xref: /dragonfly/sys/kern/uipc_syscalls.c (revision 23265324)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
37  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38  * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.78 2007/01/28 06:31:00 y0netan1 Exp $
39  */
40 
41 #include "opt_ktrace.h"
42 #include "opt_sctp.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/sfbuf.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/socketops.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 #include <sys/lock.h>
65 #include <sys/mount.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_extern.h>
75 #include <sys/file2.h>
76 #include <sys/signalvar.h>
77 #include <sys/serialize.h>
78 
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 
82 #ifdef SCTP
83 #include <netinet/sctp_peeloff.h>
84 #endif /* SCTP */
85 
86 struct sfbuf_mref {
87 	struct sf_buf	*sf;
88 	int		mref_count;
89 	struct lwkt_serialize serializer;
90 };
91 
92 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures");
93 
94 /*
95  * System call interface to the socket abstraction.
96  */
97 
98 extern	struct fileops socketops;
99 
100 /*
101  * socket_args(int domain, int type, int protocol)
102  */
103 int
104 kern_socket(int domain, int type, int protocol, int *res)
105 {
106 	struct thread *td = curthread;
107 	struct proc *p = td->td_proc;
108 	struct socket *so;
109 	struct file *fp;
110 	int fd, error;
111 
112 	KKASSERT(p);
113 
114 	error = falloc(p, &fp, &fd);
115 	if (error)
116 		return (error);
117 	error = socreate(domain, &so, type, protocol, td);
118 	if (error) {
119 		fsetfd(p, NULL, fd);
120 	} else {
121 		fp->f_type = DTYPE_SOCKET;
122 		fp->f_flag = FREAD | FWRITE;
123 		fp->f_ops = &socketops;
124 		fp->f_data = so;
125 		*res = fd;
126 		fsetfd(p, fp, fd);
127 	}
128 	fdrop(fp);
129 	return (error);
130 }
131 
132 int
133 sys_socket(struct socket_args *uap)
134 {
135 	int error;
136 
137 	error = kern_socket(uap->domain, uap->type, uap->protocol,
138 	    &uap->sysmsg_result);
139 
140 	return (error);
141 }
142 
143 int
144 kern_bind(int s, struct sockaddr *sa)
145 {
146 	struct thread *td = curthread;
147 	struct proc *p = td->td_proc;
148 	struct file *fp;
149 	int error;
150 
151 	KKASSERT(p);
152 	error = holdsock(p->p_fd, s, &fp);
153 	if (error)
154 		return (error);
155 	error = sobind((struct socket *)fp->f_data, sa, td);
156 	fdrop(fp);
157 	return (error);
158 }
159 
160 /*
161  * bind_args(int s, caddr_t name, int namelen)
162  */
163 int
164 sys_bind(struct bind_args *uap)
165 {
166 	struct sockaddr *sa;
167 	int error;
168 
169 	error = getsockaddr(&sa, uap->name, uap->namelen);
170 	if (error)
171 		return (error);
172 	error = kern_bind(uap->s, sa);
173 	FREE(sa, M_SONAME);
174 
175 	return (error);
176 }
177 
178 int
179 kern_listen(int s, int backlog)
180 {
181 	struct thread *td = curthread;
182 	struct proc *p = td->td_proc;
183 	struct file *fp;
184 	int error;
185 
186 	KKASSERT(p);
187 	error = holdsock(p->p_fd, s, &fp);
188 	if (error)
189 		return (error);
190 	error = solisten((struct socket *)fp->f_data, backlog, td);
191 	fdrop(fp);
192 	return(error);
193 }
194 
195 /*
196  * listen_args(int s, int backlog)
197  */
198 int
199 sys_listen(struct listen_args *uap)
200 {
201 	int error;
202 
203 	error = kern_listen(uap->s, uap->backlog);
204 	return (error);
205 }
206 
207 /*
208  * Returns the accepted socket as well.
209  */
210 static boolean_t
211 soaccept_predicate(struct netmsg *msg0)
212 {
213 	struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
214 	struct socket *head = msg->nm_so;
215 
216 	if (head->so_error != 0) {
217 		msg->nm_lmsg.ms_error = head->so_error;
218 		return (TRUE);
219 	}
220 	if (!TAILQ_EMPTY(&head->so_comp)) {
221 		/* Abuse nm_so field as copy in/copy out parameter. XXX JH */
222 		msg->nm_so = TAILQ_FIRST(&head->so_comp);
223 		TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list);
224 		head->so_qlen--;
225 
226 		msg->nm_lmsg.ms_error = 0;
227 		return (TRUE);
228 	}
229 	if (head->so_state & SS_CANTRCVMORE) {
230 		msg->nm_lmsg.ms_error = ECONNABORTED;
231 		return (TRUE);
232 	}
233 	if (msg->nm_fflags & FNONBLOCK) {
234 		msg->nm_lmsg.ms_error = EWOULDBLOCK;
235 		return (TRUE);
236 	}
237 
238 	return (FALSE);
239 }
240 
241 /*
242  * The second argument to kern_accept() is a handle to a struct sockaddr.
243  * This allows kern_accept() to return a pointer to an allocated struct
244  * sockaddr which must be freed later with FREE().  The caller must
245  * initialize *name to NULL.
246  */
247 int
248 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res)
249 {
250 	struct thread *td = curthread;
251 	struct proc *p = td->td_proc;
252 	struct file *lfp = NULL;
253 	struct file *nfp = NULL;
254 	struct sockaddr *sa;
255 	struct socket *head, *so;
256 	struct netmsg_so_notify msg;
257 	lwkt_port_t port;
258 	int fd;
259 	u_int fflag;		/* type must match fp->f_flag */
260 	int error, tmp;
261 
262 	*res = -1;
263 	if (name && namelen && *namelen < 0)
264 		return (EINVAL);
265 
266 	error = holdsock(p->p_fd, s, &lfp);
267 	if (error)
268 		return (error);
269 
270 	error = falloc(p, &nfp, &fd);
271 	if (error) {		/* Probably ran out of file descriptors. */
272 		fdrop(lfp);
273 		return (error);
274 	}
275 	head = (struct socket *)lfp->f_data;
276 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
277 		error = EINVAL;
278 		goto done;
279 	}
280 
281 	if (fflags & O_FBLOCKING)
282 		fflags |= lfp->f_flag & ~FNONBLOCK;
283 	else if (fflags & O_FNONBLOCKING)
284 		fflags |= lfp->f_flag | FNONBLOCK;
285 	else
286 		fflags = lfp->f_flag;
287 
288 	/* optimize for uniprocessor case later XXX JH */
289 	port = head->so_proto->pr_mport(head, NULL, PRU_PRED);
290 	lwkt_initmsg(&msg.nm_lmsg, &curthread->td_msgport,
291 		     MSGF_PCATCH | MSGF_ABORTABLE,
292 		     lwkt_cmd_func(netmsg_so_notify),
293 		     lwkt_cmd_func(netmsg_so_notify_abort));
294 	msg.nm_predicate = soaccept_predicate;
295 	msg.nm_fflags = fflags;
296 	msg.nm_so = head;
297 	msg.nm_etype = NM_REVENT;
298 	error = lwkt_domsg(port, &msg.nm_lmsg);
299 	if (error)
300 		goto done;
301 
302 	/*
303 	 * At this point we have the connection that's ready to be accepted.
