fflag & FNONBLOCK))
467 				goto drop;
468 			while (so->so_state & SS_ISCONNECTED) {
469 				error = tsleep(&so->so_timeo, PCATCH,
470 					       "soclos", so->so_linger * hz);
471 				if (error)
472 					break;
473 			}
474 		}
475 	}
476 drop:
477 	if (so->so_pcb) {
478 		int error2;
479 
480 		error2 = so_pru_detach(so);
481 		if (error == 0)
482 			error = error2;
483 	}
484 discard:
485 	sodiscard(so);
486 	so_pru_sync(so);	/* unpend async sending */
487 	sofree(so);		/* dispose of ref */
488 
489 	return (error);
490 }
491 
492 static void
493 soclose_sofree_async_handler(netmsg_t msg)
494 {
495 	sofree(msg->base.nm_so);
496 }
497 
498 static void
499 soclose_sofree_async(struct socket *so)
500 {
501 	struct netmsg_base *base = &so->so_clomsg;
502 
503 	netmsg_init(base, so, &netisr_apanic_rport, 0,
504 	    soclose_sofree_async_handler);
505 	lwkt_sendmsg(so->so_port, &base->lmsg);
506 }
507 
508 static void
509 soclose_disconn_async_handler(netmsg_t msg)
510 {
511 	struct socket *so = msg->base.nm_so;
512 
513 	if ((so->so_state & SS_ISCONNECTED) &&
514 	    (so->so_state & SS_ISDISCONNECTING) == 0)
515 		so_pru_disconnect_direct(so);
516 
517 	if (so->so_pcb)
518 		so_pru_detach_direct(so);
519 
520 	sodiscard(so);
521 	sofree(so);
522 }
523 
524 static void
525 soclose_disconn_async(struct socket *so)
526 {
527 	struct netmsg_base *base = &so->so_clomsg;
528 
529 	netmsg_init(base, so, &netisr_apanic_rport, 0,
530 	    soclose_disconn_async_handler);
531 	lwkt_sendmsg(so->so_port, &base->lmsg);
532 }
533 
534 static void
535 soclose_detach_async_handler(netmsg_t msg)
536 {
537 	struct socket *so = msg->base.nm_so;
538 
539 	if (so->so_pcb)
540 		so_pru_detach_direct(so);
541 
542 	sodiscard(so);
543 	sofree(so);
544 }
545 
546 static void
547 soclose_detach_async(struct socket *so)
548 {
549 	struct netmsg_base *base = &so->so_clomsg;
550 
551 	netmsg_init(base, so, &netisr_apanic_rport, 0,
552 	    soclose_detach_async_handler);
553 	lwkt_sendmsg(so->so_port, &base->lmsg);
554 }
555 
556 static void
557 soclose_fast(struct socket *so)
558 {
559 	if (so->so_pcb == NULL)
560 		goto discard;
561 
562 	if ((so->so_state & SS_ISCONNECTED) &&
563 	    (so->so_state & SS_ISDISCONNECTING) == 0) {
564 		soclose_disconn_async(so);
565 		return;
566 	}
567 
568 	if (so->so_pcb) {
569 		soclose_detach_async(so);
570 		return;
571 	}
572 
573 discard:
574 	sodiscard(so);
575 	soclose_sofree_async(so);
576 }
577 
578 /*
579  * Abort and destroy a socket.  Only one abort can be in progress
580  * at any given moment.
581  */
582 void
583 soabort(struct socket *so)
584 {
585 	soreference(so);
586 	so_pru_abort(so);
587 }
588 
589 void
590 soaborta(struct socket *so)
591 {
592 	soreference(so);
593 	so_pru_aborta(so);
594 }
595 
596 void
597 soabort_oncpu(struct socket *so)
598 {
599 	soreference(so);
600 	so_pru_abort_oncpu(so);
601 }
602 
603 /*
604  * so is passed in ref'd, which becomes owned by
605  * the cleared SS_NOFDREF flag.
606  */
607 void
608 soaccept_generic(struct socket *so)
609 {
610 	if ((so->so_state & SS_NOFDREF) == 0)
611 		panic("soaccept: !NOFDREF");
612 	soclrstate(so, SS_NOFDREF);	/* owned by lack of SS_NOFDREF */
613 }
614 
615 int
616 soaccept(struct socket *so, struct sockaddr **nam)
617 {
618 	int error;
619 
620 	soaccept_generic(so);
621 	error = so_pru_accept(so, nam);
622 	return (error);
623 }
624 
625 int
626 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
627 {
628 	int error;
629 
630 	if (so->so_options & SO_ACCEPTCONN)
631 		return (EOPNOTSUPP);
632 	/*
633 	 * If protocol is connection-based, can only connect once.
634 	 * Otherwise, if connected, try to disconnect first.
635 	 * This allows user to disconnect by connecting to, e.g.,
636 	 * a null address.
637 	 */
638 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
639 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
640 	    (error = sodisconnect(so)))) {
641 		error = EISCONN;
642 	} else {
643 		/*
644 		 * Prevent accumulated error from previous connection
645 		 * from biting us.
646 		 */
647 		so->so_error = 0;
648 		error = so_pru_connect(so, nam, td);
649 	}
650 	return (error);
651 }
652 
653 int
654 soconnect2(struct socket *so1, struct socket *so2)
655 {
656 	int error;
657 
658 	error = so_pru_connect2(so1, so2);
659 	return (error);
660 }
661 
662 int
663 sodisconnect(struct socket *so)
664 {
665 	int error;
666 
667 	if ((so->so_state & SS_ISCONNECTED) == 0) {
668 		error = ENOTCONN;
669 		goto bad;
670 	}
671 	if (so->so_state & SS_ISDISCONNECTING) {
672 		error = EALREADY;
673 		goto bad;
674 	}
675 	error = so_pru_disconnect(so);
676 bad:
677 	return (error);
678 }
679 
680 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
681 /*
682  * Send on a socket.
683  * If send must go all at once and message is larger than
684  * send buffering, then hard error.
685  * Lock against other senders.
686  * If must go all at once and not enough room now, then
687  * inform user that this would block and do nothing.
688  * Otherwise, if nonblocking, send as much as possible.
689  * The data to be sent is described by "uio" if nonzero,
690  * otherwise by the mbuf chain "top" (which must be null
691  * if uio is not).  Data provided in mbuf chain must be small
692  * enough to send all at once.
693  *
694  * Returns nonzero on error, timeout or signal; callers
695  * must check for short counts if EINTR/ERESTART are returned.
696  * Data and control buffers are freed on return.
697  */
698 int
699 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
700 	struct mbuf *top, struct mbuf *control, int flags,
701 	struct thread *td)
702 {
703 	struct mbuf **mp;
704 	struct mbuf *m;
705 	size_t resid;
706 	int space, len;
707 	int clen = 0, error, dontroute, mlen;
708 	int atomic = sosendallatonce(so) || top;
709 	int pru_flags;
710 
711 	if (uio) {
712 		resid = uio->uio_resid;
713 	} else {
714 		resid = (size_t)top->m_pkthdr.len;
715 #ifdef INVARIANTS
716 		len = 0;
717 		for (m = top; m; m = m->m_next)
718 			len += m->m_len;
719 		KKASSERT(top->m_pkthdr.len == len);
720 #endif
721 	}
722 
723 	/*
724 	 * WARNING!  resid is unsigned, space and len are signed.  space
725 	 * 	     can wind up negative if the sockbuf is overcommitted.
