xref: /dragonfly/sys/kern/uipc_socket.c (revision e96fb831)
1 /*
2  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
67  * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_sctp.h"
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/fcntl.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/domain.h>
79 #include <sys/file.h>			/* for struct knote */
80 #include <sys/kernel.h>
81 #include <sys/event.h>
82 #include <sys/proc.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/socketops.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/sysctl.h>
90 #include <sys/uio.h>
91 #include <sys/jail.h>
92 #include <vm/vm_zone.h>
93 #include <vm/pmap.h>
94 #include <net/netmsg2.h>
95 
96 #include <sys/thread2.h>
97 #include <sys/socketvar2.h>
98 
99 #include <machine/limits.h>
100 
101 extern int tcp_sosnd_agglim;
102 extern int tcp_sosnd_async;
103 extern int udp_sosnd_async;
104 
105 #ifdef INET
106 static int	 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
107 #endif /* INET */
108 
109 static void 	filt_sordetach(struct knote *kn);
110 static int 	filt_soread(struct knote *kn, long hint);
111 static void 	filt_sowdetach(struct knote *kn);
112 static int	filt_sowrite(struct knote *kn, long hint);
113 static int	filt_solisten(struct knote *kn, long hint);
114 
115 static void	sodiscard(struct socket *so);
116 static int	soclose_sync(struct socket *so, int fflag);
117 static void	soclose_fast(struct socket *so);
118 
119 static struct filterops solisten_filtops =
120 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_solisten };
121 static struct filterops soread_filtops =
122 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
123 static struct filterops sowrite_filtops =
124 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sowdetach, filt_sowrite };
125 static struct filterops soexcept_filtops =
126 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
127 
128 MALLOC_DEFINE(M_SOCKET, "socket", "socket struct");
129 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
130 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
131 
132 
133 static int somaxconn = SOMAXCONN;
134 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
135     &somaxconn, 0, "Maximum pending socket connection queue size");
136 
137 static int use_soclose_fast = 1;
138 SYSCTL_INT(_kern_ipc, OID_AUTO, soclose_fast, CTLFLAG_RW,
139     &use_soclose_fast, 0, "Fast socket close");
140 
141 int use_soaccept_pred_fast = 1;
142 SYSCTL_INT(_kern_ipc, OID_AUTO, soaccept_pred_fast, CTLFLAG_RW,
143     &use_soaccept_pred_fast, 0, "Fast socket accept predication");
144 
145 /*
146  * Socket operation routines.
147  * These routines are called by the routines in
148  * sys_socket.c or from a system process, and
149  * implement the semantics of socket operations by
150  * switching out to the protocol specific routines.
151  */
152 
153 /*
154  * Get a socket structure, and initialize it.
155  * Note that it would probably be better to allocate socket
156  * and PCB at the same time, but I'm not convinced that all
157  * the protocols can be easily modified to do this.
158  */
159 struct socket *
160 soalloc(int waitok)
161 {
162 	struct socket *so;
163 	unsigned waitmask;
164 
165 	waitmask = waitok ? M_WAITOK : M_NOWAIT;
166 	so = kmalloc(sizeof(struct socket), M_SOCKET, M_ZERO|waitmask);
167 	if (so) {
168 		/* XXX race condition for reentrant kernel */
169 		TAILQ_INIT(&so->so_aiojobq);
170 		TAILQ_INIT(&so->so_rcv.ssb_kq.ki_mlist);
171 		TAILQ_INIT(&so->so_snd.ssb_kq.ki_mlist);
172 		lwkt_token_init(&so->so_rcv.ssb_token, "rcvtok");
173 		lwkt_token_init(&so->so_snd.ssb_token, "sndtok");
174 		so->so_state = SS_NOFDREF;
175 		so->so_refs = 1;
176 	}
177 	return so;
178 }
179 
180 int
181 socreate(int dom, struct socket **aso, int type,
182 	int proto, struct thread *td)
183 {
184 	struct proc *p = td->td_proc;
185 	struct protosw *prp;
186 	struct socket *so;
187 	struct pru_attach_info ai;
188 	int error;
189 
190 	if (proto)
191 		prp = pffindproto(dom, proto, type);
192 	else
193 		prp = pffindtype(dom, type);
194 
195 	if (prp == NULL || prp->pr_usrreqs->pru_attach == 0)
196 		return (EPROTONOSUPPORT);
197 
198 	if (p->p_ucred->cr_prison && jail_socket_unixiproute_only &&
199 	    prp->pr_domain->dom_family != PF_LOCAL &&
200 	    prp->pr_domain->dom_family != PF_INET &&
201 	    prp->pr_domain->dom_family != PF_INET6 &&
202 	    prp->pr_domain->dom_family != PF_ROUTE) {
203 		return (EPROTONOSUPPORT);
204 	}
205 
206 	if (prp->pr_type != type)
207 		return (EPROTOTYPE);
208 	so = soalloc(p != NULL);
209 	if (so == NULL)
210 		return (ENOBUFS);
211 
212 	/*
213 	 * Callers of socreate() presumably will connect up a descriptor
214 	 * and call soclose() if they cannot.  This represents our so_refs
215 	 * (which should be 1) from soalloc().
216 	 */
217 	soclrstate(so, SS_NOFDREF);
218 
219 	/*
220 	 * Set a default port for protocol processing.  No action will occur
221 	 * on the socket on this port until an inpcb is attached to it and
222 	 * is able to match incoming packets, or until the socket becomes
223 	 * available to userland.
224 	 *
225 	 * We normally default the socket to the protocol thread on cpu 0.
226 	 * If PR_SYNC_PORT is set (unix domain sockets) there is no protocol
227 	 * thread and all pr_*()/pru_*() calls are executed synchronously.
228 	 */
229 	if (prp->pr_flags & PR_SYNC_PORT)
230 		so->so_port = &netisr_sync_port;
231 	else
232 		so->so_port = cpu_portfn(0);
233 
234 	TAILQ_INIT(&so->so_incomp);
235 	TAILQ_INIT(&so->so_comp);
236 	so->so_type = type;
237 	so->so_cred = crhold(p->p_ucred);
238 	so->so_proto = prp;
239 	ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE];
240 	ai.p_ucred = p->p_ucred;
241 	ai.fd_rdir = p->p_fd->fd_rdir;
242 
243 	/*
244 	 * Auto-sizing of socket buffers is managed by the protocols and
245 	 * the appropriate flags must be set in the pru_attach function.
246 	 */
247 	error = so_pru_attach(so, proto, &ai);
248 	if (error) {
249 		sosetstate(so, SS_NOFDREF);
250 		sofree(so);	/* from soalloc */
251 		return error;
252 	}
253 
254 	/*
255 	 * NOTE: Returns referenced socket.
256 	 */
257 	*aso = so;
258 	return (0);
259 }
260 
261 int
262 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
263 {
264 	int error;
265 
266 	error = so_pru_bind(so, nam, td);
267 	return (error);
268 }
269 
270 static void
271 sodealloc(struct socket *so)
272 {
273 	if (so->so_rcv.ssb_hiwat)
274 		(void)chgsbsize(so->so_cred->cr_uidinfo,
275 		    &so->so_rcv.ssb_hiwat, 0, RLIM_INFINITY);
276 	if (so->so_snd.ssb_hiwat)
277 		(void)chgsbsize(so->so_cred->cr_uidinfo,
278 		    &so->so_snd.ssb_hiwat, 0, RLIM_INFINITY);
279 #ifdef INET
280 	/* remove accept filter if present */
281 	if (so->so_accf != NULL)
282 		do_setopt_accept_filter(so, NULL);
283 #endif /* INET */
284 	crfree(so->so_cred);
285 	if (so->so_faddr != NULL)
286 		kfree(so->so_faddr, M_SONAME);
287 	kfree(so, M_SOCKET);
288 }
289 
290 int
291 solisten(struct socket *so, int backlog, struct thread *td)
292 {
293 	int error;
294 #ifdef SCTP
295 	short oldopt, oldqlimit;
296 #endif /* SCTP */
297 
298 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING))
299 		return (EINVAL);
300 
301 #ifdef SCTP
302 	oldopt = so->so_options;
303 	oldqlimit = so->so_qlimit;
304 #endif /* SCTP */
305 
306 	lwkt_gettoken(&so->so_rcv.ssb_token);
307 	if (TAILQ_EMPTY(&so->so_comp))
308 		so->so_options |= SO_ACCEPTCONN;
309 	lwkt_reltoken(&so->so_rcv.ssb_token);
310 	if (backlog < 0 || backlog > somaxconn)
311 		backlog = somaxconn;
312 	so->so_qlimit = backlog;
313 	/* SCTP needs to look at tweak both the inbound backlog parameter AND
314 	 * the so_options (UDP model both connect's and gets inbound
315 	 * connections .. implicitly).
