xref: /dragonfly/sys/kern/uipc_socket2.c (revision b40e316c)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
35  * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.15 2005/01/26 23:09:57 hsu Exp $
36  */
37 
38 #include "opt_param.h"
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/domain.h>
42 #include <sys/file.h>	/* for maxfiles */
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/resourcevar.h>
49 #include <sys/stat.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/signalvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/aio.h> /* for aio_swake proto */
55 #include <sys/event.h>
56 
57 #include <sys/thread2.h>
58 #include <sys/msgport2.h>
59 
60 int	maxsockets;
61 
62 /*
63  * Primitive routines for operating on sockets and socket buffers
64  */
65 
66 u_long	sb_max = SB_MAX;
67 u_long	sb_max_adj =
68     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
69 
70 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
71 
72 /*
73  * Procedures to manipulate state flags of socket
74  * and do appropriate wakeups.  Normal sequence from the
75  * active (originating) side is that soisconnecting() is
76  * called during processing of connect() call,
77  * resulting in an eventual call to soisconnected() if/when the
78  * connection is established.  When the connection is torn down
79  * soisdisconnecting() is called during processing of disconnect() call,
80  * and soisdisconnected() is called when the connection to the peer
81  * is totally severed.  The semantics of these routines are such that
82  * connectionless protocols can call soisconnected() and soisdisconnected()
83  * only, bypassing the in-progress calls when setting up a ``connection''
84  * takes no time.
85  *
86  * From the passive side, a socket is created with
87  * two queues of sockets: so_incomp for connections in progress
88  * and so_comp for connections already made and awaiting user acceptance.
89  * As a protocol is preparing incoming connections, it creates a socket
90  * structure queued on so_incomp by calling sonewconn().  When the connection
91  * is established, soisconnected() is called, and transfers the
92  * socket structure to so_comp, making it available to accept().
93  *
94  * If a socket is closed with sockets on either
95  * so_incomp or so_comp, these sockets are dropped.
96  *
97  * If higher level protocols are implemented in
98  * the kernel, the wakeups done here will sometimes
99  * cause software-interrupt process scheduling.
100  */
101 
102 void
103 soisconnecting(so)
104 	struct socket *so;
105 {
106 
107 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
108 	so->so_state |= SS_ISCONNECTING;
109 }
110 
111 void
112 soisconnected(so)
113 	struct socket *so;
114 {
115 	struct socket *head = so->so_head;
116 
117 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
118 	so->so_state |= SS_ISCONNECTED;
119 	if (head && (so->so_state & SS_INCOMP)) {
120 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
121 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
122 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
123 			so->so_rcv.sb_flags |= SB_UPCALL;
124 			so->so_options &= ~SO_ACCEPTFILTER;
125 			so->so_upcall(so, so->so_upcallarg, 0);
126 			return;
127 		}
128 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
129 		head->so_incqlen--;
130 		so->so_state &= ~SS_INCOMP;
131 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
132 		head->so_qlen++;
133 		so->so_state |= SS_COMP;
134 		sorwakeup(head);
135 		wakeup_one(&head->so_timeo);
136 	} else {
137 		wakeup(&so->so_timeo);
138 		sorwakeup(so);
139 		sowwakeup(so);
140 	}
141 }
142 
143 void
144 soisdisconnecting(so)
145 	struct socket *so;
146 {
147 
148 	so->so_state &= ~SS_ISCONNECTING;
149 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
150 	wakeup((caddr_t)&so->so_timeo);
151 	sowwakeup(so);
152 	sorwakeup(so);
153 }
154 
155 void
156 soisdisconnected(so)
157 	struct socket *so;
158 {
159 
160 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
161 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
162 	wakeup((caddr_t)&so->so_timeo);
163 	sbdrop(&so->so_snd, so->so_snd.sb_cc);
164 	sowwakeup(so);
165 	sorwakeup(so);
166 }
167 
168 /*
169  * When an attempt at a new connection is noted on a socket
170  * which accepts connections, sonewconn is called.  If the
171  * connection is possible (subject to space constraints, etc.)
