xref: /dragonfly/sys/kern/uipc_syscalls.c (revision 685c703c)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
37  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38  * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.72 2006/08/08 03:52:40 dillon Exp $
39  */
40 
41 #include "opt_ktrace.h"
42 #include "opt_sctp.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/sfbuf.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/socketops.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 #include <sys/lock.h>
65 #include <sys/mount.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_extern.h>
75 #include <sys/file2.h>
76 #include <sys/signalvar.h>
77 #include <sys/serialize.h>
78 
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 
82 #ifdef SCTP
83 #include <netinet/sctp_peeloff.h>
84 #endif /* SCTP */
85 
86 struct sfbuf_mref {
87 	struct sf_buf	*sf;
88 	int		mref_count;
89 	struct lwkt_serialize serializer;
90 };
91 
92 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures");
93 
94 /*
95  * System call interface to the socket abstraction.
96  */
97 
98 extern	struct fileops socketops;
99 
100 /*
101  * socket_args(int domain, int type, int protocol)
102  */
103 int
104 kern_socket(int domain, int type, int protocol, int *res)
105 {
106 	struct thread *td = curthread;
107 	struct proc *p = td->td_proc;
108 	struct socket *so;
109 	struct file *fp;
110 	int fd, error;
111 
112 	KKASSERT(p);
113 
114 	error = falloc(p, &fp, &fd);
115 	if (error)
116 		return (error);
117 	error = socreate(domain, &so, type, protocol, td);
118 	if (error) {
119 		fsetfd(p, NULL, fd);
120 	} else {
121 		fp->f_type = DTYPE_SOCKET;
122 		fp->f_flag = FREAD | FWRITE;
123 		fp->f_ops = &socketops;
124 		fp->f_data = so;
125 		*res = fd;
126 		fsetfd(p, fp, fd);
127 	}
128 	fdrop(fp);
129 	return (error);
130 }
131 
132 int
133 sys_socket(struct socket_args *uap)
134 {
135 	int error;
136 
137 	error = kern_socket(uap->domain, uap->type, uap->protocol,
138 	    &uap->sysmsg_result);
139 
140 	return (error);
141 }
142 
143 int
144 kern_bind(int s, struct sockaddr *sa)
145 {
146 	struct thread *td = curthread;
147 	struct proc *p = td->td_proc;
148 	struct file *fp;
149 	int error;
150 
151 	KKASSERT(p);
152 	error = holdsock(p->p_fd, s, &fp);
153 	if (error)
154 		return (error);
155 	error = sobind((struct socket *)fp->f_data, sa, td);
156 	fdrop(fp);
157 	return (error);
158 }
159 
160 /*
161  * bind_args(int s, caddr_t name, int namelen)
162  */
163 int
164 sys_bind(struct bind_args *uap)
165 {
166 	struct sockaddr *sa;
167 	int error;
168 
169 	error = getsockaddr(&sa, uap->name, uap->namelen);
170 	if (error)
171 		return (error);
172 	error = kern_bind(uap->s, sa);
173 	FREE(sa, M_SONAME);
174 
175 	return (error);
176 }
177 
178 int
179 kern_listen(int s, int backlog)
180 {
181 	struct thread *td = curthread;
182 	struct proc *p = td->td_proc;
183 	struct file *fp;
184 	int error;
185 
186 	KKASSERT(p);
187 	error = holdsock(p->p_fd, s, &fp);
188 	if (error)
189 		return (error);
190 	error = solisten((struct socket *)fp->f_data, backlog, td);
191 	fdrop(fp);
192 	return(error);
193 }
194 
195 /*
196  * listen_args(int s, int backlog)
197  */
198 int
199 sys_listen(struct listen_args *uap)
200 {
201 	int error;
202 
203 	error = kern_listen(uap->s, uap->backlog);
204 	return (error);
205 }
206 
207 /*
208  * Returns the accepted socket as well.