726 	 *
727 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
728 	 * type sockets since that's an error.
729 	 */
730 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
731 		error = EINVAL;
732 		goto out;
733 	}
734 
735 	dontroute =
736 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
737 	    (so->so_proto->pr_flags & PR_ATOMIC);
738 	if (td->td_lwp != NULL)
739 		td->td_lwp->lwp_ru.ru_msgsnd++;
740 	if (control)
741 		clen = control->m_len;
742 #define	gotoerr(errcode)	{ error = errcode; goto release; }
743 
744 restart:
745 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
746 	if (error)
747 		goto out;
748 
749 	do {
750 		if (so->so_state & SS_CANTSENDMORE)
751 			gotoerr(EPIPE);
752 		if (so->so_error) {
753 			error = so->so_error;
754 			so->so_error = 0;
755 			goto release;
756 		}
757 		if ((so->so_state & SS_ISCONNECTED) == 0) {
758 			/*
759 			 * `sendto' and `sendmsg' is allowed on a connection-
760 			 * based socket if it supports implied connect.
761 			 * Return ENOTCONN if not connected and no address is
762 			 * supplied.
763 			 */
764 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
765 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
766 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
767 				    !(resid == 0 && clen != 0))
768 					gotoerr(ENOTCONN);
769 			} else if (addr == NULL)
770 			    gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
771 				   ENOTCONN : EDESTADDRREQ);
772 		}
773 		if ((atomic && resid > so->so_snd.ssb_hiwat) ||
774 		    clen > so->so_snd.ssb_hiwat) {
775 			gotoerr(EMSGSIZE);
776 		}
777 		space = ssb_space(&so->so_snd);
778 		if (flags & MSG_OOB)
779 			space += 1024;
780 		if ((space < 0 || (size_t)space < resid + clen) && uio &&
781 		    (atomic || space < so->so_snd.ssb_lowat || space < clen)) {
782 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
783 				gotoerr(EWOULDBLOCK);
784 			ssb_unlock(&so->so_snd);
785 			error = ssb_wait(&so->so_snd);
786 			if (error)
787 				goto out;
788 			goto restart;
789 		}
790 		mp = &top;
791 		space -= clen;
792 		do {
793 		    if (uio == NULL) {
794 			/*
795 			 * Data is prepackaged in "top".
796 			 */
797 			resid = 0;
798 			if (flags & MSG_EOR)
799 				top->m_flags |= M_EOR;
800 		    } else do {
801 			if (resid > INT_MAX)
802 				resid = INT_MAX;
803 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
804 				   top == NULL ? M_PKTHDR : 0, &mlen);
805 			if (top == NULL) {
806 				m->m_pkthdr.len = 0;
807 				m->m_pkthdr.rcvif = NULL;
808 			}
809 			len = imin((int)szmin(mlen, resid), space);
810 			if (resid < MINCLSIZE) {
811 				/*
812 				 * For datagram protocols, leave room
813 				 * for protocol headers in first mbuf.
814 				 */
815 				if (atomic && top == NULL && len < mlen)
816 					MH_ALIGN(m, len);
817 			}
818 			space -= len;
819 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
820 			resid = uio->uio_resid;
821 			m->m_len = len;
822 			*mp = m;
823 			top->m_pkthdr.len += len;
824 			if (error)
825 				goto release;
826 			mp = &m->m_next;
827 			if (resid == 0) {
828 				if (flags & MSG_EOR)
829 					top->m_flags |= M_EOR;
830 				break;
831 			}
832 		    } while (space > 0 && atomic);
833 		    if (dontroute)
834 			    so->so_options |= SO_DONTROUTE;
835 		    if (flags & MSG_OOB) {
836 		    	    pru_flags = PRUS_OOB;
837 		    } else if ((flags & MSG_EOF) &&
838 		    	       (so->so_proto->pr_flags & PR_IMPLOPCL) &&
839 			       (resid == 0)) {
840 			    /*
841 			     * If the user set MSG_EOF, the protocol
842 			     * understands this flag and nothing left to
843 			     * send then use PRU_SEND_EOF instead of PRU_SEND.
844 			     */
845 		    	    pru_flags = PRUS_EOF;
846 		    } else if (resid > 0 && space > 0) {
847 			    /* If there is more to send, set PRUS_MORETOCOME */
848 		    	    pru_flags = PRUS_MORETOCOME;
849 		    } else {
850 		    	    pru_flags = 0;
851 		    }
852 		    /*
853 		     * XXX all the SS_CANTSENDMORE checks previously
854 		     * done could be out of date.  We could have recieved
855 		     * a reset packet in an interrupt or maybe we slept
856 		     * while doing page faults in uiomove() etc. We could
857 		     * probably recheck again inside the splnet() protection
858 		     * here, but there are probably other places that this
859 		     * also happens.  We must rethink this.
860 		     */
861 		    error = so_pru_send(so, pru_flags, top, addr, control, td);
862 		    if (dontroute)
863 			    so->so_options &= ~SO_DONTROUTE;
864 		    clen = 0;
865 		    control = NULL;
866 		    top = NULL;
867 		    mp = &top;
868 		    if (error)
869 			    goto release;
870 		} while (resid && space > 0);
871 	} while (resid);
872 
873 release:
874 	ssb_unlock(&so->so_snd);
875 out:
876 	if (top)
877 		m_freem(top);
878 	if (control)
879 		m_freem(control);
880 	return (error);
881 }
882 
883 /*
884  * A specialization of sosend() for UDP based on protocol-specific knowledge:
885  *   so->so_proto->pr_flags has the PR_ATOMIC field set.  This means that
886  *	sosendallatonce() returns true,
887  *	the "atomic" variable is true,
888  *	and sosendudp() blocks until space is available for the entire send.
889  *   so->so_proto->pr_flags does not have the PR_CONNREQUIRED or
890  *	PR_IMPLOPCL flags set.
891  *   UDP has no out-of-band data.
892  *   UDP has no control data.
893  *   UDP does not support MSG_EOR.
