xref: /dragonfly/sys/kern/uipc_socket2.c (revision 956939d5)
1 /*
2  * Copyright (c) 2005 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 1982, 1986, 1988, 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
35  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
36  * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.33 2008/09/02 16:17:52 dillon Exp $
37  */
38 
39 #include "opt_param.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/domain.h>
43 #include <sys/file.h>	/* for maxfiles */
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/protosw.h>
49 #include <sys/resourcevar.h>
50 #include <sys/stat.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/signalvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/aio.h> /* for aio_swake proto */
56 #include <sys/event.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 
61 int	maxsockets;
62 
63 /*
64  * Primitive routines for operating on sockets and socket buffers
65  */
66 
67 u_long	sb_max = SB_MAX;
68 u_long	sb_max_adj =
69     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 /************************************************************************
74  * signalsockbuf procedures						*
75  ************************************************************************/
76 
77 /*
78  * Wait for data to arrive at/drain from a socket buffer.
79  */
80 int
81 ssb_wait(struct signalsockbuf *ssb)
82 {
83 
84 	ssb->ssb_flags |= SSB_WAIT;
85 	return (tsleep((caddr_t)&ssb->ssb_cc,
86 			((ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH),
87 			"sbwait",
88 			ssb->ssb_timeo));
89 }
90 
91 /*
92  * Lock a sockbuf already known to be locked;
93  * return any error returned from sleep (EINTR).
94  */
95 int
96 _ssb_lock(struct signalsockbuf *ssb)
97 {
98 	int error;
99 
100 	while (ssb->ssb_flags & SSB_LOCK) {
101 		ssb->ssb_flags |= SSB_WANT;
102 		error = tsleep((caddr_t)&ssb->ssb_flags,
103 			    ((ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH),
104 			    "sblock", 0);
105 		if (error)
106 			return (error);
107 	}
108 	ssb->ssb_flags |= SSB_LOCK;
109 	return (0);
110 }
111 
112 /*
113  * This does the same for sockbufs.  Note that the xsockbuf structure,
114  * since it is always embedded in a socket, does not include a self
115  * pointer nor a length.  We make this entry point public in case
116  * some other mechanism needs it.
117  */
118 void
119 ssbtoxsockbuf(struct signalsockbuf *ssb, struct xsockbuf *xsb)
120 {
121 	xsb->sb_cc = ssb->ssb_cc;
122 	xsb->sb_hiwat = ssb->ssb_hiwat;
123 	xsb->sb_mbcnt = ssb->ssb_mbcnt;
124 	xsb->sb_mbmax = ssb->ssb_mbmax;
125 	xsb->sb_lowat = ssb->ssb_lowat;
126 	xsb->sb_flags = ssb->ssb_flags;
127 	xsb->sb_timeo = ssb->ssb_timeo;
128 }
129 
130 
131 /************************************************************************
132  * Procedures which manipulate socket state flags, wakeups, etc.	*
133  ************************************************************************
134  *
135  * Normal sequence from the active (originating) side is that
136  * soisconnecting() is called during processing of connect() call, resulting
137  * in an eventual call to soisconnected() if/when the connection is
138  * established.  When the connection is torn down soisdisconnecting() is
139  * called during processing of disconnect() call, and soisdisconnected() is
140  * called when the connection to the peer is totally severed.
141  *
142  * The semantics of these routines are such that connectionless protocols
143  * can call soisconnected() and soisdisconnected() only, bypassing the
144  * in-progress calls when setting up a ``connection'' takes no time.
145  *
146  * From the passive side, a socket is created with two queues of sockets:
147  * so_incomp for connections in progress and so_comp for connections
148  * already made and awaiting user acceptance.  As a protocol is preparing
149  * incoming connections, it creates a socket structure queued on so_incomp
150  * by calling sonewconn().  When the connection is established,
151  * soisconnected() is called, and transfers the socket structure to so_comp,
152  * making it available to accept().
153  *
154  * If a socket is closed with sockets on either so_incomp or so_comp, these
155  * sockets are dropped.
156  *
157  * If higher level protocols are implemented in the kernel, the wakeups
158  * done here will sometimes cause software-interrupt process scheduling.