172  * then we allocate a new structure, propoerly linked into the
173  * data structure of the original socket, and return this.
174  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
175  */
176 struct socket *
177 sonewconn(struct socket *head, int connstatus)
178 {
179 	struct socket *so;
180 	struct pru_attach_info ai;
181 
182 	if (head->so_qlen > 3 * head->so_qlimit / 2)
183 		return ((struct socket *)0);
184 	so = soalloc(0);
185 	if (so == NULL)
186 		return ((struct socket *)0);
187 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
188 		connstatus = 0;
189 	so->so_head = head;
190 	so->so_type = head->so_type;
191 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
192 	so->so_linger = head->so_linger;
193 	so->so_state = head->so_state | SS_NOFDREF;
194 	so->so_proto = head->so_proto;
195 	so->so_timeo = head->so_timeo;
196 	so->so_cred = crhold(head->so_cred);
197 	ai.sb_rlimit = NULL;
198 	ai.p_ucred = NULL;
199 	ai.fd_rdir = NULL;		/* jail code cruft XXX JH */
200 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat, NULL) ||
201 	    /* Directly call function since we're already at protocol level. */
202 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) {
203 		sodealloc(so);
204 		return ((struct socket *)0);
205 	}
206 
207 	if (connstatus) {
208 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
209 		so->so_state |= SS_COMP;
210 		head->so_qlen++;
211 	} else {
212 		if (head->so_incqlen > head->so_qlimit) {
213 			struct socket *sp;
214 			sp = TAILQ_FIRST(&head->so_incomp);
215 			(void) soabort(sp);
216 		}
217 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
218 		so->so_state |= SS_INCOMP;
219 		head->so_incqlen++;
220 	}
221 	if (connstatus) {
222 		sorwakeup(head);
223 		wakeup((caddr_t)&head->so_timeo);
224 		so->so_state |= connstatus;
225 	}
226 	return (so);
227 }
228 
229 /*
230  * Socantsendmore indicates that no more data will be sent on the
231  * socket; it would normally be applied to a socket when the user
232  * informs the system that no more data is to be sent, by the protocol
233  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
234  * will be received, and will normally be applied to the socket by a
235  * protocol when it detects that the peer will send no more data.
236  * Data queued for reading in the socket may yet be read.
237  */
238 
239 void
240 socantsendmore(so)
241 	struct socket *so;
242 {
243 
244 	so->so_state |= SS_CANTSENDMORE;
245 	sowwakeup(so);
246 }
247 
248 void
249 socantrcvmore(so)
250 	struct socket *so;
251 {
252 
253 	so->so_state |= SS_CANTRCVMORE;
254 	sorwakeup(so);
255 }
256 
257 /*
258  * Wait for data to arrive at/drain from a socket buffer.
259  */
260 int
261 sbwait(sb)
262 	struct sockbuf *sb;
263 {
264 
265 	sb->sb_flags |= SB_WAIT;
266 	return (tsleep((caddr_t)&sb->sb_cc,
267 			((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
268 			"sbwait",
269 			sb->sb_timeo));
270 }
271 
272 /*
273  * Lock a sockbuf already known to be locked;
274  * return any error returned from sleep (EINTR).
275  */
276 int
277 sb_lock(sb)
278 	struct sockbuf *sb;
279 {
280 	int error;
281 
282 	while (sb->sb_flags & SB_LOCK) {
283 		sb->sb_flags |= SB_WANT;
284 		error = tsleep((caddr_t)&sb->sb_flags,
285 			    ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
286 			    "sblock", 0);
287 		if (error)
288 			return (error);
289 	}
290 	sb->sb_flags |= SB_LOCK;
291 	return (0);
292 }
293 
294 /*
295  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
296  * via SIGIO if the socket has the SS_ASYNC flag set.
