xref: /dragonfly/sys/kern/uipc_socket2.c (revision 267c04fd)
1 /*
2  * Copyright (c) 2005 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 1982, 1986, 1988, 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
31  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
32  */
33 
34 #include "opt_param.h"
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/domain.h>
38 #include <sys/file.h>	/* for maxfiles */
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/proc.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/stat.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/socketops.h>
50 #include <sys/signalvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/event.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/msgport2.h>
56 #include <sys/socketvar2.h>
57 
58 #include <net/netisr2.h>
59 
60 #ifndef KTR_SOWAKEUP
61 #define KTR_SOWAKEUP	KTR_ALL
62 #endif
63 KTR_INFO_MASTER(sowakeup);
64 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_start, 0, "newconn sorwakeup start");
65 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_end, 1, "newconn sorwakeup end");
66 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_wakeupstart, 2, "newconn wakeup start");
67 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_wakeupend, 3, "newconn wakeup end");
68 #define logsowakeup(name)	KTR_LOG(sowakeup_ ## name)
69 
70 int	maxsockets;
71 
72 /*
73  * Primitive routines for operating on sockets and socket buffers
74  */
75 
76 u_long	sb_max = SB_MAX;
77 u_long	sb_max_adj =
78     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
79 
80 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
81 
82 /************************************************************************
83  * signalsockbuf procedures						*
84  ************************************************************************/
85 
86 /*
87  * Wait for data to arrive at/drain from a socket buffer.
88  *
89  * NOTE: Caller must generally hold the ssb_lock (client side lock) since
90  *	 WAIT/WAKEUP only works for one client at a time.
91  *
92  * NOTE: Caller always retries whatever operation it was waiting on.
93  */
94 int
95 ssb_wait(struct signalsockbuf *ssb)
96 {
97 	uint32_t flags;
98 	int pflags;
99 	int error;
100 
101 	pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH;
102 
103 	for (;;) {
104 		flags = ssb->ssb_flags;
105 		cpu_ccfence();
106 
107 		/*
108 		 * WAKEUP and WAIT interlock each other.  We can catch the
109 		 * race by checking to see if WAKEUP has already been set,
110 		 * and only setting WAIT if WAKEUP is clear.
111 		 */
112 		if (flags & SSB_WAKEUP) {
113 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
114 					      flags & ~SSB_WAKEUP)) {
115 				error = 0;
116 				break;
117 			}
118 			continue;
119 		}
120 
121 		/*
122 		 * Only set WAIT if WAKEUP is clear.
123 		 */
124 		tsleep_interlock(&ssb->ssb_cc, pflags);
125 		if (atomic_cmpset_int(&ssb->ssb_flags, flags,
126 				      flags | SSB_WAIT)) {
127 			error = tsleep(&ssb->ssb_cc, pflags | PINTERLOCKED,
128 				       "sbwait", ssb->ssb_timeo);
129 			break;
130 		}
131 	}
132 	return (error);
133 }
134 
135 /*
136  * Lock a sockbuf already known to be locked;
137  * return any error returned from sleep (EINTR).
138  */
139 int
140 _ssb_lock(struct signalsockbuf *ssb)
141 {
142 	uint32_t flags;
143 	int pflags;
144 	int error;
145 
146 	pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH;
147 
148 	for (;;) {
149 		flags = ssb->ssb_flags;
150 		cpu_ccfence();
151 		if (flags & SSB_LOCK) {
152 			tsleep_interlock(&ssb->ssb_flags, pflags);
153 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
154 					      flags | SSB_WANT)) {
155 				error = tsleep(&ssb->ssb_flags,
156 					       pflags | PINTERLOCKED,
157 					       "sblock", 0);
158 				if (error)
159 					break;
160 			}
161 		} else {
162 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
163 					      flags | SSB_LOCK)) {
164 				lwkt_gettoken(&ssb->ssb_token);
165 				error = 0;
166 				break;
167 			}
168 		}
169 	}
170 	return (error);
171 }
172 
173 /*
174  * This does the same for sockbufs.  Note that the xsockbuf structure,
175  * since it is always embedded in a socket, does not include a self
176  * pointer nor a length.  We make this entry point public in case
177  * some other mechanism needs it.