304 	 */
305 	so = msg.nm_so;
306 
307 	fflag = lfp->f_flag;
308 
309 	/* connection has been removed from the listen queue */
310 	KNOTE(&head->so_rcv.sb_sel.si_note, 0);
311 
312 	so->so_state &= ~SS_COMP;
313 	so->so_head = NULL;
314 	if (head->so_sigio != NULL)
315 		fsetown(fgetown(head->so_sigio), &so->so_sigio);
316 
317 	nfp->f_type = DTYPE_SOCKET;
318 	nfp->f_flag = fflag;
319 	nfp->f_ops = &socketops;
320 	nfp->f_data = so;
321 	/* Sync socket nonblocking/async state with file flags */
322 	tmp = fflag & FNONBLOCK;
323 	(void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, p->p_ucred);
324 	tmp = fflag & FASYNC;
325 	(void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, p->p_ucred);
326 
327 	sa = NULL;
328 	error = soaccept(so, &sa);
329 
330 	/*
331 	 * Set the returned name and namelen as applicable.  Set the returned
332 	 * namelen to 0 for older code which might ignore the return value
333 	 * from accept.
334 	 */
335 	if (error == 0) {
336 		if (sa && name && namelen) {
337 			if (*namelen > sa->sa_len)
338 				*namelen = sa->sa_len;
339 			*name = sa;
340 		} else {
341 			if (sa)
342 				FREE(sa, M_SONAME);
343 		}
344 	}
345 
346 done:
347 	/*
348 	 * If an error occured clear the reserved descriptor, else associate
349 	 * nfp with it.
350 	 *
351 	 * Note that *res is normally ignored if an error is returned but
352 	 * a syscall message will still have access to the result code.
353 	 */
354 	if (error) {
355 		fsetfd(p, NULL, fd);
356 	} else {
357 		*res = fd;
358 		fsetfd(p, nfp, fd);
359 	}
360 	fdrop(nfp);
361 	fdrop(lfp);
362 	return (error);
363 }
364 
365 /*
366  * accept(int s, caddr_t name, int *anamelen)
367  */
368 int
369 sys_accept(struct accept_args *uap)
370 {
371 	struct sockaddr *sa = NULL;
372 	int sa_len;
373 	int error;
374 
375 	if (uap->name) {
376 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
377 		if (error)
378 			return (error);
379 
380 		error = kern_accept(uap->s, 0, &sa, &sa_len, &uap->sysmsg_result);
381 
382 		if (error == 0)
383 			error = copyout(sa, uap->name, sa_len);
384 		if (error == 0) {
385 			error = copyout(&sa_len, uap->anamelen,
386 			    sizeof(*uap->anamelen));
387 		}
388 		if (sa)
389 			FREE(sa, M_SONAME);
390 	} else {
391 		error = kern_accept(uap->s, 0, NULL, 0, &uap->sysmsg_result);
392 	}
393 	return (error);
394 }
395 
396 /*
397  * extaccept(int s, int fflags, caddr_t name, int *anamelen)
398  */
399 int
400 sys_extaccept(struct extaccept_args *uap)
401 {
402 	struct sockaddr *sa = NULL;
403 	int sa_len;
404 	int error;
405 	int fflags = uap->flags & O_FMASK;
406 
407 	if (uap->name) {
408 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
409 		if (error)
410 			return (error);
411 
412 		error = kern_accept(uap->s, fflags, &sa, &sa_len, &uap->sysmsg_result);
413 
414 		if (error == 0)
415 			error = copyout(sa, uap->name, sa_len);
416 		if (error == 0) {
417 			error = copyout(&sa_len, uap->anamelen,
418 			    sizeof(*uap->anamelen));
419 		}
420 		if (sa)
421 			FREE(sa, M_SONAME);
422 	} else {
423 		error = kern_accept(uap->s, fflags, NULL, 0, &uap->sysmsg_result);
424 	}
425 	return (error);
426 }
427 
428 
429 /*
430  * Returns TRUE if predicate satisfied.
431  */
432 static boolean_t
433 soconnected_predicate(struct netmsg *msg0)
434 {
435 	struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
436 	struct socket *so = msg->nm_so;
437 
438 	/* check predicate */
439 	if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
440 		msg->nm_lmsg.ms_error = so->so_error;
441 		return (TRUE);
442 	}
443 
444 	return (FALSE);
445 }
446 
447 int
448 kern_connect(int s, int fflags, struct sockaddr *sa)
449 {
450 	struct thread *td = curthread;
451 	struct proc *p = td->td_proc;
452 	struct file *fp;
453 	struct socket *so;
454 	int error;
455 
456 	error = holdsock(p->p_fd, s, &fp);
457 	if (error)
458 		return (error);
459 	so = (struct socket *)fp->f_data;
460 
461 	if (fflags & O_FBLOCKING)
462 		/* fflags &= ~FNONBLOCK; */;
463 	else if (fflags & O_FNONBLOCKING)
464 		fflags |= FNONBLOCK;
465 	else
466 		fflags = fp->f_flag;
467 
468 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
469 		error = EALREADY;
470 		goto done;
471 	}
472 	error = soconnect(so, sa, td);
473 	if (error)
474 		goto bad;
475 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
476 		error = EINPROGRESS;
477 		goto done;
478 	}
479 	if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
480 		struct netmsg_so_notify msg;
481 		lwkt_port_t port;
482 
483 		port = so->so_proto->pr_mport(so, sa, PRU_PRED);
484 		lwkt_initmsg(&msg.nm_lmsg,
485 			    &curthread->td_msgport,
486 			    MSGF_PCATCH | MSGF_ABORTABLE,
487 			    lwkt_cmd_func(netmsg_so_notify),
488 			    lwkt_cmd_func(netmsg_so_notify_abort));
489 		msg.nm_predicate = soconnected_predicate;
490 		msg.nm_so = so;
491 		msg.nm_etype = NM_REVENT;
492 		error = lwkt_domsg(port, &msg.nm_lmsg);
493 	}
494 	if (error == 0) {
495 		error = so->so_error;
496 		so->so_error = 0;
497 	}
498 bad:
499 	so->so_state &= ~SS_ISCONNECTING;
500 	if (error == ERESTART)
501 		error = EINTR;
502 done:
503 	fdrop(fp);
504 	return (error);
505 }
506 
507 /*
508  * connect_args(int s, caddr_t name, int namelen)
509  */
510 int
511 sys_connect(struct connect_args *uap)
512 {
513 	struct sockaddr *sa;
514 	int error;
515 
516 	error = getsockaddr(&sa, uap->name, uap->namelen);
517 	if (error)
518 		return (error);
519 	error = kern_connect(uap->s, 0, sa);
520 	FREE(sa, M_SONAME);
521 
522 	return (error);
523 }
524 
525 /*
526  * connect_args(int s, int fflags, caddr_t name, int namelen)
527  */
528 int
529 sys_extconnect(struct extconnect_args *uap)
530 {
531 	struct sockaddr *sa;
532 	int error;
533 	int fflags = uap->flags & O_FMASK;
534 
535 	error = getsockaddr(&sa, uap->name, uap->namelen);
536 	if (error)
537 		return (error);
538 	error = kern_connect(uap->s, fflags, sa);
539 	FREE(sa, M_SONAME);
540 
541 	return (error);
542 }
543 
544 int
545 kern_socketpair(int domain, int type, int protocol, int *sv)
546 {
547 	struct thread *td = curthread;
548 	struct proc *p = td->td_proc;
549 	struct file *fp1, *fp2;
550 	struct socket *so1, *so2;
551 	int fd1, fd2, error;
552 
553 	KKASSERT(p);
554 	error = socreate(domain, &so1, type, protocol, td);
555 	if (error)
556 		return (error);
557 	error = socreate(domain, &so2, type, protocol, td);
558 	if (error)
559 		goto free1;
560 	error = falloc(p, &fp1, &fd1);
561 	if (error)
562 		goto free2;
563 	sv[0] = fd1;
564 	fp1->f_data = so1;
565 	error = falloc(p, &fp2, &fd2);
566 	if (error)
567 		goto free3;
568 	fp2->f_data = so2;
569 	sv[1] = fd2;
570 	error = soconnect2(so1, so2);
571 	if (error)
572 		goto free4;
573 	if (type == SOCK_DGRAM) {
574 		/*
575 		 * Datagram socket connection is asymmetric.