297  */
298 void
299 sowakeup(so, sb)
300 	struct socket *so;
301 	struct sockbuf *sb;
302 {
303 	struct selinfo *selinfo = &sb->sb_sel;
304 
305 	selwakeup(selinfo);
306 	sb->sb_flags &= ~SB_SEL;
307 	if (sb->sb_flags & SB_WAIT) {
308 		sb->sb_flags &= ~SB_WAIT;
309 		wakeup((caddr_t)&sb->sb_cc);
310 	}
311 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
312 		pgsigio(so->so_sigio, SIGIO, 0);
313 	if (sb->sb_flags & SB_UPCALL)
314 		(*so->so_upcall)(so, so->so_upcallarg, MB_DONTWAIT);
315 	if (sb->sb_flags & SB_AIO)
316 		aio_swake(so, sb);
317 	KNOTE(&selinfo->si_note, 0);
318 	if (sb->sb_flags & SB_MEVENT) {
319 		struct netmsg_so_notify *msg, *nmsg;
320 
321 		TAILQ_FOREACH_MUTABLE(msg, &selinfo->si_mlist, nm_list, nmsg) {
322 			if (msg->nm_predicate((struct netmsg *)msg)) {
323 				TAILQ_REMOVE(&selinfo->si_mlist, msg, nm_list);
324 				lwkt_replymsg(&msg->nm_lmsg,
325 						msg->nm_lmsg.ms_error);
326 			}
327 		}
328 		if (TAILQ_EMPTY(&sb->sb_sel.si_mlist))
329 			sb->sb_flags &= ~SB_MEVENT;
330 	}
331 }
332 
333 /*
334  * Socket buffer (struct sockbuf) utility routines.
335  *
336  * Each socket contains two socket buffers: one for sending data and
337  * one for receiving data.  Each buffer contains a queue of mbufs,
338  * information about the number of mbufs and amount of data in the
339  * queue, and other fields allowing select() statements and notification
340  * on data availability to be implemented.
341  *
342  * Data stored in a socket buffer is maintained as a list of records.
343  * Each record is a list of mbufs chained together with the m_next
344  * field.  Records are chained together with the m_nextpkt field. The upper
345  * level routine soreceive() expects the following conventions to be
346  * observed when placing information in the receive buffer:
347  *
348  * 1. If the protocol requires each message be preceded by the sender's
349  *    name, then a record containing that name must be present before
350  *    any associated data (mbuf's must be of type MT_SONAME).
351  * 2. If the protocol supports the exchange of ``access rights'' (really
352  *    just additional data associated with the message), and there are
353  *    ``rights'' to be received, then a record containing this data
354  *    should be present (mbuf's must be of type MT_RIGHTS).
355  * 3. If a name or rights record exists, then it must be followed by
356  *    a data record, perhaps of zero length.
357  *
358  * Before using a new socket structure it is first necessary to reserve
359  * buffer space to the socket, by calling sbreserve().  This should commit
360  * some of the available buffer space in the system buffer pool for the
361  * socket (currently, it does nothing but enforce limits).  The space
362  * should be released by calling sbrelease() when the socket is destroyed.
363  */
364 
365 int
366 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
367 {
368 	if (sbreserve(&so->so_snd, sndcc, so, rl) == 0)
369 		goto bad;
370 	if (sbreserve(&so->so_rcv, rcvcc, so, rl) == 0)
371 		goto bad2;
372 	if (so->so_rcv.sb_lowat == 0)
373 		so->so_rcv.sb_lowat = 1;
374 	if (so->so_snd.sb_lowat == 0)
375 		so->so_snd.sb_lowat = MCLBYTES;
376 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
377 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
378 	return (0);
379 bad2:
380 	sbrelease(&so->so_snd, so);
381 bad:
382 	return (ENOBUFS);
383 }
384 
385 static int
386 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
387 {
388 	int error = 0;
389 	u_long old_sb_max = sb_max;
390 
391 	error = SYSCTL_OUT(req, arg1, sizeof(int));
392 	if (error || !req->newptr)
393 		return (error);
394 	error = SYSCTL_IN(req, arg1, sizeof(int));
395 	if (error)
396 		return (error);
397 	if (sb_max < MSIZE + MCLBYTES) {
398 		sb_max = old_sb_max;
399 		return (EINVAL);
400 	}
401 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
402 	return (0);
403 }
404 
405 /*
406  * Allot mbufs to a sockbuf.