178  */
179 void
180 ssbtoxsockbuf(struct signalsockbuf *ssb, struct xsockbuf *xsb)
181 {
182 	xsb->sb_cc = ssb->ssb_cc;
183 	xsb->sb_hiwat = ssb->ssb_hiwat;
184 	xsb->sb_mbcnt = ssb->ssb_mbcnt;
185 	xsb->sb_mbmax = ssb->ssb_mbmax;
186 	xsb->sb_lowat = ssb->ssb_lowat;
187 	xsb->sb_flags = ssb->ssb_flags;
188 	xsb->sb_timeo = ssb->ssb_timeo;
189 }
190 
191 
192 /************************************************************************
193  * Procedures which manipulate socket state flags, wakeups, etc.	*
194  ************************************************************************
195  *
196  * Normal sequence from the active (originating) side is that
197  * soisconnecting() is called during processing of connect() call, resulting
198  * in an eventual call to soisconnected() if/when the connection is
199  * established.  When the connection is torn down soisdisconnecting() is
200  * called during processing of disconnect() call, and soisdisconnected() is
201  * called when the connection to the peer is totally severed.
202  *
203  * The semantics of these routines are such that connectionless protocols
204  * can call soisconnected() and soisdisconnected() only, bypassing the
205  * in-progress calls when setting up a ``connection'' takes no time.
206  *
207  * From the passive side, a socket is created with two queues of sockets:
208  * so_incomp for connections in progress and so_comp for connections
209  * already made and awaiting user acceptance.  As a protocol is preparing
210  * incoming connections, it creates a socket structure queued on so_incomp
211  * by calling sonewconn().  When the connection is established,
212  * soisconnected() is called, and transfers the socket structure to so_comp,
213  * making it available to accept().
214  *
215  * If a socket is closed with sockets on either so_incomp or so_comp, these
216  * sockets are dropped.
217  *
218  * If higher level protocols are implemented in the kernel, the wakeups
219  * done here will sometimes cause software-interrupt process scheduling.
220  */
221 
222 void
223 soisconnecting(struct socket *so)
224 {
225 	soclrstate(so, SS_ISCONNECTED | SS_ISDISCONNECTING);
226 	sosetstate(so, SS_ISCONNECTING);
227 }
228 
229 void
230 soisconnected(struct socket *so)
231 {
232 	struct socket *head;
233 
234 	while ((head = so->so_head) != NULL) {
235 		lwkt_getpooltoken(head);
236 		if (so->so_head == head)
237 			break;
238 		lwkt_relpooltoken(head);
239 	}
240 
241 	soclrstate(so, SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING);
242 	sosetstate(so, SS_ISCONNECTED);
243 	if (head && (so->so_state & SS_INCOMP)) {
244 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
245 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
246 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
247 			atomic_set_int(&so->so_rcv.ssb_flags, SSB_UPCALL);
248 			so->so_options &= ~SO_ACCEPTFILTER;
249 			so->so_upcall(so, so->so_upcallarg, 0);
250 			lwkt_relpooltoken(head);
251 			return;
252 		}
253 
254 		/*
255 		 * Listen socket are not per-cpu.
256 		 */
257 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
258 		head->so_incqlen--;
259 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
260 		head->so_qlen++;
261 		sosetstate(so, SS_COMP);
262 		soclrstate(so, SS_INCOMP);
263 
264 		/*
265 		 * XXX head may be on a different protocol thread.
266 		 *     sorwakeup()->sowakeup() is hacked atm.