159  */
160 
161 void
162 soisconnecting(struct socket *so)
163 {
164 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 	so->so_state |= SS_ISCONNECTING;
166 }
167 
168 void
169 soisconnected(struct socket *so)
170 {
171 	struct socket *head = so->so_head;
172 
173 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
174 	so->so_state |= SS_ISCONNECTED;
175 	if (head && (so->so_state & SS_INCOMP)) {
176 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
177 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
178 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
179 			so->so_rcv.ssb_flags |= SSB_UPCALL;
180 			so->so_options &= ~SO_ACCEPTFILTER;
181 			so->so_upcall(so, so->so_upcallarg, 0);
182 			return;
183 		}
184 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
185 		head->so_incqlen--;
186 		so->so_state &= ~SS_INCOMP;
187 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
188 		head->so_qlen++;
189 		so->so_state |= SS_COMP;
190 		sorwakeup(head);
191 		wakeup_one(&head->so_timeo);
192 	} else {
193 		wakeup(&so->so_timeo);
194 		sorwakeup(so);
195 		sowwakeup(so);
196 	}
197 }
198 
199 void
200 soisdisconnecting(struct socket *so)
201 {
202 	so->so_state &= ~SS_ISCONNECTING;
203 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
204 	wakeup((caddr_t)&so->so_timeo);
205 	sowwakeup(so);
206 	sorwakeup(so);
207 }
208 
209 void
210 soisdisconnected(struct socket *so)
211 {
212 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
213 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
214 	wakeup((caddr_t)&so->so_timeo);
215 	sbdrop(&so->so_snd.sb, so->so_snd.ssb_cc);
216 	sowwakeup(so);
217 	sorwakeup(so);
218 }
219 
220 /*
221  * When an attempt at a new connection is noted on a socket
222  * which accepts connections, sonewconn is called.  If the
223  * connection is possible (subject to space constraints, etc.)
224  * then we allocate a new structure, propoerly linked into the
225  * data structure of the original socket, and return this.
226  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
227  */
228 struct socket *
229 sonewconn(struct socket *head, int connstatus)
230 {
231 	struct socket *so;
232 	struct socket *sp;
233 	struct pru_attach_info ai;
234 
235 	if (head->so_qlen > 3 * head->so_qlimit / 2)
236 		return (NULL);
237 	so = soalloc(1);
238 	if (so == NULL)
239 		return (NULL);
240 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
241 		connstatus = 0;
242 	so->so_head = head;
243 	so->so_type = head->so_type;
244 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
245 	so->so_linger = head->so_linger;
246 	so->so_state = head->so_state | SS_NOFDREF;
247 	so->so_proto = head->so_proto;
248 	so->so_cred = crhold(head->so_cred);
249 	ai.sb_rlimit = NULL;
250 	ai.p_ucred = NULL;
251 	ai.fd_rdir = NULL;		/* jail code cruft XXX JH */
252 	if (soreserve(so, head->so_snd.ssb_hiwat, head->so_rcv.ssb_hiwat, NULL) ||
253 	    /* Directly call function since we're already at protocol level. */
254 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) {
255 		sodealloc(so);
256 		return (NULL);
257 	}
258 	so->so_rcv.ssb_lowat = head->so_rcv.ssb_lowat;
259 	so->so_snd.ssb_lowat = head->so_snd.ssb_lowat;
260 	so->so_rcv.ssb_timeo = head->so_rcv.ssb_timeo;
261 	so->so_snd.ssb_timeo = head->so_snd.ssb_timeo;
262 	so->so_rcv.ssb_flags |= head->so_rcv.ssb_flags &
263 				(SSB_AUTOSIZE | SSB_AUTOLOWAT);
264 	so->so_snd.ssb_flags |= head->so_snd.ssb_flags &
265 				(SSB_AUTOSIZE | SSB_AUTOLOWAT);
266 	if (connstatus) {
267 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
268 		so->so_state |= SS_COMP;
269 		head->so_qlen++;
270 	} else {
271 		if (head->so_incqlen > head->so_qlimit) {
272 			sp = TAILQ_FIRST(&head->so_incomp);
273 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
274 			head->so_incqlen--;
275 			sp->so_state &= ~SS_INCOMP;
276 			sp->so_head = NULL;
277 			soaborta(sp);
278 		}
279 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
280 		so->so_state |= SS_INCOMP;
281 		head->so_incqlen++;
282 	}
283 	if (connstatus) {
284 		sorwakeup(head);
285 		wakeup((caddr_t)&head->so_timeo);
286 		so->so_state |= connstatus;
287 	}
288 	return (so);
289 }
290 
291 /*
292  * Socantsendmore indicates that no more data will be sent on the
293  * socket; it would normally be applied to a socket when the user
294  * informs the system that no more data is to be sent, by the protocol
295  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
296  * will be received, and will normally be applied to the socket by a
297  * protocol when it detects that the peer will send no more data.