407  * Attempt to scale mbmax so that mbcnt doesn't become limiting
408  * if buffering efficiency is near the normal case.
409  */
410 int
411 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, struct rlimit *rl)
412 {
413 
414 	/*
415 	 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
416 	 * or when called from netgraph (ie, ngd_attach)
417 	 */
418 	if (cc > sb_max_adj)
419 		return (0);
420 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
421 		       rl ? rl->rlim_cur : RLIM_INFINITY)) {
422 		return (0);
423 	}
424 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
425 	if (sb->sb_lowat > sb->sb_hiwat)
426 		sb->sb_lowat = sb->sb_hiwat;
427 	return (1);
428 }
429 
430 /*
431  * Free mbufs held by a socket, and reserved mbuf space.
432  */
433 void
434 sbrelease(sb, so)
435 	struct sockbuf *sb;
436 	struct socket *so;
437 {
438 
439 	sbflush(sb);
440 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
441 	    RLIM_INFINITY);
442 	sb->sb_mbmax = 0;
443 }
444 
445 /*
446  * Routines to add and remove
447  * data from an mbuf queue.
448  *
449  * The routines sbappend() or sbappendrecord() are normally called to
450  * append new mbufs to a socket buffer, after checking that adequate
451  * space is available, comparing the function sbspace() with the amount
452  * of data to be added.  sbappendrecord() differs from sbappend() in
453  * that data supplied is treated as the beginning of a new record.
454  * To place a sender's address, optional access rights, and data in a
455  * socket receive buffer, sbappendaddr() should be used.  To place
456  * access rights and data in a socket receive buffer, sbappendrights()
457  * should be used.  In either case, the new data begins a new record.
458  * Note that unlike sbappend() and sbappendrecord(), these routines check
459  * for the caller that there will be enough space to store the data.
460  * Each fails if there is not enough space, or if it cannot find mbufs
461  * to store additional information in.
462  *
463  * Reliable protocols may use the socket send buffer to hold data
464  * awaiting acknowledgement.  Data is normally copied from a socket
465  * send buffer in a protocol with m_copy for output to a peer,
466  * and then removing the data from the socket buffer with sbdrop()
467  * or sbdroprecord() when the data is acknowledged by the peer.
468  */
469 
470 /*
471  * Append mbuf chain m to the last record in the
472  * socket buffer sb.  The additional space associated
473  * the mbuf chain is recorded in sb.  Empty mbufs are
474  * discarded and mbufs are compacted where possible.
475  */
476 void
477 sbappend(sb, m)
478 	struct sockbuf *sb;
479 	struct mbuf *m;
480 {
481 	struct mbuf *n;
482 
483 	if (m == 0)
484 		return;
485 	n = sb->sb_mb;
486 	if (n) {
487 		while (n->m_nextpkt)
488 			n = n->m_nextpkt;
489 		do {
490 			if (n->m_flags & M_EOR) {
491 				sbappendrecord(sb, m); /* XXXXXX!!!! */
492 				return;
493 			}
494 		} while (n->m_next && (n = n->m_next));
495 	}
496 	sbcompress(sb, m, n);
497 }
498 
499 /*
500  * sbappendstream() is an optimized form of sbappend() for protocols
501  * such as TCP that only have one record in the socket buffer, are
502  * not PR_ATOMIC, nor allow MT_CONTROL data.