267 		 */
268 		sorwakeup(head);
269 		wakeup_one(&head->so_timeo);
270 	} else {
271 		wakeup(&so->so_timeo);
272 		sorwakeup(so);
273 		sowwakeup(so);
274 	}
275 	if (head)
276 		lwkt_relpooltoken(head);
277 }
278 
279 void
280 soisdisconnecting(struct socket *so)
281 {
282 	soclrstate(so, SS_ISCONNECTING);
283 	sosetstate(so, SS_ISDISCONNECTING | SS_CANTRCVMORE | SS_CANTSENDMORE);
284 	wakeup((caddr_t)&so->so_timeo);
285 	sowwakeup(so);
286 	sorwakeup(so);
287 }
288 
289 void
290 soisdisconnected(struct socket *so)
291 {
292 	soclrstate(so, SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING);
293 	sosetstate(so, SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED);
294 	wakeup((caddr_t)&so->so_timeo);
295 	sbdrop(&so->so_snd.sb, so->so_snd.ssb_cc);
296 	sowwakeup(so);
297 	sorwakeup(so);
298 }
299 
300 void
301 soisreconnecting(struct socket *so)
302 {
303         soclrstate(so, SS_ISDISCONNECTING | SS_ISDISCONNECTED |
304 		       SS_CANTRCVMORE | SS_CANTSENDMORE);
305 	sosetstate(so, SS_ISCONNECTING);
306 }
307 
308 void
309 soisreconnected(struct socket *so)
310 {
311 	soclrstate(so, SS_ISDISCONNECTED | SS_CANTRCVMORE | SS_CANTSENDMORE);
312 	soisconnected(so);
313 }
314 
315 /*
316  * Set or change the message port a socket receives commands on.
317  *
318  * XXX
319  */
320 void
321 sosetport(struct socket *so, lwkt_port_t port)
322 {
323 	so->so_port = port;
324 }
325 
326 /*
327  * When an attempt at a new connection is noted on a socket
328  * which accepts connections, sonewconn is called.  If the
329  * connection is possible (subject to space constraints, etc.)
330  * then we allocate a new structure, propoerly linked into the
331  * data structure of the original socket, and return this.
332  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
333  *
334  * The new socket is returned with one ref and so_pcb assigned.
335  * The reference is implied by so_pcb.
336  */
337 struct socket *
338 sonewconn_faddr(struct socket *head, int connstatus,
339     const struct sockaddr *faddr)
340 {
341 	struct socket *so;
342 	struct socket *sp;
343 	struct pru_attach_info ai;
344 
345 	if (head->so_qlen > 3 * head->so_qlimit / 2)
346 		return (NULL);
347 	so = soalloc(1, head->so_proto);
348 	if (so == NULL)
349 		return (NULL);
350 
351 	/*
352 	 * Set the port prior to attaching the inpcb to the current
353 	 * cpu's protocol thread (which should be the current thread
354 	 * but might not be in all cases).  This serializes any pcb ops
355 	 * which occur to our cpu allowing us to complete the attachment
356 	 * without racing anything.
357 	 */
358 	if (head->so_proto->pr_flags & PR_SYNC_PORT)
359 		sosetport(so, &netisr_sync_port);
360 	else
361 		sosetport(so, netisr_cpuport(mycpuid));
362 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
363 		connstatus = 0;
364 	so->so_head = head;
365 	so->so_type = head->so_type;
366 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
367 	so->so_linger = head->so_linger;
368 
369 	/*
370 	 * NOTE: Clearing NOFDREF implies referencing the so with
371 	 *	 soreference().
372 	 */
373 	so->so_state = head->so_state | SS_NOFDREF | SS_ASSERTINPROG;
374 	so->so_cred = crhold(head->so_cred);
375 	ai.sb_rlimit = NULL;
376 	ai.p_ucred = NULL;
377 	ai.fd_rdir = NULL;		/* jail code cruft XXX JH */
378 
379 	/*
380 	 * Reserve space and call pru_attach.  We can direct-call the
381 	 * function since we're already in the protocol thread.