894  */
895 int
896 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio,
897 	  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
898 {
899 	size_t resid;
900 	int error, pru_flags = 0;
901 	int space;
902 
903 	if (td->td_lwp != NULL)
904 		td->td_lwp->lwp_ru.ru_msgsnd++;
905 	if (control)
906 		m_freem(control);
907 
908 	KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp"));
909 	resid = uio ? uio->uio_resid : (size_t)top->m_pkthdr.len;
910 
911 restart:
912 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
913 	if (error)
914 		goto out;
915 
916 	if (so->so_state & SS_CANTSENDMORE)
917 		gotoerr(EPIPE);
918 	if (so->so_error) {
919 		error = so->so_error;
920 		so->so_error = 0;
921 		goto release;
922 	}
923 	if (!(so->so_state & SS_ISCONNECTED) && addr == NULL)
924 		gotoerr(EDESTADDRREQ);
925 	if (resid > so->so_snd.ssb_hiwat)
926 		gotoerr(EMSGSIZE);
927 	space = ssb_space(&so->so_snd);
928 	if (uio && (space < 0 || (size_t)space < resid)) {
929 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
930 			gotoerr(EWOULDBLOCK);
931 		ssb_unlock(&so->so_snd);
932 		error = ssb_wait(&so->so_snd);
933 		if (error)
934 			goto out;
935 		goto restart;
936 	}
937 
938 	if (uio) {
939 		top = m_uiomove(uio);
940 		if (top == NULL)
941 			goto release;
942 	}
943 
944 	if (flags & MSG_DONTROUTE)
945 		pru_flags |= PRUS_DONTROUTE;
946 
947 	if (udp_sosend_async && (flags & MSG_SYNC) == 0) {
948 		so_pru_send_async(so, pru_flags, top, addr, NULL, td);
949 		error = 0;
950 	} else {
951 		error = so_pru_send(so, pru_flags, top, addr, NULL, td);
952 	}
953 	top = NULL;		/* sent or freed in lower layer */
954 
955 release:
956 	ssb_unlock(&so->so_snd);
957 out:
958 	if (top)
959 		m_freem(top);
960 	return (error);
961 }
962 
963 int
964 sosendtcp(struct socket *so, struct sockaddr *addr, struct uio *uio,
965 	struct mbuf *top, struct mbuf *control, int flags,
966 	struct thread *td)
967 {
968 	struct mbuf **mp;
969 	struct mbuf *m;
970 	size_t resid;
971 	int space, len;
972 	int error, mlen;
973 	int allatonce;
974 	int pru_flags;
975 
976 	if (uio) {
977 		KKASSERT(top == NULL);
978 		allatonce = 0;
979 		resid = uio->uio_resid;
980 	} else {
981 		allatonce = 1;
982 		resid = (size_t)top->m_pkthdr.len;
983 #ifdef INVARIANTS
984 		len = 0;
985 		for (m = top; m; m = m->m_next)
986 			len += m->m_len;
987 		KKASSERT(top->m_pkthdr.len == len);
988 #endif
989 	}
990 
991 	/*
992 	 * WARNING!  resid is unsigned, space and len are signed.  space
993 	 * 	     can wind up negative if the sockbuf is overcommitted.
994 	 *
995 	 * Also check to make sure that MSG_EOR isn't used on TCP
996 	 */
997 	if (flags & MSG_EOR) {
998 		error = EINVAL;
999 		goto out;
1000 	}
1001 
1002 	if (control) {
1003 		/* TCP doesn't do control messages (rights, creds, etc) */
1004 		if (control->m_len) {
1005 			error = EINVAL;
1006 			goto out;
1007 		}
1008 		m_freem(control);	/* empty control, just free it */
1009 		control = NULL;
1010 	}
1011 
1012 	if (td->td_lwp != NULL)
1013 		td->td_lwp->lwp_ru.ru_msgsnd++;
1014 
1015 #define	gotoerr(errcode)	{ error = errcode; goto release; }
1016 
1017 restart:
1018 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
1019 	if (error)
1020 		goto out;
1021 
1022 	do {
1023 		if (so->so_state & SS_CANTSENDMORE)
1024 			gotoerr(EPIPE);
1025 		if (so->so_error) {
1026 			error = so->so_error;
1027 			so->so_error = 0;
1028 			goto release;
1029 		}
1030 		if ((so->so_state & SS_ISCONNECTED) == 0 &&
1031 		    (so->so_state & SS_ISCONFIRMING) == 0)
1032 			gotoerr(ENOTCONN);
1033 		if (allatonce && resid > so->so_snd.ssb_hiwat)
1034 			gotoerr(EMSGSIZE);
1035 
1036 		space = ssb_space_prealloc(&so->so_snd);
1037 		if (flags & MSG_OOB)
1038 			space += 1024;
1039 		if ((space < 0 || (size_t)space < resid) && !allatonce &&
1040 		    space < so->so_snd.ssb_lowat) {
1041 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
1042 				gotoerr(EWOULDBLOCK);
1043 			ssb_unlock(&so->so_snd);
1044 			error = ssb_wait(&so->so_snd);
1045 			if (error)
1046 				goto out;
1047 			goto restart;
1048 		}
1049 		mp = &top;
1050 		do {
1051 		    int cnt = 0, async = 0;
1052 
1053 		    if (uio == NULL) {
1054 			/*
1055 			 * Data is prepackaged in "top".
1056 			 */
1057 			resid = 0;
1058 		    } else do {
1059 			if (resid > INT_MAX)
1060 				resid = INT_MAX;
1061 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
1062 				   top == NULL ? M_PKTHDR : 0, &mlen);
1063 			if (top == NULL) {
1064 				m->m_pkthdr.len = 0;
1065 				m->m_pkthdr.rcvif = NULL;
1066 			}
1067 			len = imin((int)szmin(mlen, resid), space);
1068 			space -= len;
1069 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
1070 			resid = uio->uio_resid;
1071 			m->m_len = len;
1072 			*mp = m;
1073 			top->m_pkthdr.len += len;
1074 			if (error)
1075 				goto release;
1076 			mp = &m->m_next;
1077 			if (resid == 0)
1078 				break;
1079 			++cnt;
1080 		    } while (space > 0 && cnt < tcp_sosend_agglim);
1081 
1082 		    if (tcp_sosend_async)
1083 			    async = 1;
1084 
1085 		    if (flags & MSG_OOB) {
1086 		    	    pru_flags = PRUS_OOB;
1087 			    async = 0;
1088 		    } else if ((flags & MSG_EOF) && resid == 0) {
1089 			    pru_flags = PRUS_EOF;
1090 		    } else if (resid > 0 && space > 0) {
1091 			    /* If there is more to send, set PRUS_MORETOCOME */
1092 		    	    pru_flags = PRUS_MORETOCOME;
1093 			    async = 1;
1094 		    } else {
1095 		    	    pru_flags = 0;
1096 		    }
1097 
1098 		    if (flags & MSG_SYNC)
1099 			    async = 0;
1100 
1101 		    /*
1102 		     * XXX all the SS_CANTSENDMORE checks previously
1103 		     * done could be out of date.  We could have recieved
1104 		     * a reset packet in an interrupt or maybe we slept
1105 		     * while doing page faults in uiomove() etc. We could
1106 		     * probably recheck again inside the splnet() protection
1107 		     * here, but there are probably other places that this
1108 		     * also happens.  We must rethink this.
1109 		     */
1110 		    for (m = top; m; m = m->m_next)
1111 			    ssb_preallocstream(&so->so_snd, m);
1112 		    if (!async) {
1113 			    error = so_pru_send(so, pru_flags, top,
1114 			        NULL, NULL, td);
1115 		    } else {
1116 			    so_pru_send_async(so, pru_flags, top,
1117 			        NULL, NULL, td);
1118 			    error = 0;
1119 		    }
1120 
1121 		    top = NULL;
1122 		    mp = &top;
1123 		    if (error)
1124 			    goto release;
1125 		} while (resid && space > 0);
1126 	} while (resid);
1127 
1128 release:
1129 	ssb_unlock(&so->so_snd);
1130 out:
1131 	if (top)
1132 		m_freem(top);
1133 	if (control)
1134 		m_freem(control);
1135 	return (error);
1136 }
1137 
1138 /*
1139  * Implement receive operations on a socket.