298  * Data queued for reading in the socket may yet be read.
299  */
300 void
301 socantsendmore(struct socket *so)
302 {
303 	so->so_state |= SS_CANTSENDMORE;
304 	sowwakeup(so);
305 }
306 
307 void
308 socantrcvmore(struct socket *so)
309 {
310 	so->so_state |= SS_CANTRCVMORE;
311 	sorwakeup(so);
312 }
313 
314 /*
315  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
316  * via SIGIO if the socket has the SS_ASYNC flag set.
317  *
318  * For users waiting on send/recv try to avoid unnecessary context switch
319  * thrashing.  Particularly for senders of large buffers (needs to be
320  * extended to sel and aio? XXX)
321  */
322 void
323 sowakeup(struct socket *so, struct signalsockbuf *ssb)
324 {
325 	struct selinfo *selinfo = &ssb->ssb_sel;
326 
327 	selwakeup(selinfo);
328 	ssb->ssb_flags &= ~SSB_SEL;
329 	if (ssb->ssb_flags & SSB_WAIT) {
330 		if ((ssb == &so->so_snd && ssb_space(ssb) >= ssb->ssb_lowat) ||
331 		    (ssb == &so->so_rcv && ssb->ssb_cc >= ssb->ssb_lowat) ||
332 		    (ssb == &so->so_snd && (so->so_state & SS_CANTSENDMORE)) ||
333 		    (ssb == &so->so_rcv && (so->so_state & SS_CANTRCVMORE))
334 		) {
335 			ssb->ssb_flags &= ~SSB_WAIT;
336 			wakeup((caddr_t)&ssb->ssb_cc);
337 		}
338 	}
339 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
340 		pgsigio(so->so_sigio, SIGIO, 0);
341 	if (ssb->ssb_flags & SSB_UPCALL)
342 		(*so->so_upcall)(so, so->so_upcallarg, MB_DONTWAIT);
343 	if (ssb->ssb_flags & SSB_AIO)
344 		aio_swake(so, ssb);
345 	KNOTE(&selinfo->si_note, 0);
346 	if (ssb->ssb_flags & SSB_MEVENT) {
347 		struct netmsg_so_notify *msg, *nmsg;
348 
349 		TAILQ_FOREACH_MUTABLE(msg, &selinfo->si_mlist, nm_list, nmsg) {
350 			if (msg->nm_predicate(&msg->nm_netmsg)) {
351 				TAILQ_REMOVE(&selinfo->si_mlist, msg, nm_list);
352 				lwkt_replymsg(&msg->nm_netmsg.nm_lmsg,
353 					      msg->nm_netmsg.nm_lmsg.ms_error);
354 			}
355 		}
356 		if (TAILQ_EMPTY(&ssb->ssb_sel.si_mlist))
357 			ssb->ssb_flags &= ~SSB_MEVENT;
358 	}
359 }
360 
361 /*
362  * Socket buffer (struct signalsockbuf) utility routines.
363  *
364  * Each socket contains two socket buffers: one for sending data and
365  * one for receiving data.  Each buffer contains a queue of mbufs,
366  * information about the number of mbufs and amount of data in the
367  * queue, and other fields allowing select() statements and notification
368  * on data availability to be implemented.
369  *
370  * Data stored in a socket buffer is maintained as a list of records.
371  * Each record is a list of mbufs chained together with the m_next
372  * field.  Records are chained together with the m_nextpkt field. The upper
373  * level routine soreceive() expects the following conventions to be
374  * observed when placing information in the receive buffer:
375  *
376  * 1. If the protocol requires each message be preceded by the sender's
377  *    name, then a record containing that name must be present before
378  *    any associated data (mbuf's must be of type MT_SONAME).
379  * 2. If the protocol supports the exchange of ``access rights'' (really
380  *    just additional data associated with the message), and there are
381  *    ``rights'' to be received, then a record containing this data
382  *    should be present (mbuf's must be of type MT_RIGHTS).
383  * 3. If a name or rights record exists, then it must be followed by
384  *    a data record, perhaps of zero length.
385  *
386  * Before using a new socket structure it is first necessary to reserve
387  * buffer space to the socket, by calling sbreserve().  This should commit
388  * some of the available buffer space in the system buffer pool for the
389  * socket (currently, it does nothing but enforce limits).  The space
390  * should be released by calling ssb_release() when the socket is destroyed.