382 	 */
383 	if (soreserve(so, head->so_snd.ssb_hiwat,
384 		      head->so_rcv.ssb_hiwat, NULL) ||
385 	    so_pru_attach_direct(so, 0, &ai)) {
386 		so->so_head = NULL;
387 		soclrstate(so, SS_ASSERTINPROG);
388 		sofree(so);		/* remove implied pcb ref */
389 		return (NULL);
390 	}
391 	KKASSERT(((so->so_proto->pr_flags & PR_ASYNC_RCVD) == 0 &&
392 	    so->so_refs == 2) ||	/* attach + our base ref */
393 	   ((so->so_proto->pr_flags & PR_ASYNC_RCVD) &&
394 	    so->so_refs == 3));		/* + async rcvd ref */
395 	sofree(so);
396 	KKASSERT(so->so_port != NULL);
397 	so->so_rcv.ssb_lowat = head->so_rcv.ssb_lowat;
398 	so->so_snd.ssb_lowat = head->so_snd.ssb_lowat;
399 	so->so_rcv.ssb_timeo = head->so_rcv.ssb_timeo;
400 	so->so_snd.ssb_timeo = head->so_snd.ssb_timeo;
401 
402 	if (head->so_rcv.ssb_flags & SSB_AUTOLOWAT)
403 		so->so_rcv.ssb_flags |= SSB_AUTOLOWAT;
404 	else
405 		so->so_rcv.ssb_flags &= ~SSB_AUTOLOWAT;
406 
407 	if (head->so_snd.ssb_flags & SSB_AUTOLOWAT)
408 		so->so_snd.ssb_flags |= SSB_AUTOLOWAT;
409 	else
410 		so->so_snd.ssb_flags &= ~SSB_AUTOLOWAT;
411 
412 	if (head->so_rcv.ssb_flags & SSB_AUTOSIZE)
413 		so->so_rcv.ssb_flags |= SSB_AUTOSIZE;
414 	else
415 		so->so_rcv.ssb_flags &= ~SSB_AUTOSIZE;
416 
417 	if (head->so_snd.ssb_flags & SSB_AUTOSIZE)
418 		so->so_snd.ssb_flags |= SSB_AUTOSIZE;
419 	else
420 		so->so_snd.ssb_flags &= ~SSB_AUTOSIZE;
421 
422 	/*
423 	 * Save the faddr, if the information is provided and
424 	 * the protocol can perform the saving opertation.
425 	 */
426 	if (faddr != NULL && so->so_proto->pr_usrreqs->pru_savefaddr != NULL)
427 		so->so_proto->pr_usrreqs->pru_savefaddr(so, faddr);
428 
429 	lwkt_getpooltoken(head);
430 	if (connstatus) {
431 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
432 		sosetstate(so, SS_COMP);
433 		head->so_qlen++;
434 	} else {
435 		if (head->so_incqlen > head->so_qlimit) {
436 			sp = TAILQ_FIRST(&head->so_incomp);
437 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
438 			head->so_incqlen--;
439 			soclrstate(sp, SS_INCOMP);
440 			sp->so_head = NULL;
441 			soabort_async(sp);
442 		}
443 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
444 		sosetstate(so, SS_INCOMP);
445 		head->so_incqlen++;
446 	}
447 	lwkt_relpooltoken(head);
448 	if (connstatus) {
449 		/*
450 		 * XXX head may be on a different protocol thread.
451 		 *     sorwakeup()->sowakeup() is hacked atm.
452 		 */
453 		logsowakeup(nconn_start);
454 		sorwakeup(head);
455 		logsowakeup(nconn_end);
456 
457 		logsowakeup(nconn_wakeupstart);
458 		wakeup((caddr_t)&head->so_timeo);
459 		logsowakeup(nconn_wakeupend);
460 
461 		sosetstate(so, connstatus);
462 	}
463 	soclrstate(so, SS_ASSERTINPROG);
464 	return (so);
465 }
466 
467 struct socket *
468 sonewconn(struct socket *head, int connstatus)
469 {
470 	return sonewconn_faddr(head, connstatus, NULL);
471 }
472 
473 /*
474  * Socantsendmore indicates that no more data will be sent on the
475  * socket; it would normally be applied to a socket when the user
476  * informs the system that no more data is to be sent, by the protocol
477  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
478  * will be received, and will normally be applied to the socket by a
479  * protocol when it detects that the peer will send no more data.
480  * Data queued for reading in the socket may yet be read.
481  */
482 void
483 socantsendmore(struct socket *so)
484 {
485 	sosetstate(so, SS_CANTSENDMORE);
486 	sowwakeup(so);
487 }
488 
489 void
490 socantrcvmore(struct socket *so)
491 {
492 	sosetstate(so, SS_CANTRCVMORE);
493 	sorwakeup(so);
494 }
495 
496 /*
497  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
498  * via SIGIO if the socket has the SS_ASYNC flag set.
499  *
500  * For users waiting on send/recv try to avoid unnecessary context switch
501  * thrashing.  Particularly for senders of large buffers (needs to be
502  * extended to sel and aio? XXX)
503  *
504  * WARNING!  Can be called on a foreign socket from the wrong protocol
505  *	     thread.  aka is called on the 'head' listen socket when
506  *	     a new connection comes in.