316 	 */
317 	error = so_pru_listen(so, td);
318 	if (error) {
319 #ifdef SCTP
320 		/* Restore the params */
321 		so->so_options = oldopt;
322 		so->so_qlimit = oldqlimit;
323 #endif /* SCTP */
324 		return (error);
325 	}
326 	return (0);
327 }
328 
329 /*
330  * Destroy a disconnected socket.  This routine is a NOP if entities
331  * still have a reference on the socket:
332  *
333  *	so_pcb -	The protocol stack still has a reference
334  *	SS_NOFDREF -	There is no longer a file pointer reference
335  */
336 void
337 sofree(struct socket *so)
338 {
339 	struct socket *head;
340 
341 	/*
342 	 * This is a bit hackish at the moment.  We need to interlock
343 	 * any accept queue we are on before we potentially lose the
344 	 * last reference to avoid races against a re-reference from
345 	 * someone operating on the queue.
346 	 */
347 	while ((head = so->so_head) != NULL) {
348 		lwkt_getpooltoken(head);
349 		if (so->so_head == head)
350 			break;
351 		lwkt_relpooltoken(head);
352 	}
353 
354 	/*
355 	 * Arbitrage the last free.
356 	 */
357 	KKASSERT(so->so_refs > 0);
358 	if (atomic_fetchadd_int(&so->so_refs, -1) != 1) {
359 		if (head)
360 			lwkt_relpooltoken(head);
361 		return;
362 	}
363 
364 	KKASSERT(so->so_pcb == NULL && (so->so_state & SS_NOFDREF));
365 	KKASSERT((so->so_state & SS_ASSERTINPROG) == 0);
366 
367 	/*
368 	 * We're done, remove ourselves from the accept queue we are
369 	 * on, if we are on one.
370 	 */
371 	if (head != NULL) {
372 		if (so->so_state & SS_INCOMP) {
373 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
374 			head->so_incqlen--;
375 		} else if (so->so_state & SS_COMP) {
376 			/*
377 			 * We must not decommission a socket that's
378 			 * on the accept(2) queue.  If we do, then
379 			 * accept(2) may hang after select(2) indicated
380 			 * that the listening socket was ready.
381 			 */
382 			lwkt_relpooltoken(head);
383 			return;
384 		} else {
385 			panic("sofree: not queued");
386 		}
387 		soclrstate(so, SS_INCOMP);
388 		so->so_head = NULL;
389 		lwkt_relpooltoken(head);
390 	}
391 	ssb_release(&so->so_snd, so);
392 	sorflush(so);
393 	sodealloc(so);
394 }
395 
396 /*
397  * Close a socket on last file table reference removal.
398  * Initiate disconnect if connected.
399  * Free socket when disconnect complete.
400  */
401 int
402 soclose(struct socket *so, int fflag)
403 {
404 	int error;
405 
406 	funsetown(&so->so_sigio);
407 	if (!use_soclose_fast ||
408 	    (so->so_proto->pr_flags & PR_SYNC_PORT) ||
409 	    (so->so_options & SO_LINGER)) {
410 		error = soclose_sync(so, fflag);
411 	} else {
412 		soclose_fast(so);
413 		error = 0;
414 	}
415 	return error;
416 }
417 
418 static void
419 sodiscard(struct socket *so)
420 {
421 	lwkt_getpooltoken(so);
422 	if (so->so_options & SO_ACCEPTCONN) {
423 		struct socket *sp;
424 
425 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
426 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
427 			soclrstate(sp, SS_INCOMP);
428 			sp->so_head = NULL;
429 			so->so_incqlen--;
430 			soaborta(sp);
431 		}
432 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
433 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
434 			soclrstate(sp, SS_COMP);
435 			sp->so_head = NULL;
436 			so->so_qlen--;
437 			soaborta(sp);
438 		}
439 	}
440 	lwkt_relpooltoken(so);
441 
442 	if (so->so_state & SS_NOFDREF)
443 		panic("soclose: NOFDREF");
444 	sosetstate(so, SS_NOFDREF);	/* take ref */
445 }
446 
447 static int
448 soclose_sync(struct socket *so, int fflag)
449 {
450 	int error = 0;
451 
452 	if (so->so_pcb == NULL)
453 		goto discard;
454 	if (so->so_state & SS_ISCONNECTED) {
455 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
456 			error = sodisconnect(so);
457 			if (error)
458 				goto drop;
459 		}
460 		if (so->so_options & SO_LINGER) {
461 			if ((so->so_state & SS_ISDISCONNECTING) &&
462 			    (fflag & FNONBLOCK))
463 				goto drop;
464 			while (so->so_state & SS_ISCONNECTED) {
465 				error = tsleep(&so->so_timeo, PCATCH,
466 					       "soclos", so->so_linger * hz);
467 				if (error)
468 					break;
469 			}
470 		}
471 	}
472 drop:
473 	if (so->so_pcb) {
474 		int error2;
475 
476 		error2 = so_pru_detach(so);
477 		if (error == 0)
478 			error = error2;
479 	}
480 discard:
481 	sodiscard(so);
482 	so_pru_sync(so);	/* unpend async sending */
483 	sofree(so);		/* dispose of ref */
484 
485 	return (error);
486 }
487 
488 static void
489 soclose_sofree_async_handler(netmsg_t msg)
490 {
491 	sofree(msg->base.nm_so);
492 }
493 
494 static void
495 soclose_sofree_async(struct socket *so)
496 {
497 	struct netmsg_base *base = &so->so_clomsg;
498 
499 	netmsg_init(base, so, &netisr_apanic_rport, 0,
500 	    soclose_sofree_async_handler);
501 	lwkt_sendmsg(so->so_port, &base->lmsg);
502 }
503 
504 static void
505 soclose_disconn_async_handler(netmsg_t msg)
506 {
507 	struct socket *so = msg->base.nm_so;
508 
509 	if ((so->so_state & SS_ISCONNECTED) &&
510 	    (so->so_state & SS_ISDISCONNECTING) == 0)
511 		so_pru_disconnect_direct(so);
512 
513 	if (so->so_pcb)
514 		so_pru_detach_direct(so);
515 
516 	sodiscard(so);
517 	sofree(so);
518 }
519 
520 static void
521 soclose_disconn_async(struct socket *so)
522 {
523 	struct netmsg_base *base = &so->so_clomsg;
524 
525 	netmsg_init(base, so, &netisr_apanic_rport, 0,
526 	    soclose_disconn_async_handler);
527 	lwkt_sendmsg(so->so_port, &base->lmsg);
528 }
529 
530 static void
531 soclose_detach_async_handler(netmsg_t msg)
532 {
533 	struct socket *so = msg->base.nm_so;
534 
535 	if (so->so_pcb)
536 		so_pru_detach_direct(so);
537 
538 	sodiscard(so);
539 	sofree(so);
540 }
541 
542 static void
543 soclose_detach_async(struct socket *so)
544 {
545 	struct netmsg_base *base = &so->so_clomsg;
546 
547 	netmsg_init(base, so, &netisr_apanic_rport, 0,
548 	    soclose_detach_async_handler);
549 	lwkt_sendmsg(so->so_port, &base->lmsg);
550 }
551 
552 static void
553 soclose_fast(struct socket *so)
554 {
555 	if (so->so_pcb == NULL)
556 		goto discard;
557 
558 	if ((so->so_state & SS_ISCONNECTED) &&
559 	    (so->so_state & SS_ISDISCONNECTING) == 0) {
560 		soclose_disconn_async(so);
561 		return;
562 	}
563 
564 	if (so->so_pcb) {
565 		soclose_detach_async(so);
566 		return;
567 	}
568 
569 discard:
570 	sodiscard(so);
571 	soclose_sofree_async(so);
572 }
573 
574 /*
575  * Abort and destroy a socket.  Only one abort can be in progress
576  * at any given moment.
577  */
578 void
579 soabort(struct socket *so)
580 {
581 	soreference(so);
582 	so_pru_abort(so);
583 }
584 
585 void
586 soaborta(struct socket *so)
587 {
588 	soreference(so);
589 	so_pru_aborta(so);
590 }
591 
592 void
593 soabort_oncpu(struct socket *so)
594 {
595 	soreference(so);
596 	so_pru_abort_oncpu(so);
597 }
598 
599 /*
600  * so is passed in ref'd, which becomes owned by
601  * the cleared SS_NOFDREF flag.
602  */
603 void
604 soaccept_generic(struct socket *so)
605 {
606 	if ((so->so_state & SS_NOFDREF) == 0)
607 		panic("soaccept: !NOFDREF");
608 	soclrstate(so, SS_NOFDREF);	/* owned by lack of SS_NOFDREF */
609 }
610 
611 int
612 soaccept(struct socket *so, struct sockaddr **nam)
613 {
614 	int error;
615 
616 	soaccept_generic(so);
617 	error = so_pru_accept(so, nam);
618 	return (error);
619 }
620 
621 int
622 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
623 {
624 	int error;
625 
626 	if (so->so_options & SO_ACCEPTCONN)
627 		return (EOPNOTSUPP);
628 	/*
629 	 * If protocol is connection-based, can only connect once.