503  */
504 void
505 sbappendstream(struct sockbuf *sb, struct mbuf *m)
506 {
507 	KKASSERT(m->m_nextpkt == NULL);
508 	sbcompress(sb, m, sb->sb_lastmbuf);
509 }
510 
511 #ifdef SOCKBUF_DEBUG
512 void
513 sbcheck(sb)
514 	struct sockbuf *sb;
515 {
516 	struct mbuf *m;
517 	struct mbuf *n = 0;
518 	u_long len = 0, mbcnt = 0;
519 
520 	for (m = sb->sb_mb; m; m = n) {
521 	    n = m->m_nextpkt;
522 	    for (; m; m = m->m_next) {
523 		len += m->m_len;
524 		mbcnt += MSIZE;
525 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
526 			mbcnt += m->m_ext.ext_size;
527 	    }
528 	}
529 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
530 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
531 		    mbcnt, sb->sb_mbcnt);
532 		panic("sbcheck");
533 	}
534 }
535 #endif
536 
537 /*
538  * As above, except the mbuf chain
539  * begins a new record.
540  */
541 void
542 sbappendrecord(sb, m0)
543 	struct sockbuf *sb;
544 	struct mbuf *m0;
545 {
546 	struct mbuf *m;
547 
548 	if (m0 == 0)
549 		return;
550 	m = sb->sb_mb;
551 	if (m)
552 		while (m->m_nextpkt)
553 			m = m->m_nextpkt;
554 	/*
555 	 * Put the first mbuf on the queue.
556 	 * Note this permits zero length records.
557 	 */
558 	sballoc(sb, m0);
559 	if (m)
560 		m->m_nextpkt = m0;
561 	else
562 		sb->sb_mb = m0;
563 	m = m0->m_next;
564 	m0->m_next = 0;
565 	if (m && (m0->m_flags & M_EOR)) {
566 		m0->m_flags &= ~M_EOR;
567 		m->m_flags |= M_EOR;
568 	}
569 	sbcompress(sb, m, m0);
570 }
571 
572 /*
573  * As above except that OOB data
574  * is inserted at the beginning of the sockbuf,
575  * but after any other OOB data.
576  */
577 void
578 sbinsertoob(sb, m0)
579 	struct sockbuf *sb;
580 	struct mbuf *m0;
581 {
582 	struct mbuf *m;
583 	struct mbuf **mp;
584 
585 	if (m0 == 0)
586 		return;
587 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
588 	    m = *mp;
589 	    again:
590 		switch (m->m_type) {
591 
592 		case MT_OOBDATA:
593 			continue;		/* WANT next train */
594 
595 		case MT_CONTROL:
596 			m = m->m_next;
597 			if (m)
598 				goto again;	/* inspect THIS train further */
599 		}
600 		break;
601 	}
602 	/*
603 	 * Put the first mbuf on the queue.
604 	 * Note this permits zero length records.
605 	 */
606 	sballoc(sb, m0);
607 	m0->m_nextpkt = *mp;
608 	*mp = m0;
609 	m = m0->m_next;
610 	m0->m_next = 0;
611 	if (m && (m0->m_flags & M_EOR)) {
612 		m0->m_flags &= ~M_EOR;
613 		m->m_flags |= M_EOR;
614 	}
615 	sbcompress(sb, m, m0);
616 }
617 
618 /*
619  * Append address and data, and optionally, control (ancillary) data
620  * to the receive queue of a socket.  If present,
621  * m0 must include a packet header with total length.
622  * Returns 0 if no space in sockbuf or insufficient mbufs.