507  */
508 
509 void
510 sowakeup(struct socket *so, struct signalsockbuf *ssb)
511 {
512 	struct kqinfo *kqinfo = &ssb->ssb_kq;
513 	uint32_t flags;
514 
515 	/*
516 	 * Atomically check the flags.  When no special features are being
517 	 * used, WAIT is clear, and WAKEUP is already set, we can simply
518 	 * return.  The upcoming synchronous waiter will not block.
519 	 */
520 	flags = atomic_fetchadd_int(&ssb->ssb_flags, 0);
521 	if ((flags & SSB_NOTIFY_MASK) == 0) {
522 		if (flags & SSB_WAKEUP)
523 			return;
524 	}
525 
526 	/*
527 	 * Check conditions, set the WAKEUP flag, and clear and signal if
528 	 * the WAIT flag is found to be set.  This interlocks against the
529 	 * client side.
530 	 */
531 	for (;;) {
532 		long space;
533 
534 		flags = ssb->ssb_flags;
535 		cpu_ccfence();
536 		if (ssb->ssb_flags & SSB_PREALLOC)
537 			space = ssb_space_prealloc(ssb);
538 		else
539 			space = ssb_space(ssb);
540 
541 		if ((ssb == &so->so_snd && space >= ssb->ssb_lowat) ||
542 		    (ssb == &so->so_rcv && ssb->ssb_cc >= ssb->ssb_lowat) ||
543 		    (ssb == &so->so_snd && (so->so_state & SS_CANTSENDMORE)) ||
544 		    (ssb == &so->so_rcv && (so->so_state & SS_CANTRCVMORE))
545 		) {
546 			if (atomic_cmpset_int(&ssb->ssb_flags, flags,
547 					  (flags | SSB_WAKEUP) & ~SSB_WAIT)) {
548 				if (flags & SSB_WAIT)
549 					wakeup(&ssb->ssb_cc);
550 				break;
551 			}
552 		} else {
553 			break;
554 		}
555 	}
556 
557 	/*
558 	 * Misc other events
559 	 */
560 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
561 		pgsigio(so->so_sigio, SIGIO, 0);
562 	if (ssb->ssb_flags & SSB_UPCALL)
563 		(*so->so_upcall)(so, so->so_upcallarg, M_NOWAIT);
564 	KNOTE(&kqinfo->ki_note, 0);
565 
566 	/*
567 	 * This is a bit of a hack.  Multiple threads can wind up scanning
568 	 * ki_mlist concurrently due to the fact that this function can be
569 	 * called on a foreign socket, so we can't afford to block here.
570 	 *
571 	 * We need the pool token for (so) (likely the listne socket if
572 	 * SSB_MEVENT is set) because the predicate function may have
573 	 * to access the accept queue.
574 	 */
575 	if (ssb->ssb_flags & SSB_MEVENT) {
576 		struct netmsg_so_notify *msg, *nmsg;
577 
578 		lwkt_getpooltoken(so);
579 		TAILQ_FOREACH_MUTABLE(msg, &kqinfo->ki_mlist, nm_list, nmsg) {
580 			if (msg->nm_predicate(msg)) {
581 				TAILQ_REMOVE(&kqinfo->ki_mlist, msg, nm_list);
582 				lwkt_replymsg(&msg->base.lmsg,
583 					      msg->base.lmsg.ms_error);
584 			}
585 		}
586 		if (TAILQ_EMPTY(&ssb->ssb_kq.ki_mlist))
587 			atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
588 		lwkt_relpooltoken(so);
589 	}
590 }
591 
592 /*
593  * Socket buffer (struct signalsockbuf) utility routines.
594  *
595  * Each socket contains two socket buffers: one for sending data and
596  * one for receiving data.  Each buffer contains a queue of mbufs,
597  * information about the number of mbufs and amount of data in the
598  * queue, and other fields allowing kevent()/select()/poll() statements
599  * and notification on data availability to be implemented.
600  *
601  * Data stored in a socket buffer is maintained as a list of records.
602  * Each record is a list of mbufs chained together with the m_next
603  * field.  Records are chained together with the m_nextpkt field. The upper
604  * level routine soreceive() expects the following conventions to be
605  * observed when placing information in the receive buffer:
606  *
607  * 1. If the protocol requires each message be preceded by the sender's
608  *    name, then a record containing that name must be present before
609  *    any associated data (mbuf's must be of type MT_SONAME).