576 		 */
577 		 error = soconnect2(so2, so1);
578 		 if (error)
579 			goto free4;
580 	}
581 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
582 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
583 	fp1->f_ops = fp2->f_ops = &socketops;
584 	fsetfd(p, fp1, fd1);
585 	fsetfd(p, fp2, fd2);
586 	fdrop(fp1);
587 	fdrop(fp2);
588 	return (error);
589 free4:
590 	fsetfd(p, NULL, fd2);
591 	fdrop(fp2);
592 free3:
593 	fsetfd(p, NULL, fd1);
594 	fdrop(fp1);
595 free2:
596 	(void)soclose(so2, 0);
597 free1:
598 	(void)soclose(so1, 0);
599 	return (error);
600 }
601 
602 /*
603  * socketpair(int domain, int type, int protocol, int *rsv)
604  */
605 int
606 sys_socketpair(struct socketpair_args *uap)
607 {
608 	int error, sockv[2];
609 
610 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
611 
612 	if (error == 0)
613 		error = copyout(sockv, uap->rsv, sizeof(sockv));
614 	return (error);
615 }
616 
617 int
618 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
619     struct mbuf *control, int flags, int *res)
620 {
621 	struct thread *td = curthread;
622 	struct proc *p = td->td_proc;
623 	struct file *fp;
624 	int len, error;
625 	struct socket *so;
626 #ifdef KTRACE
627 	struct iovec *ktriov = NULL;
628 	struct uio ktruio;
629 #endif
630 
631 	error = holdsock(p->p_fd, s, &fp);
632 	if (error)
633 		return (error);
634 	if (auio->uio_resid < 0) {
635 		error = EINVAL;
636 		goto done;
637 	}
638 #ifdef KTRACE
639 	if (KTRPOINT(td, KTR_GENIO)) {
640 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
641 
642 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
643 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
644 		ktruio = *auio;
645 	}
646 #endif
647 	len = auio->uio_resid;
648 	so = (struct socket *)fp->f_data;
649 	if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
650 		if (fp->f_flag & FNONBLOCK)
651 			flags |= MSG_FNONBLOCKING;
652 	}
653 	error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
654 	if (error) {
655 		if (auio->uio_resid != len && (error == ERESTART ||
656 		    error == EINTR || error == EWOULDBLOCK))
657 			error = 0;
658 		if (error == EPIPE)
659 			ksignal(p, SIGPIPE);
660 	}
661 #ifdef KTRACE
662 	if (ktriov != NULL) {
663 		if (error == 0) {
664 			ktruio.uio_iov = ktriov;
665 			ktruio.uio_resid = len - auio->uio_resid;
666 			ktrgenio(p, s, UIO_WRITE, &ktruio, error);
667 		}
668 		FREE(ktriov, M_TEMP);
669 	}
670 #endif
671 	if (error == 0)
672 		*res  = len - auio->uio_resid;
673 done:
674 	fdrop(fp);
675 	return (error);
676 }
677 
678 /*
679  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
680  */
681 int
682 sys_sendto(struct sendto_args *uap)
683 {
684 	struct thread *td = curthread;
685 	struct uio auio;
686 	struct iovec aiov;
687 	struct sockaddr *sa = NULL;
688 	int error;
689 
690 	if (uap->to) {
691 		error = getsockaddr(&sa, uap->to, uap->tolen);
692 		if (error)
693 			return (error);
694 	}
695 	aiov.iov_base = uap->buf;
696 	aiov.iov_len = uap->len;
697 	auio.uio_iov = &aiov;
698 	auio.uio_iovcnt = 1;
699 	auio.uio_offset = 0;
700 	auio.uio_resid = uap->len;
701 	auio.uio_segflg = UIO_USERSPACE;
702 	auio.uio_rw = UIO_WRITE;
703 	auio.uio_td = td;
704 
705 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
706 	    &uap->sysmsg_result);
707 
708 	if (sa)
709 		FREE(sa, M_SONAME);
710 	return (error);
711 }
712 
713 /*
714  * sendmsg_args(int s, caddr_t msg, int flags)
715  */
716 int
717 sys_sendmsg(struct sendmsg_args *uap)
718 {
719 	struct thread *td = curthread;
720 	struct msghdr msg;
721 	struct uio auio;
722 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
723 	struct sockaddr *sa = NULL;
724 	struct mbuf *control = NULL;
725 	int error;
726 
727 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
728 	if (error)
729 		return (error);
730 
731 	/*
732 	 * Conditionally copyin msg.msg_name.
733 	 */
734 	if (msg.msg_name) {
735 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
736 		if (error)
737 			return (error);
738 	}
739 
740 	/*
741 	 * Populate auio.
742 	 */
743 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
744 			     &auio.uio_resid);
745 	if (error)
746 		goto cleanup2;
747 	auio.uio_iov = iov;
748 	auio.uio_iovcnt = msg.msg_iovlen;
749 	auio.uio_offset = 0;
750 	auio.uio_segflg = UIO_USERSPACE;
751 	auio.uio_rw = UIO_WRITE;
752 	auio.uio_td = td;
753 
754 	/*
755 	 * Conditionally copyin msg.msg_control.