630 	 * Otherwise, if connected, try to disconnect first.
631 	 * This allows user to disconnect by connecting to, e.g.,
632 	 * a null address.
633 	 */
634 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
635 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
636 	    (error = sodisconnect(so)))) {
637 		error = EISCONN;
638 	} else {
639 		/*
640 		 * Prevent accumulated error from previous connection
641 		 * from biting us.
642 		 */
643 		so->so_error = 0;
644 		error = so_pru_connect(so, nam, td);
645 	}
646 	return (error);
647 }
648 
649 int
650 soconnect2(struct socket *so1, struct socket *so2)
651 {
652 	int error;
653 
654 	error = so_pru_connect2(so1, so2);
655 	return (error);
656 }
657 
658 int
659 sodisconnect(struct socket *so)
660 {
661 	int error;
662 
663 	if ((so->so_state & SS_ISCONNECTED) == 0) {
664 		error = ENOTCONN;
665 		goto bad;
666 	}
667 	if (so->so_state & SS_ISDISCONNECTING) {
668 		error = EALREADY;
669 		goto bad;
670 	}
671 	error = so_pru_disconnect(so);
672 bad:
673 	return (error);
674 }
675 
676 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
677 /*
678  * Send on a socket.
679  * If send must go all at once and message is larger than
680  * send buffering, then hard error.
681  * Lock against other senders.
682  * If must go all at once and not enough room now, then
683  * inform user that this would block and do nothing.
684  * Otherwise, if nonblocking, send as much as possible.
685  * The data to be sent is described by "uio" if nonzero,
686  * otherwise by the mbuf chain "top" (which must be null
687  * if uio is not).  Data provided in mbuf chain must be small
688  * enough to send all at once.
689  *
690  * Returns nonzero on error, timeout or signal; callers
691  * must check for short counts if EINTR/ERESTART are returned.
692  * Data and control buffers are freed on return.
693  */
694 int
695 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
696 	struct mbuf *top, struct mbuf *control, int flags,
697 	struct thread *td)
698 {
699 	struct mbuf **mp;
700 	struct mbuf *m;
701 	size_t resid;
702 	int space, len;
703 	int clen = 0, error, dontroute, mlen;
704 	int atomic = sosendallatonce(so) || top;
705 	int pru_flags;
706 
707 	if (uio) {
708 		resid = uio->uio_resid;
709 	} else {
710 		resid = (size_t)top->m_pkthdr.len;
711 #ifdef INVARIANTS
712 		len = 0;
713 		for (m = top; m; m = m->m_next)
714 			len += m->m_len;
715 		KKASSERT(top->m_pkthdr.len == len);
716 #endif
717 	}
718 
719 	/*
720 	 * WARNING!  resid is unsigned, space and len are signed.  space
721 	 * 	     can wind up negative if the sockbuf is overcommitted.
722 	 *
723 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
724 	 * type sockets since that's an error.
725 	 */
726 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
727 		error = EINVAL;
728 		goto out;
729 	}
730 
731 	dontroute =
732 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
733 	    (so->so_proto->pr_flags & PR_ATOMIC);
734 	if (td->td_lwp != NULL)
735 		td->td_lwp->lwp_ru.ru_msgsnd++;
736 	if (control)
737 		clen = control->m_len;
738 #define	gotoerr(errcode)	{ error = errcode; goto release; }
739 
740 restart:
741 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
742 	if (error)
743 		goto out;
744 
745 	do {
746 		if (so->so_state & SS_CANTSENDMORE)
747 			gotoerr(EPIPE);
748 		if (so->so_error) {
749 			error = so->so_error;
750 			so->so_error = 0;
751 			goto release;
752 		}
753 		if ((so->so_state & SS_ISCONNECTED) == 0) {
754 			/*
755 			 * `sendto' and `sendmsg' is allowed on a connection-
756 			 * based socket if it supports implied connect.
757 			 * Return ENOTCONN if not connected and no address is
758 			 * supplied.
759 			 */
760 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
761 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
762 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
763 				    !(resid == 0 && clen != 0))
764 					gotoerr(ENOTCONN);
765 			} else if (addr == NULL)
766 			    gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
767 				   ENOTCONN : EDESTADDRREQ);
768 		}
769 		if ((atomic && resid > so->so_snd.ssb_hiwat) ||
770 		    clen > so->so_snd.ssb_hiwat) {
771 			gotoerr(EMSGSIZE);
772 		}
773 		space = ssb_space(&so->so_snd);
774 		if (flags & MSG_OOB)
775 			space += 1024;
776 		if ((space < 0 || (size_t)space < resid + clen) && uio &&
777 		    (atomic || space < so->so_snd.ssb_lowat || space < clen)) {
778 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
779 				gotoerr(EWOULDBLOCK);
780 			ssb_unlock(&so->so_snd);
781 			error = ssb_wait(&so->so_snd);
782 			if (error)
783 				goto out;
784 			goto restart;
785 		}
786 		mp = &top;
787 		space -= clen;
788 		do {
789 		    if (uio == NULL) {
790 			/*
791 			 * Data is prepackaged in "top".
792 			 */
793 			resid = 0;
794 			if (flags & MSG_EOR)
795 				top->m_flags |= M_EOR;
796 		    } else do {
797 			if (resid > INT_MAX)
798 				resid = INT_MAX;
799 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
800 				   top == NULL ? M_PKTHDR : 0, &mlen);
801 			if (top == NULL) {
802 				m->m_pkthdr.len = 0;
803 				m->m_pkthdr.rcvif = NULL;
804 			}
805 			len = imin((int)szmin(mlen, resid), space);
806 			if (resid < MINCLSIZE) {
807 				/*
808 				 * For datagram protocols, leave room
809 				 * for protocol headers in first mbuf.
810 				 */
811 				if (atomic && top == NULL && len < mlen)
812 					MH_ALIGN(m, len);
813 			}
814 			space -= len;
815 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
816 			resid = uio->uio_resid;
817 			m->m_len = len;
818 			*mp = m;
819 			top->m_pkthdr.len += len;
820 			if (error)
821 				goto release;
822 			mp = &m->m_next;
823 			if (resid == 0) {
824 				if (flags & MSG_EOR)
825 					top->m_flags |= M_EOR;
826 				break;
827 			}
828 		    } while (space > 0 && atomic);
829 		    if (dontroute)
830 			    so->so_options |= SO_DONTROUTE;
831 		    if (flags & MSG_OOB) {
832 		    	    pru_flags = PRUS_OOB;
833 		    } else if ((flags & MSG_EOF) &&
834 		    	       (so->so_proto->pr_flags & PR_IMPLOPCL) &&
835 			       (resid == 0)) {
836 			    /*
837 			     * If the user set MSG_EOF, the protocol
838 			     * understands this flag and nothing left to
839 			     * send then use PRU_SEND_EOF instead of PRU_SEND.
840 			     */
841 		    	    pru_flags = PRUS_EOF;
842 		    } else if (resid > 0 && space > 0) {
843 			    /* If there is more to send, set PRUS_MORETOCOME */
844 		    	    pru_flags = PRUS_MORETOCOME;
845 		    } else {
846 		    	    pru_flags = 0;
847 		    }
848 		    /*
849 		     * XXX all the SS_CANTSENDMORE checks previously
850 		     * done could be out of date.  We could have recieved
851 		     * a reset packet in an interrupt or maybe we slept
852 		     * while doing page faults in uiomove() etc. We could
853 		     * probably recheck again inside the splnet() protection
854 		     * here, but there are probably other places that this
855 		     * also happens.  We must rethink this.
856 		     */
857 		    error = so_pru_send(so, pru_flags, top, addr, control, td);
858 		    if (dontroute)
859 			    so->so_options &= ~SO_DONTROUTE;
860 		    clen = 0;
861 		    control = NULL;
862 		    top = NULL;
863 		    mp = &top;
864 		    if (error)
865 			    goto release;
866 		} while (resid && space > 0);
867 	} while (resid);
868 
869 release:
870 	ssb_unlock(&so->so_snd);
871 out:
872 	if (top)
873 		m_freem(top);
874 	if (control)
875 		m_freem(control);
876 	return (error);
877 }
878 
879 /*
880  * A specialization of sosend() for UDP based on protocol-specific knowledge:
881  *   so->so_proto->pr_flags has the PR_ATOMIC field set.  This means that
882  *	sosendallatonce() returns true,
883  *	the "atomic" variable is true,
884  *	and sosendudp() blocks until space is available for the entire send.