610  * 2. If the protocol supports the exchange of ``access rights'' (really
611  *    just additional data associated with the message), and there are
612  *    ``rights'' to be received, then a record containing this data
613  *    should be present (mbuf's must be of type MT_RIGHTS).
614  * 3. If a name or rights record exists, then it must be followed by
615  *    a data record, perhaps of zero length.
616  *
617  * Before using a new socket structure it is first necessary to reserve
618  * buffer space to the socket, by calling sbreserve().  This should commit
619  * some of the available buffer space in the system buffer pool for the
620  * socket (currently, it does nothing but enforce limits).  The space
621  * should be released by calling ssb_release() when the socket is destroyed.
622  */
623 int
624 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
625 {
626 	if (so->so_snd.ssb_lowat == 0)
627 		atomic_set_int(&so->so_snd.ssb_flags, SSB_AUTOLOWAT);
628 	if (ssb_reserve(&so->so_snd, sndcc, so, rl) == 0)
629 		goto bad;
630 	if (ssb_reserve(&so->so_rcv, rcvcc, so, rl) == 0)
631 		goto bad2;
632 	if (so->so_rcv.ssb_lowat == 0)
633 		so->so_rcv.ssb_lowat = 1;
634 	if (so->so_snd.ssb_lowat == 0)
635 		so->so_snd.ssb_lowat = MCLBYTES;
636 	if (so->so_snd.ssb_lowat > so->so_snd.ssb_hiwat)
637 		so->so_snd.ssb_lowat = so->so_snd.ssb_hiwat;
638 	return (0);
639 bad2:
640 	ssb_release(&so->so_snd, so);
641 bad:
642 	return (ENOBUFS);
643 }
644 
645 static int
646 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
647 {
648 	int error = 0;
649 	u_long old_sb_max = sb_max;
650 
651 	error = SYSCTL_OUT(req, arg1, sizeof(int));
652 	if (error || !req->newptr)
653 		return (error);
654 	error = SYSCTL_IN(req, arg1, sizeof(int));
655 	if (error)
656 		return (error);
657 	if (sb_max < MSIZE + MCLBYTES) {
658 		sb_max = old_sb_max;
659 		return (EINVAL);
660 	}
661 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
662 	return (0);
663 }
664 
665 /*
666  * Allot mbufs to a signalsockbuf.
667  *
668  * Attempt to scale mbmax so that mbcnt doesn't become limiting
669  * if buffering efficiency is near the normal case.
670  *
671  * sb_max only applies to user-sockets (where rl != NULL).  It does
672  * not apply to kernel sockets or kernel-controlled sockets.  Note
673  * that NFS overrides the sockbuf limits created when nfsd creates
674  * a socket.
675  */
676 int
677 ssb_reserve(struct signalsockbuf *ssb, u_long cc, struct socket *so,
678 	    struct rlimit *rl)
679 {
680 	/*
681 	 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
682 	 * or when called from netgraph (ie, ngd_attach)
683 	 */
684 	if (rl && cc > sb_max_adj)
685 		cc = sb_max_adj;
686 	if (!chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, cc,
687 		       rl ? rl->rlim_cur : RLIM_INFINITY)) {
688 		return (0);
689 	}
690 	if (rl)
691 		ssb->ssb_mbmax = min(cc * sb_efficiency, sb_max);
692 	else
693 		ssb->ssb_mbmax = cc * sb_efficiency;
694 
695 	/*
696 	 * AUTOLOWAT is set on send buffers and prevents large writes
697 	 * from generating a huge number of context switches.
698 	 */
699 	if (ssb->ssb_flags & SSB_AUTOLOWAT) {
700 		ssb->ssb_lowat = ssb->ssb_hiwat / 4;
701 		if (ssb->ssb_lowat < MCLBYTES)
702 			ssb->ssb_lowat = MCLBYTES;
703 	}
704 	if (ssb->ssb_lowat > ssb->ssb_hiwat)
705 		ssb->ssb_lowat = ssb->ssb_hiwat;
706 	return (1);
707 }
708 
709 /*
710  * Free mbufs held by a socket, and reserved mbuf space.