756 	 */
757 	if (msg.msg_control) {
758 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
759 		    msg.msg_controllen > MLEN) {
760 			error = EINVAL;
761 			goto cleanup;
762 		}
763 		control = m_get(MB_WAIT, MT_CONTROL);
764 		if (control == NULL) {
765 			error = ENOBUFS;
766 			goto cleanup;
767 		}
768 		control->m_len = msg.msg_controllen;
769 		error = copyin(msg.msg_control, mtod(control, caddr_t),
770 		    msg.msg_controllen);
771 		if (error) {
772 			m_free(control);
773 			goto cleanup;
774 		}
775 	}
776 
777 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
778 	    &uap->sysmsg_result);
779 
780 cleanup:
781 	iovec_free(&iov, aiov);
782 cleanup2:
783 	if (sa)
784 		FREE(sa, M_SONAME);
785 	return (error);
786 }
787 
788 /*
789  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
790  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
791  * Don't forget to FREE() and m_free() these if they are returned.
792  */
793 int
794 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
795     struct mbuf **control, int *flags, int *res)
796 {
797 	struct thread *td = curthread;
798 	struct proc *p = td->td_proc;
799 	struct file *fp;
800 	int len, error;
801 	int lflags;
802 	struct socket *so;
803 #ifdef KTRACE
804 	struct iovec *ktriov = NULL;
805 	struct uio ktruio;
806 #endif
807 
808 	error = holdsock(p->p_fd, s, &fp);
809 	if (error)
810 		return (error);
811 	if (auio->uio_resid < 0) {
812 		error = EINVAL;
813 		goto done;
814 	}
815 #ifdef KTRACE
816 	if (KTRPOINT(td, KTR_GENIO)) {
817 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
818 
819 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
820 		bcopy(auio->uio_iov, ktriov, iovlen);
821 		ktruio = *auio;
822 	}
823 #endif
824 	len = auio->uio_resid;
825 	so = (struct socket *)fp->f_data;
826 
827 	if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
828 		if (fp->f_flag & FNONBLOCK) {
829 			if (flags) {
830 				*flags |= MSG_FNONBLOCKING;
831 			} else {
832 				lflags = MSG_FNONBLOCKING;
833 				flags = &lflags;
834 			}
835 		}
836 	}
837 
838 	error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
839 	if (error) {
840 		if (auio->uio_resid != len && (error == ERESTART ||
841 		    error == EINTR || error == EWOULDBLOCK))
842 			error = 0;
843 	}
844 #ifdef KTRACE
845 	if (ktriov != NULL) {
846 		if (error == 0) {
847 			ktruio.uio_iov = ktriov;
848 			ktruio.uio_resid = len - auio->uio_resid;
849 			ktrgenio(p, s, UIO_READ, &ktruio, error);
850 		}
851 		FREE(ktriov, M_TEMP);
852 	}
853 #endif
854 	if (error == 0)
855 		*res = len - auio->uio_resid;
856 done:
857 	fdrop(fp);
858 	return (error);
859 }
860 
861 /*
862  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
863  *			caddr_t from, int *fromlenaddr)
864  */
865 int
866 sys_recvfrom(struct recvfrom_args *uap)
867 {
868 	struct thread *td = curthread;
869 	struct uio auio;
870 	struct iovec aiov;
871 	struct sockaddr *sa = NULL;
872 	int error, fromlen;
873 
874 	if (uap->from && uap->fromlenaddr) {
875 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
876 		if (error)
877 			return (error);
878 		if (fromlen < 0)
879 			return (EINVAL);
880 	} else {
881 		fromlen = 0;
882 	}
883 	aiov.iov_base = uap->buf;
884 	aiov.iov_len = uap->len;
885 	auio.uio_iov = &aiov;
886 	auio.uio_iovcnt = 1;
887 	auio.uio_offset = 0;
888 	auio.uio_resid = uap->len;
889 	auio.uio_segflg = UIO_USERSPACE;
890 	auio.uio_rw = UIO_READ;
891 	auio.uio_td = td;
892 
893 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
894 	    &uap->flags, &uap->sysmsg_result);
895 
896 	if (error == 0 && uap->from) {
897 		/* note: sa may still be NULL */
898 		if (sa) {
899 			fromlen = MIN(fromlen, sa->sa_len);
900 			error = copyout(sa, uap->from, fromlen);
901 		} else {
902 			fromlen = 0;
903 		}
904 		if (error == 0) {
905 			error = copyout(&fromlen, uap->fromlenaddr,
906 					sizeof(fromlen));
907 		}
908 	}
909 	if (sa)
910 		FREE(sa, M_SONAME);
911 
912 	return (error);
913 }
914 
915 /*
916  * recvmsg_args(int s, struct msghdr *msg, int flags)
917  */
918 int
919 sys_recvmsg(struct recvmsg_args *uap)
920 {
921 	struct thread *td = curthread;
922 	struct msghdr msg;
923 	struct uio auio;
924 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
925 	struct mbuf *m, *control = NULL;
926 	struct sockaddr *sa = NULL;
927 	caddr_t ctlbuf;
928 	socklen_t *ufromlenp, *ucontrollenp;
929 	int error, fromlen, controllen, len, flags, *uflagsp;
930 
931 	/*
932 	 * This copyin handles everything except the iovec.
933 	 */
934 	error = copyin(uap->msg, &msg, sizeof(msg));
935 	if (error)
936 		return (error);
937 
938 	if (msg.msg_name && msg.msg_namelen < 0)
939 		return (EINVAL);
940 	if (msg.msg_control && msg.msg_controllen < 0)
941 		return (EINVAL);
942 
943 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
944 	    msg_namelen));
945 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
946 	    msg_controllen));
947 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
948 	    msg_flags));
949 
950 	/*
951 	 * Populate auio.
952 	 */
953 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
954 			     &auio.uio_resid);
955 	if (error)
956 		return (error);
957 	auio.uio_iov = iov;
958 	auio.uio_iovcnt = msg.msg_iovlen;
959 	auio.uio_offset = 0;
960 	auio.uio_segflg = UIO_USERSPACE;
961 	auio.uio_rw = UIO_READ;
962 	auio.uio_td = td;
963 
964 	flags = uap->flags;
965 
966 	error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio,
967 	    msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result);
968 
969 	/*
970 	 * Conditionally copyout the name and populate the namelen field.
971 	 */
972 	if (error == 0 && msg.msg_name) {
973 		/* note: sa may still be NULL */
974 		if (sa != NULL) {
975 			fromlen = MIN(msg.msg_namelen, sa->sa_len);
976 			error = copyout(sa, msg.msg_name, fromlen);
977 		} else
978 			fromlen = 0;
979 		if (error == 0)
980 			error = copyout(&fromlen, ufromlenp,
981 			    sizeof(*ufromlenp));
982 	}
983 
984 	/*
985 	 * Copyout msg.msg_control and msg.msg_controllen.