1140  *
1141  * We depend on the way that records are added to the signalsockbuf
1142  * by sbappend*.  In particular, each record (mbufs linked through m_next)
1143  * must begin with an address if the protocol so specifies,
1144  * followed by an optional mbuf or mbufs containing ancillary data,
1145  * and then zero or more mbufs of data.
1146  *
1147  * Although the signalsockbuf is locked, new data may still be appended.
1148  * A token inside the ssb_lock deals with MP issues and still allows
1149  * the network to access the socket if we block in a uio.
1150  *
1151  * The caller may receive the data as a single mbuf chain by supplying
1152  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1153  * only for the count in uio_resid.
1154  */
1155 int
1156 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1157 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1158 {
1159 	struct mbuf *m, *n;
1160 	struct mbuf *free_chain = NULL;
1161 	int flags, len, error, offset;
1162 	struct protosw *pr = so->so_proto;
1163 	int moff, type = 0;
1164 	size_t resid, orig_resid;
1165 
1166 	if (uio)
1167 		resid = uio->uio_resid;
1168 	else
1169 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1170 	orig_resid = resid;
1171 
1172 	if (psa)
1173 		*psa = NULL;
1174 	if (controlp)
1175 		*controlp = NULL;
1176 	if (flagsp)
1177 		flags = *flagsp &~ MSG_EOR;
1178 	else
1179 		flags = 0;
1180 	if (flags & MSG_OOB) {
1181 		m = m_get(MB_WAIT, MT_DATA);
1182 		if (m == NULL)
1183 			return (ENOBUFS);
1184 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1185 		if (error)
1186 			goto bad;
1187 		if (sio) {
1188 			do {
1189 				sbappend(sio, m);
1190 				KKASSERT(resid >= (size_t)m->m_len);
1191 				resid -= (size_t)m->m_len;
1192 			} while (resid > 0 && m);
1193 		} else {
1194 			do {
1195 				uio->uio_resid = resid;
1196 				error = uiomove(mtod(m, caddr_t),
1197 						(int)szmin(resid, m->m_len),
1198 						uio);
1199 				resid = uio->uio_resid;
1200 				m = m_free(m);
1201 			} while (uio->uio_resid && error == 0 && m);
1202 		}
1203 bad:
1204 		if (m)
1205 			m_freem(m);
1206 		return (error);
1207 	}
1208 	if ((so->so_state & SS_ISCONFIRMING) && resid)
1209 		so_pru_rcvd(so, 0);
1210 
1211 	/*
1212 	 * The token interlocks against the protocol thread while
1213 	 * ssb_lock is a blocking lock against other userland entities.
1214 	 */
1215 	lwkt_gettoken(&so->so_rcv.ssb_token);
1216 restart:
1217 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1218 	if (error)
1219 		goto done;
1220 
1221 	m = so->so_rcv.ssb_mb;
1222 	/*
1223 	 * If we have less data than requested, block awaiting more
1224 	 * (subject to any timeout) if:
1225 	 *   1. the current count is less than the low water mark, or
1226 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1227 	 *	receive operation at once if we block (resid <= hiwat).
1228 	 *   3. MSG_DONTWAIT is not set
1229 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1230 	 * we have to do the receive in sections, and thus risk returning
1231 	 * a short count if a timeout or signal occurs after we start.
1232 	 */
1233 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1234 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1235 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1236 	    ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)) &&
1237 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1238 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1239 		if (so->so_error) {
1240 			if (m)
1241 				goto dontblock;
1242 			error = so->so_error;
1243 			if ((flags & MSG_PEEK) == 0)
1244 				so->so_error = 0;
1245 			goto release;
1246 		}
1247 		if (so->so_state & SS_CANTRCVMORE) {
1248 			if (m)
1249 				goto dontblock;
1250 			else
1251 				goto release;
1252 		}
1253 		for (; m; m = m->m_next) {
1254 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1255 				m = so->so_rcv.ssb_mb;
1256 				goto dontblock;
1257 			}
1258 		}
1259 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1260 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1261 			error = ENOTCONN;
1262 			goto release;
1263 		}
1264 		if (resid == 0)
1265 			goto release;
1266 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1267 			error = EWOULDBLOCK;
1268 			goto release;
1269 		}
1270 		ssb_unlock(&so->so_rcv);
1271 		error = ssb_wait(&so->so_rcv);
1272 		if (error)
1273 			goto done;
1274 		goto restart;
1275 	}
1276 dontblock:
1277 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1278 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1279 
1280 	/*
1281 	 * note: m should be == sb_mb here.  Cache the next record while
1282 	 * cleaning up.  Note that calling m_free*() will break out critical
1283 	 * section.
1284 	 */
1285 	KKASSERT(m == so->so_rcv.ssb_mb);
1286 
1287 	/*
1288 	 * Skip any address mbufs prepending the record.
1289 	 */
1290 	if (pr->pr_flags & PR_ADDR) {
1291 		KASSERT(m->m_type == MT_SONAME, ("receive 1a"));
1292 		orig_resid = 0;
1293 		if (psa)
1294 			*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1295 		if (flags & MSG_PEEK)
1296 			m = m->m_next;
1297 		else
1298 			m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1299 	}
1300 
1301 	/*
1302 	 * Skip any control mbufs prepending the record.
1303 	 */
1304 #ifdef SCTP
1305 	if (pr->pr_flags & PR_ADDR_OPT) {
1306 		/*
1307 		 * For SCTP we may be getting a
1308 		 * whole message OR a partial delivery.
1309 		 */
1310 		if (m && m->m_type == MT_SONAME) {
1311 			orig_resid = 0;
1312 			if (psa)
1313 				*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1314 			if (flags & MSG_PEEK)
1315 				m = m->m_next;
1316 			else
1317 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1318 		}
1319 	}
1320 #endif /* SCTP */
1321 	while (m && m->m_type == MT_CONTROL && error == 0) {
1322 		if (flags & MSG_PEEK) {
1323 			if (controlp)
1324 				*controlp = m_copy(m, 0, m->m_len);
1325 			m = m->m_next;	/* XXX race */
1326 		} else {
1327 			if (controlp) {
1328 				n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1329 				if (pr->pr_domain->dom_externalize &&
1330 				    mtod(m, struct cmsghdr *)->cmsg_type ==
1331 				    SCM_RIGHTS)
1332 				   error = (*pr->pr_domain->dom_externalize)(m);
1333 				*controlp = m;
1334 				m = n;
1335 			} else {
1336 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1337 			}
1338 		}
1339 		if (controlp && *controlp) {
1340 			orig_resid = 0;
1341 			controlp = &(*controlp)->m_next;
1342 		}
1343 	}
1344 
1345 	/*
1346 	 * flag OOB data.
1347 	 */
1348 	if (m) {
1349 		type = m->m_type;
1350 		if (type == MT_OOBDATA)
1351 			flags |= MSG_OOB;
1352 	}
1353 
1354 	/*
1355 	 * Copy to the UIO or mbuf return chain (*mp).