885  *   so->so_proto->pr_flags does not have the PR_CONNREQUIRED or
886  *	PR_IMPLOPCL flags set.
887  *   UDP has no out-of-band data.
888  *   UDP has no control data.
889  *   UDP does not support MSG_EOR.
890  */
891 int
892 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio,
893 	  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
894 {
895 	size_t resid;
896 	int error, pru_flags = 0;
897 	int space;
898 
899 	if (td->td_lwp != NULL)
900 		td->td_lwp->lwp_ru.ru_msgsnd++;
901 	if (control)
902 		m_freem(control);
903 
904 	KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp"));
905 	resid = uio ? uio->uio_resid : (size_t)top->m_pkthdr.len;
906 
907 restart:
908 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
909 	if (error)
910 		goto out;
911 
912 	if (so->so_state & SS_CANTSENDMORE)
913 		gotoerr(EPIPE);
914 	if (so->so_error) {
915 		error = so->so_error;
916 		so->so_error = 0;
917 		goto release;
918 	}
919 	if (!(so->so_state & SS_ISCONNECTED) && addr == NULL)
920 		gotoerr(EDESTADDRREQ);
921 	if (resid > so->so_snd.ssb_hiwat)
922 		gotoerr(EMSGSIZE);
923 	space = ssb_space(&so->so_snd);
924 	if (uio && (space < 0 || (size_t)space < resid)) {
925 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
926 			gotoerr(EWOULDBLOCK);
927 		ssb_unlock(&so->so_snd);
928 		error = ssb_wait(&so->so_snd);
929 		if (error)
930 			goto out;
931 		goto restart;
932 	}
933 
934 	if (uio) {
935 		top = m_uiomove(uio);
936 		if (top == NULL)
937 			goto release;
938 	}
939 
940 	if (flags & MSG_DONTROUTE)
941 		pru_flags |= PRUS_DONTROUTE;
942 
943 	if (udp_sosnd_async && (flags & MSG_SYNC) == 0) {
944 		so_pru_send_async(so, pru_flags, top, addr, NULL, td);
945 		error = 0;
946 	} else {
947 		error = so_pru_send(so, pru_flags, top, addr, NULL, td);
948 	}
949 	top = NULL;		/* sent or freed in lower layer */
950 
951 release:
952 	ssb_unlock(&so->so_snd);
953 out:
954 	if (top)
955 		m_freem(top);
956 	return (error);
957 }
958 
959 int
960 sosendtcp(struct socket *so, struct sockaddr *addr, struct uio *uio,
961 	struct mbuf *top, struct mbuf *control, int flags,
962 	struct thread *td)
963 {
964 	struct mbuf **mp;
965 	struct mbuf *m;
966 	size_t resid;
967 	int space, len;
968 	int error, mlen;
969 	int allatonce;
970 	int pru_flags;
971 
972 	if (uio) {
973 		KKASSERT(top == NULL);
974 		allatonce = 0;
975 		resid = uio->uio_resid;
976 	} else {
977 		allatonce = 1;
978 		resid = (size_t)top->m_pkthdr.len;
979 #ifdef INVARIANTS
980 		len = 0;
981 		for (m = top; m; m = m->m_next)
982 			len += m->m_len;
983 		KKASSERT(top->m_pkthdr.len == len);
984 #endif
985 	}
986 
987 	/*
988 	 * WARNING!  resid is unsigned, space and len are signed.  space
989 	 * 	     can wind up negative if the sockbuf is overcommitted.
990 	 *
991 	 * Also check to make sure that MSG_EOR isn't used on TCP
992 	 */
993 	if (flags & MSG_EOR) {
994 		error = EINVAL;
995 		goto out;
996 	}
997 
998 	if (control) {
999 		/* TCP doesn't do control messages (rights, creds, etc) */
1000 		if (control->m_len) {
1001 			error = EINVAL;
1002 			goto out;
1003 		}
1004 		m_freem(control);	/* empty control, just free it */
1005 		control = NULL;
1006 	}
1007 
1008 	if (td->td_lwp != NULL)
1009 		td->td_lwp->lwp_ru.ru_msgsnd++;
1010 
1011 #define	gotoerr(errcode)	{ error = errcode; goto release; }
1012 
1013 restart:
1014 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
1015 	if (error)
1016 		goto out;
1017 
1018 	do {
1019 		if (so->so_state & SS_CANTSENDMORE)
1020 			gotoerr(EPIPE);
1021 		if (so->so_error) {
1022 			error = so->so_error;
1023 			so->so_error = 0;
1024 			goto release;
1025 		}
1026 		if ((so->so_state & SS_ISCONNECTED) == 0 &&
1027 		    (so->so_state & SS_ISCONFIRMING) == 0)
1028 			gotoerr(ENOTCONN);
1029 		if (allatonce && resid > so->so_snd.ssb_hiwat)
1030 			gotoerr(EMSGSIZE);
1031 
1032 		space = ssb_space(&so->so_snd);
1033 		if (flags & MSG_OOB)
1034 			space += 1024;
1035 		if ((space < 0 || (size_t)space < resid) && !allatonce &&
1036 		    space < so->so_snd.ssb_lowat) {
1037 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
1038 				gotoerr(EWOULDBLOCK);
1039 			ssb_unlock(&so->so_snd);
1040 			error = ssb_wait(&so->so_snd);
1041 			if (error)
1042 				goto out;
1043 			goto restart;
1044 		}
1045 		mp = &top;
1046 		do {
1047 		    int cnt = 0, async = 0;
1048 
1049 		    if (uio == NULL) {
1050 			/*
1051 			 * Data is prepackaged in "top".
1052 			 */
1053 			resid = 0;
1054 		    } else do {
1055 			if (resid > INT_MAX)
1056 				resid = INT_MAX;
1057 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
1058 				   top == NULL ? M_PKTHDR : 0, &mlen);
1059 			if (top == NULL) {
1060 				m->m_pkthdr.len = 0;
1061 				m->m_pkthdr.rcvif = NULL;
1062 			}
1063 			len = imin((int)szmin(mlen, resid), space);
1064 			space -= len;
1065 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
1066 			resid = uio->uio_resid;
1067 			m->m_len = len;
1068 			*mp = m;
1069 			top->m_pkthdr.len += len;
1070 			if (error)
1071 				goto release;
1072 			mp = &m->m_next;
1073 			if (resid == 0)
1074 				break;
1075 			++cnt;
1076 		    } while (space > 0 && cnt < tcp_sosnd_agglim);
1077 
1078 		    if (tcp_sosnd_async)
1079 			    async = 1;
1080 
1081 		    if (flags & MSG_OOB) {
1082 		    	    pru_flags = PRUS_OOB;
1083 			    async = 0;
1084 		    } else if ((flags & MSG_EOF) && resid == 0) {
1085 			    pru_flags = PRUS_EOF;
1086 		    } else if (resid > 0 && space > 0) {
1087 			    /* If there is more to send, set PRUS_MORETOCOME */
1088 		    	    pru_flags = PRUS_MORETOCOME;
1089 			    async = 1;
1090 		    } else {
1091 		    	    pru_flags = 0;
1092 		    }
1093 
1094 		    if (flags & MSG_SYNC)
1095 			    async = 0;
1096 
1097 		    /*
1098 		     * XXX all the SS_CANTSENDMORE checks previously
1099 		     * done could be out of date.  We could have recieved
1100 		     * a reset packet in an interrupt or maybe we slept
1101 		     * while doing page faults in uiomove() etc. We could
1102 		     * probably recheck again inside the splnet() protection
1103 		     * here, but there are probably other places that this
1104 		     * also happens.  We must rethink this.
1105 		     */
1106 		    if (!async) {
1107 			    error = so_pru_send(so, pru_flags, top,
1108 			        NULL, NULL, td);
1109 		    } else {
1110 			    so_pru_send_async(so, pru_flags, top,
1111 			        NULL, NULL, td);
1112 			    error = 0;
1113 		    }
1114 
1115 		    top = NULL;
1116 		    mp = &top;
1117 		    if (error)
1118 			    goto release;
1119 		} while (resid && space > 0);
1120 	} while (resid);
1121 
1122 release:
1123 	ssb_unlock(&so->so_snd);
1124 out:
1125 	if (top)
1126 		m_freem(top);
1127 	if (control)
1128 		m_freem(control);
1129 	return (error);
1130 }
1131 
1132 /*
1133  * Implement receive operations on a socket.
1134  *
1135  * We depend on the way that records are added to the signalsockbuf
1136  * by sbappend*.  In particular, each record (mbufs linked through m_next)
1137  * must begin with an address if the protocol so specifies,
1138  * followed by an optional mbuf or mbufs containing ancillary data,
1139  * and then zero or more mbufs of data.
1140  *
1141  * Although the signalsockbuf is locked, new data may still be appended.