986 	 */
987 	if (error == 0 && msg.msg_control) {
988 		len = msg.msg_controllen;
989 		m = control;
990 		ctlbuf = (caddr_t)msg.msg_control;
991 
992 		while(m && len > 0) {
993 			unsigned int tocopy;
994 
995 			if (len >= m->m_len) {
996 				tocopy = m->m_len;
997 			} else {
998 				msg.msg_flags |= MSG_CTRUNC;
999 				tocopy = len;
1000 			}
1001 
1002 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1003 			if (error)
1004 				goto cleanup;
1005 
1006 			ctlbuf += tocopy;
1007 			len -= tocopy;
1008 			m = m->m_next;
1009 		}
1010 		controllen = ctlbuf - (caddr_t)msg.msg_control;
1011 		error = copyout(&controllen, ucontrollenp,
1012 		    sizeof(*ucontrollenp));
1013 	}
1014 
1015 	if (error == 0)
1016 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1017 
1018 cleanup:
1019 	if (sa)
1020 		FREE(sa, M_SONAME);
1021 	iovec_free(&iov, aiov);
1022 	if (control)
1023 		m_freem(control);
1024 	return (error);
1025 }
1026 
1027 /*
1028  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1029  * in kernel pointer instead of a userland pointer.  This allows us
1030  * to manipulate socket options in the emulation code.
1031  */
1032 int
1033 kern_setsockopt(int s, struct sockopt *sopt)
1034 {
1035 	struct thread *td = curthread;
1036 	struct proc *p = td->td_proc;
1037 	struct file *fp;
1038 	int error;
1039 
1040 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1041 		return (EFAULT);
1042 	if (sopt->sopt_valsize < 0)
1043 		return (EINVAL);
1044 
1045 	error = holdsock(p->p_fd, s, &fp);
1046 	if (error)
1047 		return (error);
1048 
1049 	error = sosetopt((struct socket *)fp->f_data, sopt);
1050 	fdrop(fp);
1051 	return (error);
1052 }
1053 
1054 /*
1055  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1056  */
1057 int
1058 sys_setsockopt(struct setsockopt_args *uap)
1059 {
1060 	struct thread *td = curthread;
1061 	struct sockopt sopt;
1062 	int error;
1063 
1064 	sopt.sopt_level = uap->level;
1065 	sopt.sopt_name = uap->name;
1066 	sopt.sopt_val = uap->val;
1067 	sopt.sopt_valsize = uap->valsize;
1068 	sopt.sopt_td = td;
1069 
1070 	error = kern_setsockopt(uap->s, &sopt);
1071 	return(error);
1072 }
1073 
1074 /*
1075  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1076  * in kernel pointer instead of a userland pointer.  This allows us
1077  * to manipulate socket options in the emulation code.
1078  */
1079 int
1080 kern_getsockopt(int s, struct sockopt *sopt)
1081 {
1082 	struct thread *td = curthread;
1083 	struct proc *p = td->td_proc;
1084 	struct file *fp;
1085 	int error;
1086 
1087 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1088 		return (EFAULT);
1089 	if (sopt->sopt_valsize < 0)
1090 		return (EINVAL);
1091 
1092 	error = holdsock(p->p_fd, s, &fp);
1093 	if (error)
1094 		return (error);
1095 
1096 	error = sogetopt((struct socket *)fp->f_data, sopt);
1097 	fdrop(fp);
1098 	return (error);
1099 }
1100 
1101 /*
1102  * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1103  */
1104 int
1105 sys_getsockopt(struct getsockopt_args *uap)
1106 {
1107 	struct thread *td = curthread;
1108 	struct	sockopt sopt;
1109 	int	error, valsize;
1110 
1111 	if (uap->val) {
1112 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1113 		if (error)
1114 			return (error);
1115 		if (valsize < 0)
1116 			return (EINVAL);
1117 	} else {
1118 		valsize = 0;
1119 	}
1120 
1121 	sopt.sopt_level = uap->level;
1122 	sopt.sopt_name = uap->name;
1123 	sopt.sopt_val = uap->val;
1124 	sopt.sopt_valsize = valsize;
1125 	sopt.sopt_td = td;
1126 
1127 	error = kern_getsockopt(uap->s, &sopt);
1128 	if (error == 0) {
1129 		valsize = sopt.sopt_valsize;
1130 		error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1131 	}
1132 	return (error);
1133 }
1134 
1135 /*
1136  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1137  * This allows kern_getsockname() to return a pointer to an allocated struct
1138  * sockaddr which must be freed later with FREE().  The caller must
1139  * initialize *name to NULL.
1140  */
1141 int
1142 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1143 {
1144 	struct thread *td = curthread;
1145 	struct proc *p = td->td_proc;
1146 	struct file *fp;
1147 	struct socket *so;
1148 	struct sockaddr *sa = NULL;
1149 	int error;
1150 
1151 	error = holdsock(p->p_fd, s, &fp);
1152 	if (error)
1153 		return (error);
1154 	if (*namelen < 0) {
1155 		fdrop(fp);
1156 		return (EINVAL);
1157 	}
1158 	so = (struct socket *)fp->f_data;
1159 	error = so_pru_sockaddr(so, &sa);
1160 	if (error == 0) {
1161 		if (sa == 0) {
1162 			*namelen = 0;
1163 		} else {
1164 			*namelen = MIN(*namelen, sa->sa_len);
1165 			*name = sa;
1166 		}
1167 	}
1168 
1169 	fdrop(fp);
1170 	return (error);
1171 }
1172 
1173 /*
1174  * getsockname_args(int fdes, caddr_t asa, int *alen)
1175  *
1176  * Get socket name.
1177  */
1178 int
1179 sys_getsockname(struct getsockname_args *uap)
1180 {
1181 	struct sockaddr *sa = NULL;
1182 	int error, sa_len;
1183 
1184 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1185 	if (error)
1186 		return (error);
1187 
1188 	error = kern_getsockname(uap->fdes, &sa, &sa_len);
1189 
1190 	if (error == 0)
1191 		error = copyout(sa, uap->asa, sa_len);
1192 	if (error == 0)
1193 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1194 	if (sa)
1195 		FREE(sa, M_SONAME);
1196 	return (error);
1197 }
1198 
1199 /*
1200  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1201  * This allows kern_getpeername() to return a pointer to an allocated struct
1202  * sockaddr which must be freed later with FREE().  The caller must
1203  * initialize *name to NULL.
1204  */
1205 int
1206 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1207 {
1208 	struct thread *td = curthread;
1209 	struct proc *p = td->td_proc;
1210 	struct file *fp;
1211 	struct socket *so;
1212 	struct sockaddr *sa = NULL;
1213 	int error;
1214 
1215 	error = holdsock(p->p_fd, s, &fp);
1216 	if (error)
1217 		return (error);
1218 	if (*namelen < 0) {
1219 		fdrop(fp);
1220 		return (EINVAL);
1221 	}
1222 	so = (struct socket *)fp->f_data;
1223 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1224 		fdrop(fp);
1225 		return (ENOTCONN);
1226 	}
1227 	error = so_pru_peeraddr(so, &sa);
1228 	if (error == 0) {
1229 		if (sa == 0) {
1230 			*namelen = 0;
1231 		} else {
1232 			*namelen = MIN(*namelen, sa->sa_len);
1233 			*name = sa;
1234 		}
1235 	}
1236 
1237 	fdrop(fp);
1238 	return (error);
1239 }
1240 
1241 /*
1242  * getpeername_args(int fdes, caddr_t asa, int *alen)
1243  *
1244  * Get name of peer for connected socket.