1356 	 */
1357 	moff = 0;
1358 	offset = 0;
1359 	while (m && resid > 0 && error == 0) {
1360 		if (m->m_type == MT_OOBDATA) {
1361 			if (type != MT_OOBDATA)
1362 				break;
1363 		} else if (type == MT_OOBDATA)
1364 			break;
1365 		else
1366 		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1367 			("receive 3"));
1368 		soclrstate(so, SS_RCVATMARK);
1369 		len = (resid > INT_MAX) ? INT_MAX : resid;
1370 		if (so->so_oobmark && len > so->so_oobmark - offset)
1371 			len = so->so_oobmark - offset;
1372 		if (len > m->m_len - moff)
1373 			len = m->m_len - moff;
1374 
1375 		/*
1376 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1377 		 * The SIO is dealt with when we eat the mbuf, but deal
1378 		 * with the resid here either way.
1379 		 */
1380 		if (uio) {
1381 			uio->uio_resid = resid;
1382 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1383 			resid = uio->uio_resid;
1384 			if (error)
1385 				goto release;
1386 		} else {
1387 			resid -= (size_t)len;
1388 		}
1389 
1390 		/*
1391 		 * Eat the entire mbuf or just a piece of it
1392 		 */
1393 		if (len == m->m_len - moff) {
1394 			if (m->m_flags & M_EOR)
1395 				flags |= MSG_EOR;
1396 #ifdef SCTP
1397 			if (m->m_flags & M_NOTIFICATION)
1398 				flags |= MSG_NOTIFICATION;
1399 #endif /* SCTP */
1400 			if (flags & MSG_PEEK) {
1401 				m = m->m_next;
1402 				moff = 0;
1403 			} else {
1404 				if (sio) {
1405 					n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1406 					sbappend(sio, m);
1407 					m = n;
1408 				} else {
1409 					m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1410 				}
1411 			}
1412 		} else {
1413 			if (flags & MSG_PEEK) {
1414 				moff += len;
1415 			} else {
1416 				if (sio) {
1417 					n = m_copym(m, 0, len, MB_WAIT);
1418 					if (n)
1419 						sbappend(sio, n);
1420 				}
1421 				m->m_data += len;
1422 				m->m_len -= len;
1423 				so->so_rcv.ssb_cc -= len;
1424 			}
1425 		}
1426 		if (so->so_oobmark) {
1427 			if ((flags & MSG_PEEK) == 0) {
1428 				so->so_oobmark -= len;
1429 				if (so->so_oobmark == 0) {
1430 					sosetstate(so, SS_RCVATMARK);
1431 					break;
1432 				}
1433 			} else {
1434 				offset += len;
1435 				if (offset == so->so_oobmark)
1436 					break;
1437 			}
1438 		}
1439 		if (flags & MSG_EOR)
1440 			break;
1441 		/*
1442 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1443 		 * we must not quit until resid == 0 or an error
1444 		 * termination.  If a signal/timeout occurs, return
1445 		 * with a short count but without error.
1446 		 * Keep signalsockbuf locked against other readers.
1447 		 */
1448 		while ((flags & MSG_WAITALL) && m == NULL &&
1449 		       resid > 0 && !sosendallatonce(so) &&
1450 		       so->so_rcv.ssb_mb == NULL) {
1451 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1452 				break;
1453 			/*
1454 			 * The window might have closed to zero, make
1455 			 * sure we send an ack now that we've drained
1456 			 * the buffer or we might end up blocking until
1457 			 * the idle takes over (5 seconds).
1458 			 */
1459 			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1460 				so_pru_rcvd(so, flags);
1461 			error = ssb_wait(&so->so_rcv);
1462 			if (error) {
1463 				ssb_unlock(&so->so_rcv);
1464 				error = 0;
1465 				goto done;
1466 			}
1467 			m = so->so_rcv.ssb_mb;
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * If an atomic read was requested but unread data still remains
1473 	 * in the record, set MSG_TRUNC.
1474 	 */
1475 	if (m && pr->pr_flags & PR_ATOMIC)
1476 		flags |= MSG_TRUNC;
1477 
1478 	/*
1479 	 * Cleanup.  If an atomic read was requested drop any unread data.
1480 	 */
1481 	if ((flags & MSG_PEEK) == 0) {
1482 		if (m && (pr->pr_flags & PR_ATOMIC))
1483 			sbdroprecord(&so->so_rcv.sb);
1484 		if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1485 			so_pru_rcvd(so, flags);
1486 	}
1487 
1488 	if (orig_resid == resid && orig_resid &&
1489 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1490 		ssb_unlock(&so->so_rcv);
1491 		goto restart;
1492 	}
1493 
1494 	if (flagsp)
1495 		*flagsp |= flags;
1496 release:
1497 	ssb_unlock(&so->so_rcv);
1498 done:
1499 	lwkt_reltoken(&so->so_rcv.ssb_token);
1500 	if (free_chain)
1501 		m_freem(free_chain);
1502 	return (error);
1503 }
1504 
1505 /*
1506  * Shut a socket down.  Note that we do not get a frontend lock as we
1507  * want to be able to shut the socket down even if another thread is
1508  * blocked in a read(), thus waking it up.