711  */
712 void
713 ssb_release(struct signalsockbuf *ssb, struct socket *so)
714 {
715 	sbflush(&ssb->sb);
716 	(void)chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, 0,
717 	    RLIM_INFINITY);
718 	ssb->ssb_mbmax = 0;
719 }
720 
721 /*
722  * Some routines that return EOPNOTSUPP for entry points that are not
723  * supported by a protocol.  Fill in as needed.
724  */
725 void
726 pr_generic_notsupp(netmsg_t msg)
727 {
728 	lwkt_replymsg(&msg->lmsg, EOPNOTSUPP);
729 }
730 
731 int
732 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
733 	   struct mbuf *top, struct mbuf *control, int flags,
734 	   struct thread *td)
735 {
736 	if (top)
737 		m_freem(top);
738 	if (control)
739 		m_freem(control);
740 	return (EOPNOTSUPP);
741 }
742 
743 int
744 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
745 		      struct uio *uio, struct sockbuf *sio,
746 		      struct mbuf **controlp, int *flagsp)
747 {
748 	return (EOPNOTSUPP);
749 }
750 
751 /*
752  * This isn't really a ``null'' operation, but it's the default one
753  * and doesn't do anything destructive.
754  */
755 void
756 pru_sense_null(netmsg_t msg)
757 {
758 	msg->sense.nm_stat->st_blksize = msg->base.nm_so->so_snd.ssb_hiwat;
759 	lwkt_replymsg(&msg->lmsg, 0);
760 }
761 
762 /*
763  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.  Callers
764  * of this routine assume that it always succeeds, so we have to use a
765  * blockable allocation even though we might be called from a critical thread.
766  */
767 struct sockaddr *
768 dup_sockaddr(const struct sockaddr *sa)
769 {
770 	struct sockaddr *sa2;
771 
772 	sa2 = kmalloc(sa->sa_len, M_SONAME, M_INTWAIT);
773 	bcopy(sa, sa2, sa->sa_len);
774 	return (sa2);
775 }
776 
777 /*
778  * Create an external-format (``xsocket'') structure using the information
779  * in the kernel-format socket structure pointed to by so.  This is done
780  * to reduce the spew of irrelevant information over this interface,
781  * to isolate user code from changes in the kernel structure, and
782  * potentially to provide information-hiding if we decide that
783  * some of this information should be hidden from users.
784  */
785 void
786 sotoxsocket(struct socket *so, struct xsocket *xso)
787 {
788 	xso->xso_len = sizeof *xso;
789 	xso->xso_so = so;
790 	xso->so_type = so->so_type;
791 	xso->so_options = so->so_options;
792 	xso->so_linger = so->so_linger;
793 	xso->so_state = so->so_state;
794 	xso->so_pcb = so->so_pcb;
795 	xso->xso_protocol = so->so_proto->pr_protocol;
796 	xso->xso_family = so->so_proto->pr_domain->dom_family;
797 	xso->so_qlen = so->so_qlen;
798 	xso->so_incqlen = so->so_incqlen;
799 	xso->so_qlimit = so->so_qlimit;
800 	xso->so_timeo = so->so_timeo;
801 	xso->so_error = so->so_error;
802 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
803 	xso->so_oobmark = so->so_oobmark;
804 	ssbtoxsockbuf(&so->so_snd, &xso->so_snd);
805 	ssbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
806 	xso->so_uid = so->so_cred->cr_uid;
807 }
808 
809 /*
810  * Here is the definition of some of the basic objects in the kern.ipc
811  * branch of the MIB.
812  */
813 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
814 
815 /*
816  * This takes the place of kern.maxsockbuf, which moved to kern.ipc.
817  *
818  * NOTE! sb_max only applies to user-created socket buffers.
819  */
820 static int dummy;
821 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
822 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
823     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
824 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
825     &maxsockets, 0, "Maximum number of sockets available");
826 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
827     &sb_efficiency, 0,
828     "Socket buffer limit scaler");
829 
830 /*
831  * Initialize maxsockets
832  */
833 static void
834 init_maxsockets(void *ignored)
835 {
836     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
837     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
838 }
839 SYSINIT(param, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
840 	init_maxsockets, NULL);
841 
842