1245  */
1246 int
1247 sys_getpeername(struct getpeername_args *uap)
1248 {
1249 	struct sockaddr *sa = NULL;
1250 	int error, sa_len;
1251 
1252 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1253 	if (error)
1254 		return (error);
1255 
1256 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1257 
1258 	if (error == 0)
1259 		error = copyout(sa, uap->asa, sa_len);
1260 	if (error == 0)
1261 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1262 	if (sa)
1263 		FREE(sa, M_SONAME);
1264 	return (error);
1265 }
1266 
1267 int
1268 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1269 {
1270 	struct sockaddr *sa;
1271 	int error;
1272 
1273 	*namp = NULL;
1274 	if (len > SOCK_MAXADDRLEN)
1275 		return ENAMETOOLONG;
1276 	if (len < offsetof(struct sockaddr, sa_data[0]))
1277 		return EDOM;
1278 	MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1279 	error = copyin(uaddr, sa, len);
1280 	if (error) {
1281 		FREE(sa, M_SONAME);
1282 	} else {
1283 #if BYTE_ORDER != BIG_ENDIAN
1284 		/*
1285 		 * The bind(), connect(), and sendto() syscalls were not
1286 		 * versioned for COMPAT_43.  Thus, this check must stay.
1287 		 */
1288 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1289 			sa->sa_family = sa->sa_len;
1290 #endif
1291 		sa->sa_len = len;
1292 		*namp = sa;
1293 	}
1294 	return error;
1295 }
1296 
1297 /*
1298  * Detach a mapped page and release resources back to the system.
1299  * We must release our wiring and if the object is ripped out
1300  * from under the vm_page we become responsible for freeing the
1301  * page.  These routines must be MPSAFE.
1302  *
1303  * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING
1304  *
1305  * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required.
1306  */
1307 static void
1308 sf_buf_mref(void *arg)
1309 {
1310 	struct sfbuf_mref *sfm = arg;
1311 
1312 	/*
1313 	 * We must already hold a ref so there is no race to 0, just
1314 	 * atomically increment the count.
1315 	 */
1316 	atomic_add_int(&sfm->mref_count, 1);
1317 }
1318 
1319 static void
1320 sf_buf_mfree(void *arg)
1321 {
1322 	struct sfbuf_mref *sfm = arg;
1323 	vm_page_t m;
1324 
1325 	KKASSERT(sfm->mref_count > 0);
1326 	if (sfm->mref_count == 1) {
1327 		/*
1328 		 * We are the only holder so no further locking is required,
1329 		 * the sfbuf can simply be freed.
1330 		 */
1331 		sfm->mref_count = 0;
1332 		goto freeit;
1333 	} else {
1334 		/*
1335 		 * There may be other holders, we must obtain the serializer
1336 		 * to protect against a sf_buf_mfree() race to 0.  An atomic
1337 		 * operation is still required for races against
1338 		 * sf_buf_mref().
1339 		 *
1340 		 * XXX vm_page_*() and SFBUF routines not MPSAFE yet.
1341 		 */
1342 		lwkt_serialize_enter(&sfm->serializer);
1343 		atomic_subtract_int(&sfm->mref_count, 1);
1344 		if (sfm->mref_count == 0) {
1345 			lwkt_serialize_exit(&sfm->serializer);
1346 freeit:
1347 			get_mplock();
1348 			crit_enter();
1349 			m = sf_buf_page(sfm->sf);
1350 			sf_buf_free(sfm->sf);
1351 			vm_page_unwire(m, 0);
1352 			if (m->wire_count == 0 && m->object == NULL)
1353 				vm_page_try_to_free(m);
1354 			crit_exit();
1355 			rel_mplock();
1356 			kfree(sfm, M_SENDFILE);
1357 		} else {
1358 			lwkt_serialize_exit(&sfm->serializer);
1359 		}
1360 	}
1361 }
1362 
1363 /*
1364  * sendfile(2).
1365  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1366  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1367  *
1368  * Send a file specified by 'fd' and starting at 'offset' to a socket
1369  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1370  * nbytes == 0. Optionally add a header and/or trailer to the socket
1371  * output. If specified, write the total number of bytes sent into *sbytes.
1372  *
1373  * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1374  * the headers to count against the remaining bytes to be sent from
1375  * the file descriptor.  We may wish to implement a compatibility syscall
1376  * in the future.
1377  */
1378 int
1379 sys_sendfile(struct sendfile_args *uap)
1380 {
1381 	struct thread *td = curthread;
1382 	struct proc *p = td->td_proc;
1383 	struct file *fp;
1384 	struct vnode *vp = NULL;
1385 	struct sf_hdtr hdtr;
1386 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1387 	struct uio auio;
1388 	struct mbuf *mheader = NULL;
1389 	off_t hdtr_size = 0, sbytes;
1390 	int error, hbytes = 0, tbytes;
1391 
1392 	KKASSERT(p);
1393 
1394 	/*
1395 	 * Do argument checking. Must be a regular file in, stream
1396 	 * type and connected socket out, positive offset.
1397 	 */
1398 	fp = holdfp(p->p_fd, uap->fd, FREAD);
1399 	if (fp == NULL) {
1400 		return (EBADF);
1401 	}
1402 	if (fp->f_type != DTYPE_VNODE) {
1403 		fdrop(fp);
1404 		return (EINVAL);
1405 	}
1406 	vp = (struct vnode *)fp->f_data;
1407 	vref(vp);
1408 	fdrop(fp);
1409 
1410 	/*
1411 	 * If specified, get the pointer to the sf_hdtr struct for
1412 	 * any headers/trailers.
1413 	 */
1414 	if (uap->hdtr) {
1415 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1416 		if (error)
1417 			goto done;
1418 		/*
1419 		 * Send any headers.
1420 		 */
1421 		if (hdtr.headers) {
1422 			error = iovec_copyin(hdtr.headers, &iov, aiov,
1423 					     hdtr.hdr_cnt, &hbytes);
1424 			if (error)
1425 				goto done;
1426 			auio.uio_iov = iov;
1427 			auio.uio_iovcnt = hdtr.hdr_cnt;
1428 			auio.uio_offset = 0;
1429 			auio.uio_segflg = UIO_USERSPACE;
1430 			auio.uio_rw = UIO_WRITE;
1431 			auio.uio_td = td;
1432 			auio.uio_resid = hbytes;
1433 
1434 			mheader = m_uiomove(&auio);
1435 
1436 			iovec_free(&iov, aiov);
1437 			if (mheader == NULL)
1438 				goto done;
1439 		}
1440 	}
1441 
1442 	error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1443 	    &sbytes, uap->flags);
1444 	if (error)
1445 		goto done;
1446 
1447 	/*
1448 	 * Send trailers. Wimp out and use writev(2).