1509  */
1510 int
1511 soshutdown(struct socket *so, int how)
1512 {
1513 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1514 		return (EINVAL);
1515 
1516 	if (how != SHUT_WR) {
1517 		/*ssb_lock(&so->so_rcv, M_WAITOK);*/
1518 		sorflush(so);
1519 		/*ssb_unlock(&so->so_rcv);*/
1520 	}
1521 	if (how != SHUT_RD)
1522 		return (so_pru_shutdown(so));
1523 	return (0);
1524 }
1525 
1526 void
1527 sorflush(struct socket *so)
1528 {
1529 	struct signalsockbuf *ssb = &so->so_rcv;
1530 	struct protosw *pr = so->so_proto;
1531 	struct signalsockbuf asb;
1532 
1533 	atomic_set_int(&ssb->ssb_flags, SSB_NOINTR);
1534 
1535 	lwkt_gettoken(&ssb->ssb_token);
1536 	socantrcvmore(so);
1537 	asb = *ssb;
1538 
1539 	/*
1540 	 * Can't just blow up the ssb structure here
1541 	 */
1542 	bzero(&ssb->sb, sizeof(ssb->sb));
1543 	ssb->ssb_timeo = 0;
1544 	ssb->ssb_lowat = 0;
1545 	ssb->ssb_hiwat = 0;
1546 	ssb->ssb_mbmax = 0;
1547 	atomic_clear_int(&ssb->ssb_flags, SSB_CLEAR_MASK);
1548 
1549 	if ((pr->pr_flags & PR_RIGHTS) && pr->pr_domain->dom_dispose)
1550 		(*pr->pr_domain->dom_dispose)(asb.ssb_mb);
1551 	ssb_release(&asb, so);
1552 
1553 	lwkt_reltoken(&ssb->ssb_token);
1554 }
1555 
1556 #ifdef INET
1557 static int
1558 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt)
1559 {
1560 	struct accept_filter_arg	*afap = NULL;
1561 	struct accept_filter	*afp;
1562 	struct so_accf	*af = so->so_accf;
1563 	int	error = 0;
1564 
1565 	/* do not set/remove accept filters on non listen sockets */
1566 	if ((so->so_options & SO_ACCEPTCONN) == 0) {
1567 		error = EINVAL;
1568 		goto out;
1569 	}
1570 
1571 	/* removing the filter */
1572 	if (sopt == NULL) {
1573 		if (af != NULL) {
1574 			if (af->so_accept_filter != NULL &&
1575 				af->so_accept_filter->accf_destroy != NULL) {
1576 				af->so_accept_filter->accf_destroy(so);
1577 			}
1578 			if (af->so_accept_filter_str != NULL) {
1579 				kfree(af->so_accept_filter_str, M_ACCF);
1580 			}
1581 			kfree(af, M_ACCF);
1582 			so->so_accf = NULL;
1583 		}
1584 		so->so_options &= ~SO_ACCEPTFILTER;
1585 		return (0);
1586 	}
1587 	/* adding a filter */
1588 	/* must remove previous filter first */
1589 	if (af != NULL) {
1590 		error = EINVAL;
1591 		goto out;
1592 	}
1593 	/* don't put large objects on the kernel stack */
1594 	afap = kmalloc(sizeof(*afap), M_TEMP, M_WAITOK);
1595 	error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
1596 	afap->af_name[sizeof(afap->af_name)-1] = '\0';
1597 	afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
1598 	if (error)
1599 		goto out;
1600 	afp = accept_filt_get(afap->af_name);
1601 	if (afp == NULL) {
1602 		error = ENOENT;
1603 		goto out;
1604 	}
1605 	af = kmalloc(sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
1606 	if (afp->accf_create != NULL) {
1607 		if (afap->af_name[0] != '\0') {
1608 			int len = strlen(afap->af_name) + 1;
1609 
1610 			af->so_accept_filter_str = kmalloc(len, M_ACCF,
1611 							   M_WAITOK);
1612 			strcpy(af->so_accept_filter_str, afap->af_name);
1613 		}
1614 		af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
1615 		if (af->so_accept_filter_arg == NULL) {
1616 			kfree(af->so_accept_filter_str, M_ACCF);
1617 			kfree(af, M_ACCF);
1618 			so->so_accf = NULL;
1619 			error = EINVAL;
1620 			goto out;
1621 		}
1622 	}
1623 	af->so_accept_filter = afp;
1624 	so->so_accf = af;
1625 	so->so_options |= SO_ACCEPTFILTER;
1626 out:
1627 	if (afap != NULL)
1628 		kfree(afap, M_TEMP);
1629 	return (error);
1630 }
1631 #endif /* INET */
1632 
1633 /*
1634  * Perhaps this routine, and sooptcopyout(), below, ought to come in
1635  * an additional variant to handle the case where the option value needs
1636  * to be some kind of integer, but not a specific size.
1637  * In addition to their use here, these functions are also called by the
1638  * protocol-level pr_ctloutput() routines.
1639  */
1640 int
1641 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1642 {
1643 	return soopt_to_kbuf(sopt, buf, len, minlen);
1644 }
1645 
1646 int
1647 soopt_to_kbuf(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1648 {
1649 	size_t	valsize;
1650 
1651 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
1652 	KKASSERT(kva_p(buf));
1653 
1654 	/*
1655 	 * If the user gives us more than we wanted, we ignore it,
1656 	 * but if we don't get the minimum length the caller
1657 	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1658 	 * is set to however much we actually retrieved.
1659 	 */
1660 	if ((valsize = sopt->sopt_valsize) < minlen)
1661 		return EINVAL;
1662 	if (valsize > len)
1663 		sopt->sopt_valsize = valsize = len;
1664 
1665 	bcopy(sopt->sopt_val, buf, valsize);
1666 	return 0;
1667 }
1668 
1669 
1670 int
1671 sosetopt(struct socket *so, struct sockopt *sopt)
1672 {
1673 	int	error, optval;
1674 	struct	linger l;
1675 	struct	timeval tv;
1676 	u_long  val;
1677 	struct signalsockbuf *sotmp;
1678 
1679 	error = 0;
1680 	sopt->sopt_dir = SOPT_SET;
1681 	if (sopt->sopt_level != SOL_SOCKET) {
1682 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1683 			return (so_pr_ctloutput(so, sopt));
1684 		}
1685 		error = ENOPROTOOPT;
1686 	} else {
1687 		switch (sopt->sopt_name) {
1688 #ifdef INET
1689 		case SO_ACCEPTFILTER:
1690 			error = do_setopt_accept_filter(so, sopt);
1691 			if (error)
1692 				goto bad;
1693 			break;
1694 #endif /* INET */
1695 		case SO_LINGER:
1696 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1697 			if (error)
1698 				goto bad;
1699 
1700 			so->so_linger = l.l_linger;
1701 			if (l.l_onoff)
1702 				so->so_options |= SO_LINGER;
1703 			else
1704 				so->so_options &= ~SO_LINGER;
1705 			break;
1706 
1707 		case SO_DEBUG:
1708 		case SO_KEEPALIVE:
1709 		case SO_DONTROUTE:
1710 		case SO_USELOOPBACK:
1711 		case SO_BROADCAST:
1712 		case SO_REUSEADDR:
1713 		case SO_REUSEPORT:
1714 		case SO_OOBINLINE:
1715 		case SO_TIMESTAMP:
1716 			error = sooptcopyin(sopt, &optval, sizeof optval,
1717 					    sizeof optval);
1718 			if (error)
1719 				goto bad;
1720 			if (optval)
1721 				so->so_options |= sopt->sopt_name;
1722 			else
1723 				so->so_options &= ~sopt->sopt_name;
1724 			break;
1725 
1726 		case SO_SNDBUF:
1727 		case SO_RCVBUF:
1728 		case SO_SNDLOWAT:
1729 		case SO_RCVLOWAT:
1730 			error = sooptcopyin(sopt, &optval, sizeof optval,
1731 					    sizeof optval);
1732 			if (error)
1733 				goto bad;
1734 
1735 			/*
1736 			 * Values < 1 make no sense for any of these
1737 			 * options, so disallow them.
1738 			 */
1739 			if (optval < 1) {
1740 				error = EINVAL;
1741 				goto bad;
1742 			}
1743 
1744 			switch (sopt->sopt_name) {
1745 			case SO_SNDBUF:
1746 			case SO_RCVBUF:
1747 				if (ssb_reserve(sopt->sopt_name == SO_SNDBUF ?
1748 				    &so->so_snd : &so->so_rcv, (u_long)optval,
1749 				    so,
1750 				    &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) {
1751 					error = ENOBUFS;
1752 					goto bad;
1753 				}
1754 				sotmp = (sopt->sopt_name == SO_SNDBUF) ?
1755 						&so->so_snd : &so->so_rcv;
1756 				atomic_clear_int(&sotmp->ssb_flags,
1757 						 SSB_AUTOSIZE);
1758 				break;
1759 
1760 			/*
1761 			 * Make sure the low-water is never greater than
1762 			 * the high-water.
1763 			 */
1764 			case SO_SNDLOWAT:
1765 				so->so_snd.ssb_lowat =
1766 				    (optval > so->so_snd.ssb_hiwat) ?