623  */
624 int
625 sbappendaddr(sb, asa, m0, control)
626 	struct sockbuf *sb;
627 	const struct sockaddr *asa;
628 	struct mbuf *m0, *control;
629 {
630 	struct mbuf *m, *n;
631 	int space = asa->sa_len;
632 
633 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
634 		panic("sbappendaddr");
635 
636 	if (m0)
637 		space += m0->m_pkthdr.len;
638 	for (n = control; n; n = n->m_next) {
639 		space += n->m_len;
640 		if (n->m_next == 0)	/* keep pointer to last control buf */
641 			break;
642 	}
643 	if (space > sbspace(sb))
644 		return (0);
645 	if (asa->sa_len > MLEN)
646 		return (0);
647 	MGET(m, MB_DONTWAIT, MT_SONAME);
648 	if (m == 0)
649 		return (0);
650 	m->m_len = asa->sa_len;
651 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
652 	if (n)
653 		n->m_next = m0;		/* concatenate data to control */
654 	else
655 		control = m0;
656 	m->m_next = control;
657 	for (n = m; n; n = n->m_next)
658 		sballoc(sb, n);
659 	n = sb->sb_mb;
660 	if (n) {
661 		while (n->m_nextpkt)
662 			n = n->m_nextpkt;
663 		n->m_nextpkt = m;
664 	} else
665 		sb->sb_mb = m;
666 	return (1);
667 }
668 
669 int
670 sbappendcontrol(sb, m0, control)
671 	struct sockbuf *sb;
672 	struct mbuf *control, *m0;
673 {
674 	struct mbuf *m, *n;
675 	int space = 0;
676 
677 	if (control == 0)
678 		panic("sbappendcontrol");
679 	for (m = control; ; m = m->m_next) {
680 		space += m->m_len;
681 		if (m->m_next == 0)
682 			break;
683 	}
684 	n = m;			/* save pointer to last control buffer */
685 	for (m = m0; m; m = m->m_next)
686 		space += m->m_len;
687 	if (space > sbspace(sb))
688 		return (0);
689 	n->m_next = m0;			/* concatenate data to control */
690 	for (m = control; m; m = m->m_next)
691 		sballoc(sb, m);
692 	n = sb->sb_mb;
693 	if (n) {
694 		while (n->m_nextpkt)
695 			n = n->m_nextpkt;
696 		n->m_nextpkt = control;
697 	} else
698 		sb->sb_mb = control;
699 	return (1);
700 }
701 
702 /*
703  * Compress mbuf chain m into the socket
704  * buffer sb following mbuf n.  If n
705  * is null, the buffer is presumed empty.
706  */
707 void
708 sbcompress(sb, m, n)
709 	struct sockbuf *sb;
710 	struct mbuf *m, *n;
711 {
712 	int eor = 0;
713 	struct mbuf *o;
714 
715 	while (m) {
716 		eor |= m->m_flags & M_EOR;
717 		if (m->m_len == 0 &&
718 		    (eor == 0 ||
719 		     (((o = m->m_next) || (o = n)) &&
720 		      o->m_type == m->m_type))) {
721 			m = m_free(m);
722 			continue;
723 		}
724 		if (n && (n->m_flags & M_EOR) == 0 &&
725 		    M_WRITABLE(n) &&
726 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
727 		    m->m_len <= M_TRAILINGSPACE(n) &&
728 		    n->m_type == m->m_type) {
729 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
730 			    (unsigned)m->m_len);
731 			n->m_len += m->m_len;
732 			sb->sb_cc += m->m_len;
733 			m = m_free(m);
734 			continue;
735 		}
736 		if (n)
737 			n->m_next = m;
738 		else
739 			sb->sb_mb = m;
740 		sb->sb_lastmbuf = m;
741 		sballoc(sb, m);
742 		n = m;
743 		m->m_flags &= ~M_EOR;
744 		m = m->m_next;
745 		n->m_next = 0;
746 	}
747 	if (eor) {
748 		if (n)
749 			n->m_flags |= eor;
750 		else
751 			printf("semi-panic: sbcompress");
752 	}
753 }
754 
755 /*
756  * Free all mbufs in a sockbuf.
757  * Check that all resources are reclaimed.
758  */
759 void
760 sbflush(sb)
761 	struct sockbuf *sb;
762 {
763 
764 	if (sb->sb_flags & SB_LOCK)
765 		panic("sbflush: locked");
766 	while (sb->sb_mbcnt) {
767 		/*
768 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
769 		 * we would loop forever. Panic instead.