1142  * A token inside the ssb_lock deals with MP issues and still allows
1143  * the network to access the socket if we block in a uio.
1144  *
1145  * The caller may receive the data as a single mbuf chain by supplying
1146  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1147  * only for the count in uio_resid.
1148  */
1149 int
1150 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1151 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1152 {
1153 	struct mbuf *m, *n;
1154 	struct mbuf *free_chain = NULL;
1155 	int flags, len, error, offset;
1156 	struct protosw *pr = so->so_proto;
1157 	int moff, type = 0;
1158 	size_t resid, orig_resid;
1159 
1160 	if (uio)
1161 		resid = uio->uio_resid;
1162 	else
1163 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1164 	orig_resid = resid;
1165 
1166 	if (psa)
1167 		*psa = NULL;
1168 	if (controlp)
1169 		*controlp = NULL;
1170 	if (flagsp)
1171 		flags = *flagsp &~ MSG_EOR;
1172 	else
1173 		flags = 0;
1174 	if (flags & MSG_OOB) {
1175 		m = m_get(MB_WAIT, MT_DATA);
1176 		if (m == NULL)
1177 			return (ENOBUFS);
1178 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1179 		if (error)
1180 			goto bad;
1181 		if (sio) {
1182 			do {
1183 				sbappend(sio, m);
1184 				KKASSERT(resid >= (size_t)m->m_len);
1185 				resid -= (size_t)m->m_len;
1186 			} while (resid > 0 && m);
1187 		} else {
1188 			do {
1189 				uio->uio_resid = resid;
1190 				error = uiomove(mtod(m, caddr_t),
1191 						(int)szmin(resid, m->m_len),
1192 						uio);
1193 				resid = uio->uio_resid;
1194 				m = m_free(m);
1195 			} while (uio->uio_resid && error == 0 && m);
1196 		}
1197 bad:
1198 		if (m)
1199 			m_freem(m);
1200 		return (error);
1201 	}
1202 	if ((so->so_state & SS_ISCONFIRMING) && resid)
1203 		so_pru_rcvd(so, 0);
1204 
1205 	/*
1206 	 * The token interlocks against the protocol thread while
1207 	 * ssb_lock is a blocking lock against other userland entities.
1208 	 */
1209 	lwkt_gettoken(&so->so_rcv.ssb_token);
1210 restart:
1211 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1212 	if (error)
1213 		goto done;
1214 
1215 	m = so->so_rcv.ssb_mb;
1216 	/*
1217 	 * If we have less data than requested, block awaiting more
1218 	 * (subject to any timeout) if:
1219 	 *   1. the current count is less than the low water mark, or
1220 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1221 	 *	receive operation at once if we block (resid <= hiwat).
1222 	 *   3. MSG_DONTWAIT is not set
1223 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1224 	 * we have to do the receive in sections, and thus risk returning
1225 	 * a short count if a timeout or signal occurs after we start.
1226 	 */
1227 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1228 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1229 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1230 	    ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)) &&
1231 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1232 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1233 		if (so->so_error) {
1234 			if (m)
1235 				goto dontblock;
1236 			error = so->so_error;
1237 			if ((flags & MSG_PEEK) == 0)
1238 				so->so_error = 0;
1239 			goto release;
1240 		}
1241 		if (so->so_state & SS_CANTRCVMORE) {
1242 			if (m)
1243 				goto dontblock;
1244 			else
1245 				goto release;
1246 		}
1247 		for (; m; m = m->m_next) {
1248 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1249 				m = so->so_rcv.ssb_mb;
1250 				goto dontblock;
1251 			}
1252 		}
1253 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1254 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1255 			error = ENOTCONN;
1256 			goto release;
1257 		}
1258 		if (resid == 0)
1259 			goto release;
1260 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1261 			error = EWOULDBLOCK;
1262 			goto release;
1263 		}
1264 		ssb_unlock(&so->so_rcv);
1265 		error = ssb_wait(&so->so_rcv);
1266 		if (error)
1267 			goto done;
1268 		goto restart;
1269 	}
1270 dontblock:
1271 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1272 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1273 
1274 	/*
1275 	 * note: m should be == sb_mb here.  Cache the next record while
1276 	 * cleaning up.  Note that calling m_free*() will break out critical
1277 	 * section.
1278 	 */
1279 	KKASSERT(m == so->so_rcv.ssb_mb);
1280 
1281 	/*
1282 	 * Skip any address mbufs prepending the record.
1283 	 */
1284 	if (pr->pr_flags & PR_ADDR) {
1285 		KASSERT(m->m_type == MT_SONAME, ("receive 1a"));
1286 		orig_resid = 0;
1287 		if (psa)
1288 			*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1289 		if (flags & MSG_PEEK)
1290 			m = m->m_next;
1291 		else
1292 			m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1293 	}
1294 
1295 	/*
1296 	 * Skip any control mbufs prepending the record.
1297 	 */
1298 #ifdef SCTP
1299 	if (pr->pr_flags & PR_ADDR_OPT) {
1300 		/*
1301 		 * For SCTP we may be getting a
1302 		 * whole message OR a partial delivery.
1303 		 */
1304 		if (m && m->m_type == MT_SONAME) {
1305 			orig_resid = 0;
1306 			if (psa)
1307 				*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1308 			if (flags & MSG_PEEK)
1309 				m = m->m_next;
1310 			else
1311 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1312 		}
1313 	}
1314 #endif /* SCTP */
1315 	while (m && m->m_type == MT_CONTROL && error == 0) {
1316 		if (flags & MSG_PEEK) {
1317 			if (controlp)
1318 				*controlp = m_copy(m, 0, m->m_len);
1319 			m = m->m_next;	/* XXX race */
1320 		} else {
1321 			if (controlp) {
1322 				n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1323 				if (pr->pr_domain->dom_externalize &&
1324 				    mtod(m, struct cmsghdr *)->cmsg_type ==
1325 				    SCM_RIGHTS)
1326 				   error = (*pr->pr_domain->dom_externalize)(m);
1327 				*controlp = m;
1328 				m = n;
1329 			} else {
1330 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1331 			}
1332 		}
1333 		if (controlp && *controlp) {
1334 			orig_resid = 0;
1335 			controlp = &(*controlp)->m_next;
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * flag OOB data.
1341 	 */
1342 	if (m) {
1343 		type = m->m_type;
1344 		if (type == MT_OOBDATA)
1345 			flags |= MSG_OOB;
1346 	}
1347 
1348 	/*
1349 	 * Copy to the UIO or mbuf return chain (*mp).
1350 	 */
1351 	moff = 0;
1352 	offset = 0;
1353 	while (m && resid > 0 && error == 0) {
1354 		if (m->m_type == MT_OOBDATA) {
1355 			if (type != MT_OOBDATA)
1356 				break;
1357 		} else if (type == MT_OOBDATA)
1358 			break;
1359 		else
1360 		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1361 			("receive 3"));
1362 		soclrstate(so, SS_RCVATMARK);
1363 		len = (resid > INT_MAX) ? INT_MAX : resid;
1364 		if (so->so_oobmark && len > so->so_oobmark - offset)
1365 			len = so->so_oobmark - offset;
1366 		if (len > m->m_len - moff)
1367 			len = m->m_len - moff;
1368 
1369 		/*
1370 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1371 		 * The SIO is dealt with when we eat the mbuf, but deal
1372 		 * with the resid here either way.
1373 		 */
1374 		if (uio) {
1375 			uio->uio_resid = resid;
1376 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1377 			resid = uio->uio_resid;
1378 			if (error)
1379 				goto release;
1380 		} else {
1381 			resid -= (size_t)len;
1382 		}
1383 
1384 		/*
1385 		 * Eat the entire mbuf or just a piece of it
1386 		 */
1387 		if (len == m->m_len - moff) {
1388 			if (m->m_flags & M_EOR)
1389 				flags |= MSG_EOR;
1390 #ifdef SCTP
1391 			if (m->m_flags & M_NOTIFICATION)
1392 				flags |= MSG_NOTIFICATION;
1393 #endif /* SCTP */
1394 			if (flags & MSG_PEEK) {
1395 				m = m->m_next;
1396 				moff = 0;
1397 			} else {
1398 				if (sio) {
1399 					n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1400 					sbappend(sio, m);
1401 					m = n;
1402 				} else {
1403 					m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1404 				}
1405 			}
1406 		} else {
1407 			if (flags & MSG_PEEK) {
1408 				moff += len;
1409 			} else {
1410 				if (sio) {
1411 					n = m_copym(m, 0, len, MB_WAIT);
1412 					if (n)
1413 						sbappend(sio, n);
1414 				}
1415 				m->m_data += len;
1416 				m->m_len -= len;
1417 				so->so_rcv.ssb_cc -= len;
1418 			}
1419 		}
1420 		if (so->so_oobmark) {
1421 			if ((flags & MSG_PEEK) == 0) {
1422 				so->so_oobmark -= len;
1423 				if (so->so_oobmark == 0) {
1424 					sosetstate(so, SS_RCVATMARK);
1425 					break;
1426 				}
1427 			} else {
1428 				offset += len;
1429 				if (offset == so->so_oobmark)
1430 					break;
1431 			}
1432 		}
1433 		if (flags & MSG_EOR)
1434 			break;
1435 		/*
1436 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1437 		 * we must not quit until resid == 0 or an error
1438 		 * termination.  If a signal/timeout occurs, return
1439 		 * with a short count but without error.