1767 				    so->so_snd.ssb_hiwat : optval;
1768 				atomic_clear_int(&so->so_snd.ssb_flags,
1769 						 SSB_AUTOLOWAT);
1770 				break;
1771 			case SO_RCVLOWAT:
1772 				so->so_rcv.ssb_lowat =
1773 				    (optval > so->so_rcv.ssb_hiwat) ?
1774 				    so->so_rcv.ssb_hiwat : optval;
1775 				atomic_clear_int(&so->so_rcv.ssb_flags,
1776 						 SSB_AUTOLOWAT);
1777 				break;
1778 			}
1779 			break;
1780 
1781 		case SO_SNDTIMEO:
1782 		case SO_RCVTIMEO:
1783 			error = sooptcopyin(sopt, &tv, sizeof tv,
1784 					    sizeof tv);
1785 			if (error)
1786 				goto bad;
1787 
1788 			/* assert(hz > 0); */
1789 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
1790 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1791 				error = EDOM;
1792 				goto bad;
1793 			}
1794 			/* assert(tick > 0); */
1795 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
1796 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / ustick;
1797 			if (val > INT_MAX) {
1798 				error = EDOM;
1799 				goto bad;
1800 			}
1801 			if (val == 0 && tv.tv_usec != 0)
1802 				val = 1;
1803 
1804 			switch (sopt->sopt_name) {
1805 			case SO_SNDTIMEO:
1806 				so->so_snd.ssb_timeo = val;
1807 				break;
1808 			case SO_RCVTIMEO:
1809 				so->so_rcv.ssb_timeo = val;
1810 				break;
1811 			}
1812 			break;
1813 		default:
1814 			error = ENOPROTOOPT;
1815 			break;
1816 		}
1817 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1818 			(void) so_pr_ctloutput(so, sopt);
1819 		}
1820 	}
1821 bad:
1822 	return (error);
1823 }
1824 
1825 /* Helper routine for getsockopt */
1826 int
1827 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1828 {
1829 	soopt_from_kbuf(sopt, buf, len);
1830 	return 0;
1831 }
1832 
1833 void
1834 soopt_from_kbuf(struct sockopt *sopt, const void *buf, size_t len)
1835 {
1836 	size_t	valsize;
1837 
1838 	if (len == 0) {
1839 		sopt->sopt_valsize = 0;
1840 		return;
1841 	}
1842 
1843 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
1844 	KKASSERT(kva_p(buf));
1845 
1846 	/*
1847 	 * Documented get behavior is that we always return a value,
1848 	 * possibly truncated to fit in the user's buffer.
1849 	 * Traditional behavior is that we always tell the user
1850 	 * precisely how much we copied, rather than something useful
1851 	 * like the total amount we had available for her.
1852 	 * Note that this interface is not idempotent; the entire answer must
1853 	 * generated ahead of time.
1854 	 */
1855 	valsize = szmin(len, sopt->sopt_valsize);
1856 	sopt->sopt_valsize = valsize;
1857 	if (sopt->sopt_val != 0) {
1858 		bcopy(buf, sopt->sopt_val, valsize);
1859 	}
1860 }
1861 
1862 int
1863 sogetopt(struct socket *so, struct sockopt *sopt)
1864 {
1865 	int	error, optval;
1866 	long	optval_l;
1867 	struct	linger l;
1868 	struct	timeval tv;
1869 #ifdef INET
1870 	struct accept_filter_arg *afap;
1871 #endif
1872 
1873 	error = 0;
1874 	sopt->sopt_dir = SOPT_GET;
1875 	if (sopt->sopt_level != SOL_SOCKET) {
1876 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1877 			return (so_pr_ctloutput(so, sopt));
1878 		} else
1879 			return (ENOPROTOOPT);
1880 	} else {
1881 		switch (sopt->sopt_name) {
1882 #ifdef INET
1883 		case SO_ACCEPTFILTER:
1884 			if ((so->so_options & SO_ACCEPTCONN) == 0)
1885 				return (EINVAL);
1886 			afap = kmalloc(sizeof(*afap), M_TEMP,
1887 				       M_WAITOK | M_ZERO);
1888 			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
1889 				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
1890 				if (so->so_accf->so_accept_filter_str != NULL)
1891 					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
1892 			}
1893 			error = sooptcopyout(sopt, afap, sizeof(*afap));
1894 			kfree(afap, M_TEMP);
1895 			break;
1896 #endif /* INET */
1897 
1898 		case SO_LINGER:
1899 			l.l_onoff = so->so_options & SO_LINGER;
1900 			l.l_linger = so->so_linger;
1901 			error = sooptcopyout(sopt, &l, sizeof l);
1902 			break;
1903 
1904 		case SO_USELOOPBACK:
1905 		case SO_DONTROUTE:
1906 		case SO_DEBUG:
1907 		case SO_KEEPALIVE:
1908 		case SO_REUSEADDR:
1909 		case SO_REUSEPORT:
1910 		case SO_BROADCAST:
1911 		case SO_OOBINLINE:
1912 		case SO_TIMESTAMP:
1913 			optval = so->so_options & sopt->sopt_name;
1914 integer:
1915 			error = sooptcopyout(sopt, &optval, sizeof optval);
1916 			break;
1917 
1918 		case SO_TYPE:
1919 			optval = so->so_type;
1920 			goto integer;
1921 
1922 		case SO_ERROR:
1923 			optval = so->so_error;
1924 			so->so_error = 0;
1925 			goto integer;
1926 
1927 		case SO_SNDBUF:
1928 			optval = so->so_snd.ssb_hiwat;
1929 			goto integer;
1930 
1931 		case SO_RCVBUF:
1932 			optval = so->so_rcv.ssb_hiwat;
1933 			goto integer;
1934 
1935 		case SO_SNDLOWAT:
1936 			optval = so->so_snd.ssb_lowat;
1937 			goto integer;
1938 
1939 		case SO_RCVLOWAT:
1940 			optval = so->so_rcv.ssb_lowat;
1941 			goto integer;
1942 
1943 		case SO_SNDTIMEO:
1944 		case SO_RCVTIMEO:
1945 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
1946 				  so->so_snd.ssb_timeo : so->so_rcv.ssb_timeo);
1947 
1948 			tv.tv_sec = optval / hz;
1949 			tv.tv_usec = (optval % hz) * ustick;
1950 			error = sooptcopyout(sopt, &tv, sizeof tv);
1951 			break;
1952 
1953 		case SO_SNDSPACE:
1954 			optval_l = ssb_space(&so->so_snd);
1955 			error = sooptcopyout(sopt, &optval_l, sizeof(optval_l));
1956 			break;
1957 
1958 		default:
1959 			error = ENOPROTOOPT;
1960 			break;
1961 		}
1962 		return (error);
1963 	}
1964 }
1965 
1966 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
1967 int
1968 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
1969 {
1970 	struct mbuf *m, *m_prev;
1971 	int sopt_size = sopt->sopt_valsize, msize;
1972 
1973 	m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA,
1974 		   0, &msize);
1975 	if (m == NULL)