770 		 */
771 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
772 			break;
773 		sbdrop(sb, (int)sb->sb_cc);
774 	}
775 	KASSERT(!(sb->sb_cc || sb->sb_mb || sb->sb_mbcnt || sb->sb_lastmbuf),
776 	    ("sbflush: cc %ld || mb %p || mbcnt %ld || mbtail %p",
777 	    sb->sb_cc, sb->sb_mb, sb->sb_mbcnt, sb->sb_lastmbuf));
778 }
779 
780 /*
781  * Drop data from (the front of) a sockbuf.
782  */
783 void
784 sbdrop(sb, len)
785 	struct sockbuf *sb;
786 	int len;
787 {
788 	struct mbuf *m;
789 	struct mbuf *next;
790 
791 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
792 	while (len > 0) {
793 		if (m == 0) {
794 			if (next == 0)
795 				panic("sbdrop");
796 			m = next;
797 			next = m->m_nextpkt;
798 			continue;
799 		}
800 		if (m->m_len > len) {
801 			m->m_len -= len;
802 			m->m_data += len;
803 			sb->sb_cc -= len;
804 			break;
805 		}
806 		len -= m->m_len;
807 		sbfree(sb, m);
808 		m = m_free(m);
809 	}
810 	while (m && m->m_len == 0) {
811 		sbfree(sb, m);
812 		m = m_free(m);
813 	}
814 	if (m) {
815 		sb->sb_mb = m;
816 		m->m_nextpkt = next;
817 	} else {
818 		sb->sb_mb = next;
819 		sb->sb_lastmbuf = NULL;
820 	}
821 }
822 
823 /*
824  * Drop a record off the front of a sockbuf
825  * and move the next record to the front.
826  */
827 void
828 sbdroprecord(sb)
829 	struct sockbuf *sb;
830 {
831 	struct mbuf *m;
832 
833 	m = sb->sb_mb;
834 	if (m) {
835 		sb->sb_mb = m->m_nextpkt;
836 		do {
837 			sbfree(sb, m);
838 			m = m_free(m);
839 		} while (m);
840 	}
841 }
842 
843 /*
844  * Create a "control" mbuf containing the specified data
845  * with the specified type for presentation on a socket buffer.
846  */
847 struct mbuf *
848 sbcreatecontrol(p, size, type, level)
849 	caddr_t p;
850 	int size;
851 	int type, level;
852 {
853 	struct cmsghdr *cp;
854 	struct mbuf *m;
855 
856 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
857 		return ((struct mbuf *) NULL);
858 	if ((m = m_get(MB_DONTWAIT, MT_CONTROL)) == NULL)
859 		return ((struct mbuf *) NULL);
860 	if (CMSG_SPACE((u_int)size) > MLEN) {
861 		MCLGET(m, MB_DONTWAIT);
862 		if ((m->m_flags & M_EXT) == 0) {
863 			m_free(m);
864 			return ((struct mbuf *) NULL);
865 		}
866 	}
867 	cp = mtod(m, struct cmsghdr *);
868 	m->m_len = 0;
869 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
870 	    ("sbcreatecontrol: short mbuf"));
871 	if (p != NULL)
872 		(void)memcpy(CMSG_DATA(cp), p, size);
873 	m->m_len = CMSG_SPACE(size);
874 	cp->cmsg_len = CMSG_LEN(size);
875 	cp->cmsg_level = level;
876 	cp->cmsg_type = type;
877 	return (m);
878 }
879 
880 /*
881  * Some routines that return EOPNOTSUPP for entry points that are not
882  * supported by a protocol.  Fill in as needed.