391  */
392 int
393 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
394 {
395 	if (so->so_snd.ssb_lowat == 0)
396 		so->so_snd.ssb_flags |= SSB_AUTOLOWAT;
397 	if (ssb_reserve(&so->so_snd, sndcc, so, rl) == 0)
398 		goto bad;
399 	if (ssb_reserve(&so->so_rcv, rcvcc, so, rl) == 0)
400 		goto bad2;
401 	if (so->so_rcv.ssb_lowat == 0)
402 		so->so_rcv.ssb_lowat = 1;
403 	if (so->so_snd.ssb_lowat == 0)
404 		so->so_snd.ssb_lowat = MCLBYTES;
405 	if (so->so_snd.ssb_lowat > so->so_snd.ssb_hiwat)
406 		so->so_snd.ssb_lowat = so->so_snd.ssb_hiwat;
407 	return (0);
408 bad2:
409 	ssb_release(&so->so_snd, so);
410 bad:
411 	return (ENOBUFS);
412 }
413 
414 static int
415 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
416 {
417 	int error = 0;
418 	u_long old_sb_max = sb_max;
419 
420 	error = SYSCTL_OUT(req, arg1, sizeof(int));
421 	if (error || !req->newptr)
422 		return (error);
423 	error = SYSCTL_IN(req, arg1, sizeof(int));
424 	if (error)
425 		return (error);
426 	if (sb_max < MSIZE + MCLBYTES) {
427 		sb_max = old_sb_max;
428 		return (EINVAL);
429 	}
430 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
431 	return (0);
432 }
433 
434 /*
435  * Allot mbufs to a signalsockbuf.
436  *
437  * Attempt to scale mbmax so that mbcnt doesn't become limiting
438  * if buffering efficiency is near the normal case.
439  *
440  * sb_max only applies to user-sockets (where rl != NULL).  It does
441  * not apply to kernel sockets or kernel-controlled sockets.  Note
442  * that NFS overrides the sockbuf limits created when nfsd creates
443  * a socket.
444  */
445 int
446 ssb_reserve(struct signalsockbuf *ssb, u_long cc, struct socket *so,
447 	    struct rlimit *rl)
448 {
449 	/*
450 	 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
451 	 * or when called from netgraph (ie, ngd_attach)
452 	 */
453 	if (rl && cc > sb_max_adj)
454 		cc = sb_max_adj;
455 	if (!chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, cc,
456 		       rl ? rl->rlim_cur : RLIM_INFINITY)) {
457 		return (0);
458 	}
459 	if (rl)
460 		ssb->ssb_mbmax = min(cc * sb_efficiency, sb_max);
461 	else
462 		ssb->ssb_mbmax = cc * sb_efficiency;
463 
464 	/*
465 	 * AUTOLOWAT is set on send buffers and prevents large writes
466 	 * from generating a huge number of context switches.
467 	 */
468 	if (ssb->ssb_flags & SSB_AUTOLOWAT) {
469 		ssb->ssb_lowat = ssb->ssb_hiwat / 2;
470 		if (ssb->ssb_lowat < MCLBYTES)
471 			ssb->ssb_lowat = MCLBYTES;
472 	}
473 	if (ssb->ssb_lowat > ssb->ssb_hiwat)
474 		ssb->ssb_lowat = ssb->ssb_hiwat;
475 	return (1);
476 }
477 
478 /*
479  * Free mbufs held by a socket, and reserved mbuf space.
480  */
481 void
482 ssb_release(struct signalsockbuf *ssb, struct socket *so)
483 {
484 	sbflush(&ssb->sb);
485 	(void)chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, 0,
486 	    RLIM_INFINITY);
487 	ssb->ssb_mbmax = 0;
488 }
489 
490 /*
491  * Some routines that return EOPNOTSUPP for entry points that are not
492  * supported by a protocol.  Fill in as needed.