1976 		return (ENOBUFS);
1977 	m->m_len = min(msize, sopt_size);
1978 	sopt_size -= m->m_len;
1979 	*mp = m;
1980 	m_prev = m;
1981 
1982 	while (sopt_size > 0) {
1983 		m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT,
1984 			   MT_DATA, 0, &msize);
1985 		if (m == NULL) {
1986 			m_freem(*mp);
1987 			return (ENOBUFS);
1988 		}
1989 		m->m_len = min(msize, sopt_size);
1990 		sopt_size -= m->m_len;
1991 		m_prev->m_next = m;
1992 		m_prev = m;
1993 	}
1994 	return (0);
1995 }
1996 
1997 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
1998 int
1999 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2000 {
2001 	soopt_to_mbuf(sopt, m);
2002 	return 0;
2003 }
2004 
2005 void
2006 soopt_to_mbuf(struct sockopt *sopt, struct mbuf *m)
2007 {
2008 	size_t valsize;
2009 	void *val;
2010 
2011 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2012 	KKASSERT(kva_p(m));
2013 	if (sopt->sopt_val == NULL)
2014 		return;
2015 	val = sopt->sopt_val;
2016 	valsize = sopt->sopt_valsize;
2017 	while (m != NULL && valsize >= m->m_len) {
2018 		bcopy(val, mtod(m, char *), m->m_len);
2019 		valsize -= m->m_len;
2020 		val = (caddr_t)val + m->m_len;
2021 		m = m->m_next;
2022 	}
2023 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2024 		panic("ip6_sooptmcopyin");
2025 }
2026 
2027 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2028 int
2029 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2030 {
2031 	return soopt_from_mbuf(sopt, m);
2032 }
2033 
2034 int
2035 soopt_from_mbuf(struct sockopt *sopt, struct mbuf *m)
2036 {
2037 	struct mbuf *m0 = m;
2038 	size_t valsize = 0;
2039 	size_t maxsize;
2040 	void *val;
2041 
2042 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2043 	KKASSERT(kva_p(m));
2044 	if (sopt->sopt_val == NULL)
2045 		return 0;
2046 	val = sopt->sopt_val;
2047 	maxsize = sopt->sopt_valsize;
2048 	while (m != NULL && maxsize >= m->m_len) {
2049 		bcopy(mtod(m, char *), val, m->m_len);
2050 	       maxsize -= m->m_len;
2051 	       val = (caddr_t)val + m->m_len;
2052 	       valsize += m->m_len;
2053 	       m = m->m_next;
2054 	}
2055 	if (m != NULL) {
2056 		/* enough soopt buffer should be given from user-land */
2057 		m_freem(m0);
2058 		return (EINVAL);
2059 	}
2060 	sopt->sopt_valsize = valsize;
2061 	return 0;
2062 }
2063 
2064 void
2065 sohasoutofband(struct socket *so)
2066 {
2067 	if (so->so_sigio != NULL)
2068 		pgsigio(so->so_sigio, SIGURG, 0);
2069 	KNOTE(&so->so_rcv.ssb_kq.ki_note, NOTE_OOB);
2070 }
2071 
2072 int
2073 sokqfilter(struct file *fp, struct knote *kn)
2074 {
2075 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2076 	struct signalsockbuf *ssb;
2077 
2078 	switch (kn->kn_filter) {
2079 	case EVFILT_READ:
2080 		if (so->so_options & SO_ACCEPTCONN)
2081 			kn->kn_fop = &solisten_filtops;
2082 		else
2083 			kn->kn_fop = &soread_filtops;
2084 		ssb = &so->so_rcv;
2085 		break;
2086 	case EVFILT_WRITE:
2087 		kn->kn_fop = &sowrite_filtops;
2088 		ssb = &so->so_snd;
2089 		break;
2090 	case EVFILT_EXCEPT:
2091 		kn->kn_fop = &soexcept_filtops;
2092 		ssb = &so->so_rcv;
2093 		break;
2094 	default:
2095 		return (EOPNOTSUPP);
2096 	}
2097 
2098 	knote_insert(&ssb->ssb_kq.ki_note, kn);
2099 	atomic_set_int(&ssb->ssb_flags, SSB_KNOTE);
2100 	return (0);
2101 }
2102 
2103 static void
2104 filt_sordetach(struct knote *kn)
2105 {
2106 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2107 
2108 	knote_remove(&so->so_rcv.ssb_kq.ki_note, kn);
2109 	if (SLIST_EMPTY(&so->so_rcv.ssb_kq.ki_note))
2110 		atomic_clear_int(&so->so_rcv.ssb_flags, SSB_KNOTE);
2111 }
2112 
2113 /*ARGSUSED*/
2114 static int
2115 filt_soread(struct knote *kn, long hint)
2116 {
2117 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2118 
2119 	if (kn->kn_sfflags & NOTE_OOB) {
2120 		if ((so->so_oobmark || (so->so_state & SS_RCVATMARK))) {
2121 			kn->kn_fflags |= NOTE_OOB;
2122 			return (1);
2123 		}
2124 		return (0);
2125 	}
2126 	kn->kn_data = so->so_rcv.ssb_cc;
2127 
2128 	if (so->so_state & SS_CANTRCVMORE) {
2129 		/*
2130 		 * Only set NODATA if all data has been exhausted.
2131 		 */
2132 		if (kn->kn_data == 0)
2133 			kn->kn_flags |= EV_NODATA;
2134 		kn->kn_flags |= EV_EOF;
2135 		kn->kn_fflags = so->so_error;
2136 		return (1);
2137 	}
2138 	if (so->so_error)	/* temporary udp error */
2139 		return (1);
2140 	if (kn->kn_sfflags & NOTE_LOWAT)
2141 		return (kn->kn_data >= kn->kn_sdata);
2142 	return ((kn->kn_data >= so->so_rcv.ssb_lowat) ||
2143 		!TAILQ_EMPTY(&so->so_comp));
2144 }
2145 
2146 static void
2147 filt_sowdetach(struct knote *kn)
2148 {
2149 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2150 
2151 	knote_remove(&so->so_snd.ssb_kq.ki_note, kn);
2152 	if (SLIST_EMPTY(&so->so_snd.ssb_kq.ki_note))
2153 		atomic_clear_int(&so->so_snd.ssb_flags, SSB_KNOTE);
2154 }
2155 
2156 /*ARGSUSED*/
2157 static int
2158 filt_sowrite(struct knote *kn, long hint)
2159 {
2160 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2161 
2162 	kn->kn_data = ssb_space(&so->so_snd);
2163 	if (so->so_state & SS_CANTSENDMORE) {
2164 		kn->kn_flags |= (EV_EOF | EV_NODATA);
2165 		kn->kn_fflags = so->so_error;
2166 		return (1);
2167 	}
2168 	if (so->so_error)	/* temporary udp error */
2169 		return (1);
2170 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
2171 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2172 		return (0);
2173 	if (kn->kn_sfflags & NOTE_LOWAT)
2174 		return (kn->kn_data >= kn->kn_sdata);
2175 	return (kn->kn_data >= so->so_snd.ssb_lowat);
2176 }
2177 
2178 /*ARGSUSED*/
2179 static int
2180 filt_solisten(struct knote *kn, long hint)
2181 {
2182 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2183 
2184 	kn->kn_data = so->so_qlen;
2185 	return (! TAILQ_EMPTY(&so->so_comp));
2186 }
2187