883  */
884 int
885 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
886 {
887 	return EOPNOTSUPP;
888 }
889 
890 int
891 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
892 {
893 	return EOPNOTSUPP;
894 }
895 
896 int
897 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
898 {
899 	return EOPNOTSUPP;
900 }
901 
902 int
903 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
904 		    struct ifnet *ifp, struct thread *td)
905 {
906 	return EOPNOTSUPP;
907 }
908 
909 int
910 pru_listen_notsupp(struct socket *so, struct thread *td)
911 {
912 	return EOPNOTSUPP;
913 }
914 
915 int
916 pru_rcvd_notsupp(struct socket *so, int flags)
917 {
918 	return EOPNOTSUPP;
919 }
920 
921 int
922 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
923 {
924 	return EOPNOTSUPP;
925 }
926 
927 /*
928  * This isn't really a ``null'' operation, but it's the default one
929  * and doesn't do anything destructive.
930  */
931 int
932 pru_sense_null(struct socket *so, struct stat *sb)
933 {
934 	sb->st_blksize = so->so_snd.sb_hiwat;
935 	return 0;
936 }
937 
938 /*
939  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.  Callers
940  * of this routine assume that it always succeeds, so we have to use a
941  * blockable allocation even though we might be called from a critical thread.
942  */
943 struct sockaddr *
944 dup_sockaddr(const struct sockaddr *sa)
945 {
946 	struct sockaddr *sa2;
947 
948 	sa2 = malloc(sa->sa_len, M_SONAME, M_INTWAIT);
949 	bcopy(sa, sa2, sa->sa_len);
950 	return (sa2);
951 }
952 
953 /*
954  * Create an external-format (``xsocket'') structure using the information
955  * in the kernel-format socket structure pointed to by so.  This is done
956  * to reduce the spew of irrelevant information over this interface,
957  * to isolate user code from changes in the kernel structure, and
958  * potentially to provide information-hiding if we decide that
959  * some of this information should be hidden from users.
960  */
961 void
962 sotoxsocket(struct socket *so, struct xsocket *xso)
963 {
964 	xso->xso_len = sizeof *xso;
965 	xso->xso_so = so;
966 	xso->so_type = so->so_type;
967 	xso->so_options = so->so_options;
968 	xso->so_linger = so->so_linger;
969 	xso->so_state = so->so_state;
970 	xso->so_pcb = so->so_pcb;
971 	xso->xso_protocol = so->so_proto->pr_protocol;
972 	xso->xso_family = so->so_proto->pr_domain->dom_family;
973 	xso->so_qlen = so->so_qlen;
974 	xso->so_incqlen = so->so_incqlen;
975 	xso->so_qlimit = so->so_qlimit;
976 	xso->so_timeo = so->so_timeo;
977 	xso->so_error = so->so_error;
978 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
979 	xso->so_oobmark = so->so_oobmark;
980 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
981 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
982 	xso->so_uid = so->so_cred->cr_uid;
983 }
984 
985 /*
986  * This does the same for sockbufs.  Note that the xsockbuf structure,
987  * since it is always embedded in a socket, does not include a self
988  * pointer nor a length.  We make this entry point public in case
989  * some other mechanism needs it.
990  */
991 void
992 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
993 {
994 	xsb->sb_cc = sb->sb_cc;
995 	xsb->sb_hiwat = sb->sb_hiwat;
996 	xsb->sb_mbcnt = sb->sb_mbcnt;
997 	xsb->sb_mbmax = sb->sb_mbmax;
998 	xsb->sb_lowat = sb->sb_lowat;
999 	xsb->sb_flags = sb->sb_flags;
1000 	xsb->sb_timeo = sb->sb_timeo;
1001 }
1002 
1003 /*
1004  * Here is the definition of some of the basic objects in the kern.ipc
1005  * branch of the MIB.
1006  */
1007 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1008 
1009 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1010 static int dummy;
1011 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1012 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
1013     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
1014 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1015     &maxsockets, 0, "Maximum number of sockets avaliable");
1016 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1017     &sb_efficiency, 0, "");
1018 
1019 /*
1020  * Initialise maxsockets
1021  */
1022 static void init_maxsockets(void *ignored)
1023 {
1024     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1025     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1026 }
1027 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1028