1440 		 * Keep signalsockbuf locked against other readers.
1441 		 */
1442 		while ((flags & MSG_WAITALL) && m == NULL &&
1443 		       resid > 0 && !sosendallatonce(so) &&
1444 		       so->so_rcv.ssb_mb == NULL) {
1445 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1446 				break;
1447 			/*
1448 			 * The window might have closed to zero, make
1449 			 * sure we send an ack now that we've drained
1450 			 * the buffer or we might end up blocking until
1451 			 * the idle takes over (5 seconds).
1452 			 */
1453 			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1454 				so_pru_rcvd(so, flags);
1455 			error = ssb_wait(&so->so_rcv);
1456 			if (error) {
1457 				ssb_unlock(&so->so_rcv);
1458 				error = 0;
1459 				goto done;
1460 			}
1461 			m = so->so_rcv.ssb_mb;
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * If an atomic read was requested but unread data still remains
1467 	 * in the record, set MSG_TRUNC.
1468 	 */
1469 	if (m && pr->pr_flags & PR_ATOMIC)
1470 		flags |= MSG_TRUNC;
1471 
1472 	/*
1473 	 * Cleanup.  If an atomic read was requested drop any unread data.
1474 	 */
1475 	if ((flags & MSG_PEEK) == 0) {
1476 		if (m && (pr->pr_flags & PR_ATOMIC))
1477 			sbdroprecord(&so->so_rcv.sb);
1478 		if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1479 			so_pru_rcvd(so, flags);
1480 	}
1481 
1482 	if (orig_resid == resid && orig_resid &&
1483 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1484 		ssb_unlock(&so->so_rcv);
1485 		goto restart;
1486 	}
1487 
1488 	if (flagsp)
1489 		*flagsp |= flags;
1490 release:
1491 	ssb_unlock(&so->so_rcv);
1492 done:
1493 	lwkt_reltoken(&so->so_rcv.ssb_token);
1494 	if (free_chain)
1495 		m_freem(free_chain);
1496 	return (error);
1497 }
1498 
1499 /*
1500  * Shut a socket down.  Note that we do not get a frontend lock as we
1501  * want to be able to shut the socket down even if another thread is
1502  * blocked in a read(), thus waking it up.
1503  */
1504 int
1505 soshutdown(struct socket *so, int how)
1506 {
1507 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1508 		return (EINVAL);
1509 
1510 	if (how != SHUT_WR) {
1511 		/*ssb_lock(&so->so_rcv, M_WAITOK);*/
1512 		sorflush(so);
1513 		/*ssb_unlock(&so->so_rcv);*/
1514 	}
1515 	if (how != SHUT_RD)
1516 		return (so_pru_shutdown(so));
1517 	return (0);
1518 }
1519 
1520 void
1521 sorflush(struct socket *so)
1522 {
1523 	struct signalsockbuf *ssb = &so->so_rcv;
1524 	struct protosw *pr = so->so_proto;
1525 	struct signalsockbuf asb;
1526 
1527 	atomic_set_int(&ssb->ssb_flags, SSB_NOINTR);
1528 
1529 	lwkt_gettoken(&ssb->ssb_token);
1530 	socantrcvmore(so);
1531 	asb = *ssb;
1532 
1533 	/*
1534 	 * Can't just blow up the ssb structure here
1535 	 */
1536 	bzero(&ssb->sb, sizeof(ssb->sb));
1537 	ssb->ssb_timeo = 0;
1538 	ssb->ssb_lowat = 0;
1539 	ssb->ssb_hiwat = 0;
1540 	ssb->ssb_mbmax = 0;
1541 	atomic_clear_int(&ssb->ssb_flags, SSB_CLEAR_MASK);
1542 
1543 	if ((pr->pr_flags & PR_RIGHTS) && pr->pr_domain->dom_dispose)
1544 		(*pr->pr_domain->dom_dispose)(asb.ssb_mb);
1545 	ssb_release(&asb, so);
1546 
1547 	lwkt_reltoken(&ssb->ssb_token);
1548 }
1549 
1550 #ifdef INET
1551 static int
1552 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt)
1553 {
1554 	struct accept_filter_arg	*afap = NULL;
1555 	struct accept_filter	*afp;
1556 	struct so_accf	*af = so->so_accf;
1557 	int	error = 0;
1558 
1559 	/* do not set/remove accept filters on non listen sockets */
1560 	if ((so->so_options & SO_ACCEPTCONN) == 0) {
1561 		error = EINVAL;
1562 		goto out;
1563 	}
1564 
1565 	/* removing the filter */
1566 	if (sopt == NULL) {
1567 		if (af != NULL) {
1568 			if (af->so_accept_filter != NULL &&
1569 				af->so_accept_filter->accf_destroy != NULL) {
1570 				af->so_accept_filter->accf_destroy(so);
1571 			}
1572 			if (af->so_accept_filter_str != NULL) {
1573 				kfree(af->so_accept_filter_str, M_ACCF);
1574 			}
1575 			kfree(af, M_ACCF);
1576 			so->so_accf = NULL;
1577 		}
1578 		so->so_options &= ~SO_ACCEPTFILTER;
1579 		return (0);
1580 	}
1581 	/* adding a filter */
1582 	/* must remove previous filter first */
1583 	if (af != NULL) {
1584 		error = EINVAL;
1585 		goto out;
1586 	}
1587 	/* don't put large objects on the kernel stack */
1588 	afap = kmalloc(sizeof(*afap), M_TEMP, M_WAITOK);
1589 	error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
1590 	afap->af_name[sizeof(afap->af_name)-1] = '\0';
1591 	afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
1592 	if (error)
1593 		goto out;
1594 	afp = accept_filt_get(afap->af_name);
1595 	if (afp == NULL) {
1596 		error = ENOENT;
1597 		goto out;
1598 	}
1599 	af = kmalloc(sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
1600 	if (afp->accf_create != NULL) {
1601 		if (afap->af_name[0] != '\0') {
1602 			int len = strlen(afap->af_name) + 1;
1603 
1604 			af->so_accept_filter_str = kmalloc(len, M_ACCF,
1605 							   M_WAITOK);
1606 			strcpy(af->so_accept_filter_str, afap->af_name);
1607 		}
1608 		af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
1609 		if (af->so_accept_filter_arg == NULL) {
1610 			kfree(af->so_accept_filter_str, M_ACCF);
1611 			kfree(af, M_ACCF);
1612 			so->so_accf = NULL;
1613 			error = EINVAL;
1614 			goto out;
1615 		}
1616 	}
1617 	af->so_accept_filter = afp;
1618 	so->so_accf = af;
1619 	so->so_options |= SO_ACCEPTFILTER;
1620 out:
1621 	if (afap != NULL)
1622 		kfree(afap, M_TEMP);
1623 	return (error);
1624 }
1625 #endif /* INET */
1626 
1627 /*
1628  * Perhaps this routine, and sooptcopyout(), below, ought to come in
1629  * an additional variant to handle the case where the option value needs
1630  * to be some kind of integer, but not a specific size.
1631  * In addition to their use here, these functions are also called by the
1632  * protocol-level pr_ctloutput() routines.
1633  */
1634 int
1635 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1636 {
1637 	return soopt_to_kbuf(sopt, buf, len, minlen);
1638 }
1639 
1640 int
1641 soopt_to_kbuf(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1642 {
1643 	size_t	valsize;
1644 
1645 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
1646 	KKASSERT(kva_p(buf));
1647 
1648 	/*
1649 	 * If the user gives us more than we wanted, we ignore it,
1650 	 * but if we don't get the minimum length the caller
1651 	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1652 	 * is set to however much we actually retrieved.