493  */
494 int
495 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
496 {
497 	return EOPNOTSUPP;
498 }
499 
500 int
501 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
502 {
503 	return EOPNOTSUPP;
504 }
505 
506 int
507 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
508 {
509 	return EOPNOTSUPP;
510 }
511 
512 int
513 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
514 {
515 	return EOPNOTSUPP;
516 }
517 
518 int
519 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
520 		    struct ifnet *ifp, struct thread *td)
521 {
522 	return EOPNOTSUPP;
523 }
524 
525 int
526 pru_disconnect_notsupp(struct socket *so)
527 {
528 	return EOPNOTSUPP;
529 }
530 
531 int
532 pru_listen_notsupp(struct socket *so, struct thread *td)
533 {
534 	return EOPNOTSUPP;
535 }
536 
537 int
538 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
539 {
540 	return EOPNOTSUPP;
541 }
542 
543 int
544 pru_rcvd_notsupp(struct socket *so, int flags)
545 {
546 	return EOPNOTSUPP;
547 }
548 
549 int
550 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
551 {
552 	return EOPNOTSUPP;
553 }
554 
555 int
556 pru_shutdown_notsupp(struct socket *so)
557 {
558 	return EOPNOTSUPP;
559 }
560 
561 int
562 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
563 {
564 	return EOPNOTSUPP;
565 }
566 
567 int
568 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
569 	   struct mbuf *top, struct mbuf *control, int flags,
570 	   struct thread *td)
571 {
572 	if (top)
573 		m_freem(top);
574 	if (control)
575 		m_freem(control);
576 	return (EOPNOTSUPP);
577 }
578 
579 int
580 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
581 		      struct uio *uio, struct sockbuf *sio,
582 		      struct mbuf **controlp, int *flagsp)
583 {
584 	return (EOPNOTSUPP);
585 }
586 
587 int
588 pru_sopoll_notsupp(struct socket *so, int events,
589 		   struct ucred *cred, struct thread *td)
590 {
591 	return (EOPNOTSUPP);
592 }
593 
594 int
595 pru_ctloutput_notsupp(struct socket *so, struct sockopt *sopt)
596 {
597 	return (EOPNOTSUPP);
598 }
599 
600 /*
601  * This isn't really a ``null'' operation, but it's the default one
602  * and doesn't do anything destructive.
603  */
604 int
605 pru_sense_null(struct socket *so, struct stat *sb)
606 {
607 	sb->st_blksize = so->so_snd.ssb_hiwat;
608 	return 0;
609 }
610 
611 /*
612  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.  Callers
613  * of this routine assume that it always succeeds, so we have to use a
614  * blockable allocation even though we might be called from a critical thread.
615  */
616 struct sockaddr *
617 dup_sockaddr(const struct sockaddr *sa)
618 {
619 	struct sockaddr *sa2;
620 
621 	sa2 = kmalloc(sa->sa_len, M_SONAME, M_INTWAIT);
622 	bcopy(sa, sa2, sa->sa_len);
623 	return (sa2);
624 }
625 
626 /*
627  * Create an external-format (``xsocket'') structure using the information
628  * in the kernel-format socket structure pointed to by so.  This is done
629  * to reduce the spew of irrelevant information over this interface,
630  * to isolate user code from changes in the kernel structure, and
631  * potentially to provide information-hiding if we decide that
632  * some of this information should be hidden from users.
633  */
634 void
635 sotoxsocket(struct socket *so, struct xsocket *xso)
636 {
637 	xso->xso_len = sizeof *xso;
638 	xso->xso_so = so;
639 	xso->so_type = so->so_type;
640 	xso->so_options = so->so_options;
641 	xso->so_linger = so->so_linger;
642 	xso->so_state = so->so_state;
643 	xso->so_pcb = so->so_pcb;
644 	xso->xso_protocol = so->so_proto->pr_protocol;
645 	xso->xso_family = so->so_proto->pr_domain->dom_family;
646 	xso->so_qlen = so->so_qlen;
647 	xso->so_incqlen = so->so_incqlen;
648 	xso->so_qlimit = so->so_qlimit;
649 	xso->so_timeo = so->so_timeo;
650 	xso->so_error = so->so_error;
651 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
652 	xso->so_oobmark = so->so_oobmark;
653 	ssbtoxsockbuf(&so->so_snd, &xso->so_snd);
654 	ssbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
655 	xso->so_uid = so->so_cred->cr_uid;
656 }
657 
658 /*
659  * Here is the definition of some of the basic objects in the kern.ipc
660  * branch of the MIB.
661  */
662 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
663 
664 /*
665  * This takes the place of kern.maxsockbuf, which moved to kern.ipc.
666  *
667  * NOTE! sb_max only applies to user-created socket buffers.
668  */
669 static int dummy;
670 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
671 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
672     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
673 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
674     &maxsockets, 0, "Maximum number of sockets available");
675 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
676     &sb_efficiency, 0, "");
677 
678 /*
679  * Initialize maxsockets
680  */
681 static void
682 init_maxsockets(void *ignored)
683 {
684     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
685     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
686 }
687 SYSINIT(param, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
688 	init_maxsockets, NULL);
689 
690