1449 	 */
1450 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1451 		error = iovec_copyin(hdtr.trailers, &iov, aiov,
1452 				     hdtr.trl_cnt, &auio.uio_resid);
1453 		if (error)
1454 			goto done;
1455 		auio.uio_iov = iov;
1456 		auio.uio_iovcnt = hdtr.trl_cnt;
1457 		auio.uio_offset = 0;
1458 		auio.uio_segflg = UIO_USERSPACE;
1459 		auio.uio_rw = UIO_WRITE;
1460 		auio.uio_td = td;
1461 
1462 		error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1463 
1464 		iovec_free(&iov, aiov);
1465 		if (error)
1466 			goto done;
1467 		hdtr_size += tbytes;	/* trailer bytes successfully sent */
1468 	}
1469 
1470 done:
1471 	if (uap->sbytes != NULL) {
1472 		sbytes += hdtr_size;
1473 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1474 	}
1475 	if (vp)
1476 		vrele(vp);
1477 	return (error);
1478 }
1479 
1480 int
1481 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1482     struct mbuf *mheader, off_t *sbytes, int flags)
1483 {
1484 	struct thread *td = curthread;
1485 	struct proc *p = td->td_proc;
1486 	struct vm_object *obj;
1487 	struct socket *so;
1488 	struct file *fp;
1489 	struct mbuf *m;
1490 	struct sf_buf *sf;
1491 	struct sfbuf_mref *sfm;
1492 	struct vm_page *pg;
1493 	off_t off, xfsize;
1494 	off_t hbytes = 0;
1495 	int error = 0;
1496 
1497 	if (vp->v_type != VREG) {
1498 		error = EINVAL;
1499 		goto done0;
1500 	}
1501 	if ((obj = vp->v_object) == NULL) {
1502 		error = EINVAL;
1503 		goto done0;
1504 	}
1505 	error = holdsock(p->p_fd, sfd, &fp);
1506 	if (error)
1507 		goto done0;
1508 	so = (struct socket *)fp->f_data;
1509 	if (so->so_type != SOCK_STREAM) {
1510 		error = EINVAL;
1511 		goto done;
1512 	}
1513 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1514 		error = ENOTCONN;
1515 		goto done;
1516 	}
1517 	if (offset < 0) {
1518 		error = EINVAL;
1519 		goto done;
1520 	}
1521 
1522 	*sbytes = 0;
1523 	/*
1524 	 * Protect against multiple writers to the socket.
1525 	 */
1526 	(void) sblock(&so->so_snd, M_WAITOK);
1527 
1528 	/*
1529 	 * Loop through the pages in the file, starting with the requested
1530 	 * offset. Get a file page (do I/O if necessary), map the file page
1531 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1532 	 * it on the socket.
1533 	 */
1534 	for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) {
1535 		vm_pindex_t pindex;
1536 		vm_offset_t pgoff;
1537 
1538 		pindex = OFF_TO_IDX(off);
1539 retry_lookup:
1540 		/*
1541 		 * Calculate the amount to transfer. Not to exceed a page,
1542 		 * the EOF, or the passed in nbytes.
1543 		 */
1544 		xfsize = vp->v_filesize - off;
1545 		if (xfsize > PAGE_SIZE)
1546 			xfsize = PAGE_SIZE;
1547 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1548 		if (PAGE_SIZE - pgoff < xfsize)
1549 			xfsize = PAGE_SIZE - pgoff;
1550 		if (nbytes && xfsize > (nbytes - *sbytes))
1551 			xfsize = nbytes - *sbytes;
1552 		if (xfsize <= 0)
1553 			break;
1554 		/*
1555 		 * Optimize the non-blocking case by looking at the socket space
1556 		 * before going to the extra work of constituting the sf_buf.
1557 		 */
1558 		if ((fp->f_flag & FNONBLOCK) && sbspace(&so->so_snd) <= 0) {
1559 			if (so->so_state & SS_CANTSENDMORE)
1560 				error = EPIPE;
1561 			else
1562 				error = EAGAIN;
1563 			sbunlock(&so->so_snd);
1564 			goto done;
1565 		}
1566 		/*
1567 		 * Attempt to look up the page.
1568 		 *
1569 		 *	Allocate if not found, wait and loop if busy, then
1570 		 *	wire the page.  critical section protection is
1571 		 * 	required to maintain the object association (an
1572 		 *	interrupt can free the page) through to the
1573 		 *	vm_page_wire() call.
1574 		 */
1575 		crit_enter();
1576 		pg = vm_page_lookup(obj, pindex);
1577 		if (pg == NULL) {
1578 			pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1579 			if (pg == NULL) {
1580 				vm_wait();
1581 				crit_exit();
1582 				goto retry_lookup;
1583 			}
1584 			vm_page_wakeup(pg);
1585 		} else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1586 			crit_exit();
1587 			goto retry_lookup;
1588 		}
1589 		vm_page_wire(pg);
1590 		crit_exit();
1591 
1592 		/*
1593 		 * If page is not valid for what we need, initiate I/O
1594 		 */
1595 
1596 		if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1597 			struct uio auio;
1598 			struct iovec aiov;
1599 			int bsize;
1600 
1601 			/*
1602 			 * Ensure that our page is still around when the I/O
1603 			 * completes.
1604 			 */
1605 			vm_page_io_start(pg);
1606 
1607 			/*
1608 			 * Get the page from backing store.
1609 			 */
1610 			bsize = vp->v_mount->mnt_stat.f_iosize;
1611 			auio.uio_iov = &aiov;
1612 			auio.uio_iovcnt = 1;
1613 			aiov.iov_base = 0;
1614 			aiov.iov_len = MAXBSIZE;
1615 			auio.uio_resid = MAXBSIZE;
1616 			auio.uio_offset = trunc_page(off);
1617 			auio.uio_segflg = UIO_NOCOPY;
1618 			auio.uio_rw = UIO_READ;
1619 			auio.uio_td = td;
1620 			vn_lock(vp, LK_SHARED | LK_RETRY);
1621 			error = VOP_READ(vp, &auio,
1622 				    IO_VMIO | ((MAXBSIZE / bsize) << 16),
1623 				    p->p_ucred);
1624 			vn_unlock(vp);
1625 			vm_page_flag_clear(pg, PG_ZERO);
1626 			vm_page_io_finish(pg);
1627 			if (error) {
1628 				crit_enter();
1629 				vm_page_unwire(pg, 0);
1630 				vm_page_try_to_free(pg);
1631 				crit_exit();
1632 				sbunlock(&so->so_snd);
1633 				goto done;
1634 			}
1635 		}
1636 
1637 
1638 		/*
1639 		 * Get a sendfile buf. We usually wait as long as necessary,
1640 		 * but this wait can be interrupted.
1641 		 */
1642 		if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) {
1643 			crit_enter();
1644 			vm_page_unwire(pg, 0);
1645 			vm_page_try_to_free(pg);
1646 			crit_exit();
1647 			sbunlock(&so->so_snd);
1648 			error = EINTR;
1649 			goto done;
1650 		}
1651 
1652 		/*
1653 		 * Get an mbuf header and set it up as having external storage.