1653 	 */
1654 	if ((valsize = sopt->sopt_valsize) < minlen)
1655 		return EINVAL;
1656 	if (valsize > len)
1657 		sopt->sopt_valsize = valsize = len;
1658 
1659 	bcopy(sopt->sopt_val, buf, valsize);
1660 	return 0;
1661 }
1662 
1663 
1664 int
1665 sosetopt(struct socket *so, struct sockopt *sopt)
1666 {
1667 	int	error, optval;
1668 	struct	linger l;
1669 	struct	timeval tv;
1670 	u_long  val;
1671 	struct signalsockbuf *sotmp;
1672 
1673 	error = 0;
1674 	sopt->sopt_dir = SOPT_SET;
1675 	if (sopt->sopt_level != SOL_SOCKET) {
1676 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1677 			return (so_pr_ctloutput(so, sopt));
1678 		}
1679 		error = ENOPROTOOPT;
1680 	} else {
1681 		switch (sopt->sopt_name) {
1682 #ifdef INET
1683 		case SO_ACCEPTFILTER:
1684 			error = do_setopt_accept_filter(so, sopt);
1685 			if (error)
1686 				goto bad;
1687 			break;
1688 #endif /* INET */
1689 		case SO_LINGER:
1690 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1691 			if (error)
1692 				goto bad;
1693 
1694 			so->so_linger = l.l_linger;
1695 			if (l.l_onoff)
1696 				so->so_options |= SO_LINGER;
1697 			else
1698 				so->so_options &= ~SO_LINGER;
1699 			break;
1700 
1701 		case SO_DEBUG:
1702 		case SO_KEEPALIVE:
1703 		case SO_DONTROUTE:
1704 		case SO_USELOOPBACK:
1705 		case SO_BROADCAST:
1706 		case SO_REUSEADDR:
1707 		case SO_REUSEPORT:
1708 		case SO_OOBINLINE:
1709 		case SO_TIMESTAMP:
1710 			error = sooptcopyin(sopt, &optval, sizeof optval,
1711 					    sizeof optval);
1712 			if (error)
1713 				goto bad;
1714 			if (optval)
1715 				so->so_options |= sopt->sopt_name;
1716 			else
1717 				so->so_options &= ~sopt->sopt_name;
1718 			break;
1719 
1720 		case SO_SNDBUF:
1721 		case SO_RCVBUF:
1722 		case SO_SNDLOWAT:
1723 		case SO_RCVLOWAT:
1724 			error = sooptcopyin(sopt, &optval, sizeof optval,
1725 					    sizeof optval);
1726 			if (error)
1727 				goto bad;
1728 
1729 			/*
1730 			 * Values < 1 make no sense for any of these
1731 			 * options, so disallow them.
1732 			 */
1733 			if (optval < 1) {
1734 				error = EINVAL;
1735 				goto bad;
1736 			}
1737 
1738 			switch (sopt->sopt_name) {
1739 			case SO_SNDBUF:
1740 			case SO_RCVBUF:
1741 				if (ssb_reserve(sopt->sopt_name == SO_SNDBUF ?
1742 				    &so->so_snd : &so->so_rcv, (u_long)optval,
1743 				    so,
1744 				    &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) {
1745 					error = ENOBUFS;
1746 					goto bad;
1747 				}
1748 				sotmp = (sopt->sopt_name == SO_SNDBUF) ?
1749 						&so->so_snd : &so->so_rcv;
1750 				atomic_clear_int(&sotmp->ssb_flags,
1751 						 SSB_AUTOSIZE);
1752 				break;
1753 
1754 			/*
1755 			 * Make sure the low-water is never greater than
1756 			 * the high-water.
1757 			 */
1758 			case SO_SNDLOWAT:
1759 				so->so_snd.ssb_lowat =
1760 				    (optval > so->so_snd.ssb_hiwat) ?
1761 				    so->so_snd.ssb_hiwat : optval;
1762 				atomic_clear_int(&so->so_snd.ssb_flags,
1763 						 SSB_AUTOLOWAT);
1764 				break;
1765 			case SO_RCVLOWAT:
1766 				so->so_rcv.ssb_lowat =
1767 				    (optval > so->so_rcv.ssb_hiwat) ?
1768 				    so->so_rcv.ssb_hiwat : optval;
1769 				atomic_clear_int(&so->so_rcv.ssb_flags,
1770 						 SSB_AUTOLOWAT);
1771 				break;
1772 			}
1773 			break;
1774 
1775 		case SO_SNDTIMEO:
1776 		case SO_RCVTIMEO:
1777 			error = sooptcopyin(sopt, &tv, sizeof tv,
1778 					    sizeof tv);
1779 			if (error)
1780 				goto bad;
1781 
1782 			/* assert(hz > 0); */
1783 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
1784 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1785 				error = EDOM;
1786 				goto bad;
1787 			}
1788 			/* assert(tick > 0); */
1789 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
1790 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / ustick;
1791 			if (val > INT_MAX) {
1792 				error = EDOM;
1793 				goto bad;
1794 			}
1795 			if (val == 0 && tv.tv_usec != 0)
1796 				val = 1;
1797 
1798 			switch (sopt->sopt_name) {
1799 			case SO_SNDTIMEO:
1800 				so->so_snd.ssb_timeo = val;
1801 				break;
1802 			case SO_RCVTIMEO:
1803 				so->so_rcv.ssb_timeo = val;
1804 				break;
1805 			}
1806 			break;
1807 		default:
1808 			error = ENOPROTOOPT;
1809 			break;
1810 		}
1811 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1812 			(void) so_pr_ctloutput(so, sopt);
1813 		}
1814 	}
1815 bad:
1816 	return (error);
1817 }
1818 
1819 /* Helper routine for getsockopt */
1820 int
1821 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1822 {
1823 	soopt_from_kbuf(sopt, buf, len);
1824 	return 0;
1825 }
1826 
1827 void
1828 soopt_from_kbuf(struct sockopt *sopt, const void *buf, size_t len)
1829 {
1830 	size_t	valsize;
1831 
1832 	if (len == 0) {
1833 		sopt->sopt_valsize = 0;
1834 		return;
1835 	}
1836 
1837 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
1838 	KKASSERT(kva_p(buf));
1839 
1840 	/*
1841 	 * Documented get behavior is that we always return a value,
1842 	 * possibly truncated to fit in the user's buffer.
1843 	 * Traditional behavior is that we always tell the user
1844 	 * precisely how much we copied, rather than something useful
1845 	 * like the total amount we had available for her.
1846 	 * Note that this interface is not idempotent; the entire answer must
1847 	 * generated ahead of time.
1848 	 */
1849 	valsize = szmin(len, sopt->sopt_valsize);
1850 	sopt->sopt_valsize = valsize;
1851 	if (sopt->sopt_val != 0) {
1852 		bcopy(buf, sopt->sopt_val, valsize);
1853 	}
1854 }
1855 
1856 int
1857 sogetopt(struct socket *so, struct sockopt *sopt)
1858 {
1859 	int	error, optval;
1860 	long	optval_l;
1861 	struct	linger l;
1862 	struct	timeval tv;
1863 #ifdef INET
1864 	struct accept_filter_arg *afap;
1865 #endif
1866 
1867 	error = 0;
1868 	sopt->sopt_dir = SOPT_GET;
1869 	if (sopt->sopt_level != SOL_SOCKET) {
1870 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1871 			return (so_pr_ctloutput(so, sopt));
1872 		} else
1873 			return (ENOPROTOOPT);
1874 	} else {
1875 		switch (sopt->sopt_name) {
1876 #ifdef INET
1877 		case SO_ACCEPTFILTER:
1878 			if ((so->so_options & SO_ACCEPTCONN) == 0)
1879 				return (EINVAL);
1880 			afap = kmalloc(sizeof(*afap), M_TEMP,
1881 				       M_WAITOK | M_ZERO);
1882 			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
1883 				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
1884 				if (so->so_accf->so_accept_filter_str != NULL)
1885 					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
1886 			}
1887 			error = sooptcopyout(sopt, afap, sizeof(*afap));
1888 			kfree(afap, M_TEMP);
1889 			break;
1890 #endif /* INET */
1891 
1892 		case SO_LINGER:
1893 			l.l_onoff = so->so_options & SO_LINGER;
1894 			l.l_linger = so->so_linger;
1895 			error = sooptcopyout(sopt, &l, sizeof l);
1896 			break;
1897 
1898 		case SO_USELOOPBACK:
1899 		case SO_DONTROUTE:
1900 		case SO_DEBUG:
1901 		case SO_KEEPALIVE:
1902 		case SO_REUSEADDR:
1903 		case SO_REUSEPORT:
1904 		case SO_BROADCAST:
1905 		case SO_OOBINLINE:
1906 		case SO_TIMESTAMP:
1907 			optval = so->so_options & sopt->sopt_name;
1908 integer:
1909 			error = sooptcopyout(sopt, &optval, sizeof optval);
1910 			break;
1911 
1912 		case SO_TYPE:
1913 			optval = so->so_type;
1914 			goto integer;
1915 
1916 		case SO_ERROR:
1917 			optval = so->so_error;
1918 			so->so_error = 0;
1919 			goto integer;
1920 
1921 		case SO_SNDBUF:
1922 			optval = so->so_snd.ssb_hiwat;
1923 			goto integer;
1924 
1925 		case SO_RCVBUF:
1926 			optval = so->so_rcv.ssb_hiwat;
1927 			goto integer;
1928 
1929 		case SO_SNDLOWAT:
1930 			optval = so->so_snd.ssb_lowat;
1931 			goto integer;
1932 
1933 		case SO_RCVLOWAT:
1934 			optval = so->so_rcv.ssb_lowat;
1935 			goto integer;
1936 
1937 		case SO_SNDTIMEO:
1938 		case SO_RCVTIMEO:
1939 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
1940 				  so->so_snd.ssb_timeo : so->so_rcv.ssb_timeo);
1941 
1942 			tv.tv_sec = optval / hz;
1943 			tv.tv_usec = (optval % hz) * ustick;
1944 			error = sooptcopyout(sopt, &tv, sizeof tv);
1945 			break;
1946 
1947 		case SO_SNDSPACE:
1948 			optval_l = ssb_space(&so->so_snd);
1949 			error = sooptcopyout(sopt, &optval_l, sizeof(optval_l));
1950 			break;
1951 
1952 		default:
1953 			error = ENOPROTOOPT;
1954 			break;
1955 		}
1956 		return (error);
1957 	}
1958 }
1959 
1960 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
1961 int
1962 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
1963 {
1964 	struct mbuf *m, *m_prev;
1965 	int sopt_size = sopt->sopt_valsize, msize;
1966 
1967 	m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA,
1968 		   0, &msize);
1969 	if (m == NULL)
1970 		return (ENOBUFS);
1971 	m->m_len = min(msize, sopt_size);
1972 	sopt_size -= m->m_len;
1973 	*mp = m;
1974 	m_prev = m;
1975 
1976 	while (sopt_size > 0) {
1977 		m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT,
1978 			   MT_DATA, 0, &msize);
1979 		if (m == NULL) {
1980 			m_freem(*mp);
1981 			return (ENOBUFS);
1982 		}
1983 		m->m_len = min(msize, sopt_size);
1984 		sopt_size -= m->m_len;
1985 		m_prev->m_next = m;
1986 		m_prev = m;
1987 	}
1988 	return (0);
1989 }
1990 
1991 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
1992 int
1993 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
1994 {
1995 	soopt_to_mbuf(sopt, m);
1996 	return 0;
1997 }
1998 
1999 void
2000 soopt_to_mbuf(struct sockopt *sopt, struct mbuf *m)
2001 {
2002 	size_t valsize;
2003 	void *val;
2004 
2005 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2006 	KKASSERT(kva_p(m));
2007 	if (sopt->sopt_val == NULL)
2008 		return;
2009 	val = sopt->sopt_val;
2010 	valsize = sopt->sopt_valsize;
2011 	while (m != NULL && valsize >= m->m_len) {
2012 		bcopy(val, mtod(m, char *), m->m_len);
2013 		valsize -= m->m_len;
2014 		val = (caddr_t)val + m->m_len;
2015 		m = m->m_next;
2016 	}
2017 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2018 		panic("ip6_sooptmcopyin");
2019 }
2020 
2021 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2022 int
2023 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2024 {
2025 	return soopt_from_mbuf(sopt, m);
2026 }
2027 
2028 int
2029 soopt_from_mbuf(struct sockopt *sopt, struct mbuf *m)
2030 {
2031 	struct mbuf *m0 = m;
2032 	size_t valsize = 0;
2033 	size_t maxsize;
2034 	void *val;
2035 
2036 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2037 	KKASSERT(kva_p(m));
2038 	if (sopt->sopt_val == NULL)
2039 		return 0;
2040 	val = sopt->sopt_val;
2041 	maxsize = sopt->sopt_valsize;
2042 	while (m != NULL && maxsize >= m->m_len) {
2043 		bcopy(mtod(m, char *), val, m->m_len);
2044 	       maxsize -= m->m_len;
2045 	       val = (caddr_t)val + m->m_len;
2046 	       valsize += m->m_len;
2047 	       m = m->m_next;
2048 	}
2049 	if (m != NULL) {
2050 		/* enough soopt buffer should be given from user-land */
2051 		m_freem(m0);
2052 		return (EINVAL);
2053 	}
2054 	sopt->sopt_valsize = valsize;
2055 	return 0;
2056 }
2057 
2058 void
2059 sohasoutofband(struct socket *so)
2060 {
2061 	if (so->so_sigio != NULL)
2062 		pgsigio(so->so_sigio, SIGURG, 0);
2063 	KNOTE(&so->so_rcv.ssb_kq.ki_note, NOTE_OOB);
2064 }
2065 
2066 int
2067 sokqfilter(struct file *fp, struct knote *kn)
2068 {
2069 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2070 	struct signalsockbuf *ssb;
2071 
2072 	switch (kn->kn_filter) {
2073 	case EVFILT_READ:
2074 		if (so->so_options & SO_ACCEPTCONN)
2075 			kn->kn_fop = &solisten_filtops;
2076 		else
2077 			kn->kn_fop = &soread_filtops;
2078 		ssb = &so->so_rcv;
2079 		break;
2080 	case EVFILT_WRITE:
2081 		kn->kn_fop = &sowrite_filtops;
2082 		ssb = &so->so_snd;
2083 		break;
2084 	case EVFILT_EXCEPT:
2085 		kn->kn_fop = &soexcept_filtops;
2086 		ssb = &so->so_rcv;
2087 		break;
2088 	default:
2089 		return (EOPNOTSUPP);
2090 	}
2091 
2092 	knote_insert(&ssb->ssb_kq.ki_note, kn);
2093 	atomic_set_int(&ssb->ssb_flags, SSB_KNOTE);
2094 	return (0);
2095 }
2096 
2097 static void
2098 filt_sordetach(struct knote *kn)
2099 {
2100 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2101 
2102 	knote_remove(&so->so_rcv.ssb_kq.ki_note, kn);
2103 	if (SLIST_EMPTY(&so->so_rcv.ssb_kq.ki_note))
2104 		atomic_clear_int(&so->so_rcv.ssb_flags, SSB_KNOTE);
2105 }
2106 
2107 /*ARGSUSED*/
2108 static int
2109 filt_soread(struct knote *kn, long hint)
2110 {
2111 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2112 
2113 	if (kn->kn_sfflags & NOTE_OOB) {
2114 		if ((so->so_oobmark || (so->so_state & SS_RCVATMARK))) {
2115 			kn->kn_fflags |= NOTE_OOB;
2116 			return (1);
2117 		}
2118 		return (0);
2119 	}
2120 	kn->kn_data = so->so_rcv.ssb_cc;
2121 
2122 	if (so->so_state & SS_CANTRCVMORE) {
2123 		/*
2124 		 * Only set NODATA if all data has been exhausted.
2125 		 */
2126 		if (kn->kn_data == 0)
2127 			kn->kn_flags |= EV_NODATA;
2128 		kn->kn_flags |= EV_EOF;
2129 		kn->kn_fflags = so->so_error;
2130 		return (1);
2131 	}
2132 	if (so->so_error)	/* temporary udp error */
2133 		return (1);
2134 	if (kn->kn_sfflags & NOTE_LOWAT)
2135 		return (kn->kn_data >= kn->kn_sdata);
2136 	return ((kn->kn_data >= so->so_rcv.ssb_lowat) ||
2137 		!TAILQ_EMPTY(&so->so_comp));
2138 }
2139 
2140 static void
2141 filt_sowdetach(struct knote *kn)
2142 {
2143 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2144 
2145 	knote_remove(&so->so_snd.ssb_kq.ki_note, kn);
2146 	if (SLIST_EMPTY(&so->so_snd.ssb_kq.ki_note))
2147 		atomic_clear_int(&so->so_snd.ssb_flags, SSB_KNOTE);
2148 }
2149 
2150 /*ARGSUSED*/
2151 static int
2152 filt_sowrite(struct knote *kn, long hint)
2153 {
2154 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2155 
2156 	kn->kn_data = ssb_space(&so->so_snd);
2157 	if (so->so_state & SS_CANTSENDMORE) {
2158 		kn->kn_flags |= (EV_EOF | EV_NODATA);
2159 		kn->kn_fflags = so->so_error;
2160 		return (1);
2161 	}
2162 	if (so->so_error)	/* temporary udp error */
2163 		return (1);
2164 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
2165 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2166 		return (0);
2167 	if (kn->kn_sfflags & NOTE_LOWAT)
2168 		return (kn->kn_data >= kn->kn_sdata);
2169 	return (kn->kn_data >= so->so_snd.ssb_lowat);
2170 }
2171 
2172 /*ARGSUSED*/
2173 static int
2174 filt_solisten(struct knote *kn, long hint)
2175 {
2176 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2177 
2178 	kn->kn_data = so->so_qlen;
2179 	return (! TAILQ_EMPTY(&so->so_comp));
2180 }
2181