1654 		 */
1655 		MGETHDR(m, MB_WAIT, MT_DATA);
1656 		if (m == NULL) {
1657 			error = ENOBUFS;
1658 			sf_buf_free(sf);
1659 			sbunlock(&so->so_snd);
1660 			goto done;
1661 		}
1662 
1663 		/*
1664 		 * sfm is a temporary hack, use a per-cpu cache for this.
1665 		 */
1666 		sfm = kmalloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK);
1667 		sfm->sf = sf;
1668 		sfm->mref_count = 1;
1669 		lwkt_serialize_init(&sfm->serializer);
1670 
1671 		m->m_ext.ext_free = sf_buf_mfree;
1672 		m->m_ext.ext_ref = sf_buf_mref;
1673 		m->m_ext.ext_arg = sfm;
1674 		m->m_ext.ext_buf = (void *)sf->kva;
1675 		m->m_ext.ext_size = PAGE_SIZE;
1676 		m->m_data = (char *) sf->kva + pgoff;
1677 		m->m_flags |= M_EXT;
1678 		m->m_pkthdr.len = m->m_len = xfsize;
1679 		KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1680 
1681 		if (mheader != NULL) {
1682 			hbytes = mheader->m_pkthdr.len;
1683 			mheader->m_pkthdr.len += m->m_pkthdr.len;
1684 			m_cat(mheader, m);
1685 			m = mheader;
1686 			mheader = NULL;
1687 		} else
1688 			hbytes = 0;
1689 
1690 		/*
1691 		 * Add the buffer to the socket buffer chain.
1692 		 */
1693 		crit_enter();
1694 retry_space:
1695 		/*
1696 		 * Make sure that the socket is still able to take more data.
1697 		 * CANTSENDMORE being true usually means that the connection
1698 		 * was closed. so_error is true when an error was sensed after
1699 		 * a previous send.
1700 		 * The state is checked after the page mapping and buffer
1701 		 * allocation above since those operations may block and make
1702 		 * any socket checks stale. From this point forward, nothing
1703 		 * blocks before the pru_send (or more accurately, any blocking
1704 		 * results in a loop back to here to re-check).
1705 		 */
1706 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1707 			if (so->so_state & SS_CANTSENDMORE) {
1708 				error = EPIPE;
1709 			} else {
1710 				error = so->so_error;
1711 				so->so_error = 0;
1712 			}
1713 			m_freem(m);
1714 			sbunlock(&so->so_snd);
1715 			crit_exit();
1716 			goto done;
1717 		}
1718 		/*
1719 		 * Wait for socket space to become available. We do this just
1720 		 * after checking the connection state above in order to avoid
1721 		 * a race condition with sbwait().
1722 		 */
1723 		if (sbspace(&so->so_snd) < so->so_snd.sb_lowat) {
1724 			if (fp->f_flag & FNONBLOCK) {
1725 				m_freem(m);
1726 				sbunlock(&so->so_snd);
1727 				crit_exit();
1728 				error = EAGAIN;
1729 				goto done;
1730 			}
1731 			error = sbwait(&so->so_snd);
1732 			/*
1733 			 * An error from sbwait usually indicates that we've
1734 			 * been interrupted by a signal. If we've sent anything
1735 			 * then return bytes sent, otherwise return the error.
1736 			 */
1737 			if (error) {
1738 				m_freem(m);
1739 				sbunlock(&so->so_snd);
1740 				crit_exit();
1741 				goto done;
1742 			}
1743 			goto retry_space;
1744 		}
1745 		error = so_pru_send(so, 0, m, NULL, NULL, td);
1746 		crit_exit();
1747 		if (error) {
1748 			sbunlock(&so->so_snd);
1749 			goto done;
1750 		}
1751 	}
1752 	if (mheader != NULL) {
1753 		*sbytes += mheader->m_pkthdr.len;
1754 		error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1755 		mheader = NULL;
1756 	}
1757 	sbunlock(&so->so_snd);
1758 
1759 done:
1760 	fdrop(fp);
1761 done0:
1762 	if (mheader != NULL)
1763 		m_freem(mheader);
1764 	return (error);
1765 }
1766 
1767 int
1768 sys_sctp_peeloff(struct sctp_peeloff_args *uap)
1769 {
1770 #ifdef SCTP
1771 	struct thread *td = curthread;
1772 	struct proc *p = td->td_proc;
1773 	struct file *lfp = NULL;
1774 	struct file *nfp = NULL;
1775 	int error;
1776 	struct socket *head, *so;
1777 	caddr_t assoc_id;
1778 	int fd;
1779 	short fflag;		/* type must match fp->f_flag */
1780 
1781 	assoc_id = uap->name;
1782 	error = holdsock(p->p_fd, uap->sd, &lfp);
1783 	if (error) {
1784 		return (error);
1785 	}
1786 	crit_enter();
1787 	head = (struct socket *)lfp->f_data;
1788 	error = sctp_can_peel_off(head, assoc_id);
1789 	if (error) {
1790 		crit_exit();
1791 		goto done;
1792 	}
1793 	/*
1794 	 * At this point we know we do have a assoc to pull
1795 	 * we proceed to get the fd setup. This may block
1796 	 * but that is ok.
1797 	 */
1798 
1799 	fflag = lfp->f_flag;
1800 	error = falloc(p, &nfp, &fd);
1801 	if (error) {
1802 		/*
1803 		 * Probably ran out of file descriptors. Put the
1804 		 * unaccepted connection back onto the queue and
1805 		 * do another wakeup so some other process might
1806 		 * have a chance at it.
1807 		 */
1808 		crit_exit();
1809 		goto done;
1810 	}
1811 	uap->sysmsg_result = fd;
1812 
1813 	so = sctp_get_peeloff(head, assoc_id, &error);
1814 	if (so == NULL) {
1815 		/*
1816 		 * Either someone else peeled it off OR
1817 		 * we can't get a socket.
1818 		 */
1819 		goto noconnection;
1820 	}
1821 	so->so_state &= ~SS_COMP;
1822 	so->so_state &= ~SS_NOFDREF;
1823 	so->so_head = NULL;
1824 	if (head->so_sigio != NULL)
1825 		fsetown(fgetown(head->so_sigio), &so->so_sigio);
1826 
1827 	nfp->f_type = DTYPE_SOCKET;
1828 	nfp->f_flag = fflag;
1829 	nfp->f_ops = &socketops;
1830 	nfp->f_data = so;
1831 
1832 noconnection:
1833 	/*
1834 	 * Assign the file pointer to the reserved descriptor, or clear
1835 	 * the reserved descriptor if an error occured.
1836 	 */
1837 	if (error)
1838 		fsetfd(p, NULL, fd);
1839 	else
1840 		fsetfd(p, nfp, fd);
1841 	crit_exit();
1842 	/*
1843 	 * Release explicitly held references before returning.
1844 	 */
1845 done:
1846 	if (nfp != NULL)
1847 		fdrop(nfp);
1848 	fdrop(lfp);
1849 	return (error);
1850 #else /* SCTP */
1851 	return(EOPNOTSUPP);
1852 #endif /* SCTP */
1853 }
1854