209  */
210 static boolean_t
211 soaccept_predicate(struct netmsg *msg0)
212 {
213 	struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
214 	struct socket *head = msg->nm_so;
215 
216 	if (head->so_error != 0) {
217 		msg->nm_lmsg.ms_error = head->so_error;
218 		return (TRUE);
219 	}
220 	if (!TAILQ_EMPTY(&head->so_comp)) {
221 		/* Abuse nm_so field as copy in/copy out parameter. XXX JH */
222 		msg->nm_so = TAILQ_FIRST(&head->so_comp);
223 		TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list);
224 		head->so_qlen--;
225 
226 		msg->nm_lmsg.ms_error = 0;
227 		return (TRUE);
228 	}
229 	if (head->so_state & SS_CANTRCVMORE) {
230 		msg->nm_lmsg.ms_error = ECONNABORTED;
231 		return (TRUE);
232 	}
233 	if (msg->nm_fflags & FNONBLOCK) {
234 		msg->nm_lmsg.ms_error = EWOULDBLOCK;
235 		return (TRUE);
236 	}
237 
238 	return (FALSE);
239 }
240 
241 /*
242  * The second argument to kern_accept() is a handle to a struct sockaddr.
243  * This allows kern_accept() to return a pointer to an allocated struct
244  * sockaddr which must be freed later with FREE().  The caller must
245  * initialize *name to NULL.
246  */
247 int
248 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res)
249 {
250 	struct thread *td = curthread;
251 	struct proc *p = td->td_proc;
252 	struct file *lfp = NULL;
253 	struct file *nfp = NULL;
254 	struct sockaddr *sa;
255 	struct socket *head, *so;
256 	struct netmsg_so_notify msg;
257 	lwkt_port_t port;
258 	int fd;
259 	u_int fflag;		/* type must match fp->f_flag */
260 	int error, tmp;
261 
262 	*res = -1;
263 	if (name && namelen && *namelen < 0)
264 		return (EINVAL);
265 
266 	error = holdsock(p->p_fd, s, &lfp);
267 	if (error)
268 		return (error);
269 
270 	error = falloc(p, &nfp, &fd);
271 	if (error) {		/* Probably ran out of file descriptors. */
272 		fdrop(lfp);
273 		return (error);
274 	}
275 	head = (struct socket *)lfp->f_data;
276 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
277 		error = EINVAL;
278 		goto done;
279 	}
280 
281 	if (fflags & O_FBLOCKING)
282 		fflags |= lfp->f_flag & ~FNONBLOCK;
283 	else if (fflags & O_FNONBLOCKING)
284 		fflags |= lfp->f_flag | FNONBLOCK;
285 	else
286 		fflags = lfp->f_flag;
287 
288 	/* optimize for uniprocessor case later XXX JH */
289 	port = head->so_proto->pr_mport(head, NULL, PRU_PRED);
290 	lwkt_initmsg(&msg.nm_lmsg, &curthread->td_msgport,
291 		     MSGF_PCATCH | MSGF_ABORTABLE,
292 		     lwkt_cmd_func(netmsg_so_notify),
293 		     lwkt_cmd_func(netmsg_so_notify_abort));
294 	msg.nm_predicate = soaccept_predicate;
295 	msg.nm_fflags = fflags;
296 	msg.nm_so = head;
297 	msg.nm_etype = NM_REVENT;
298 	error = lwkt_domsg(port, &msg.nm_lmsg);
299 	if (error)
300 		goto done;
301 
302 	/*
303 	 * At this point we have the connection that's ready to be accepted.
304 	 */
305 	so = msg.nm_so;
306 
307 	fflag = lfp->f_flag;
308 
309 	/* connection has been removed from the listen queue */
310 	KNOTE(&head->so_rcv.sb_sel.si_note, 0);
311 
312 	so->so_state &= ~SS_COMP;
313 	so->so_head = NULL;
314 	if (head->so_sigio != NULL)
315 		fsetown(fgetown(head->so_sigio), &so->so_sigio);
316 
317 	nfp->f_type = DTYPE_SOCKET;
318 	nfp->f_flag = fflag;
319 	nfp->f_ops = &socketops;
320 	nfp->f_data = so;
321 	/* Sync socket nonblocking/async state with file flags */
322 	tmp = fflag & FNONBLOCK;
323 	(void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, p->p_ucred);
324 	tmp = fflag & FASYNC;
325 	(void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, p->p_ucred);
326 
327 	sa = NULL;
328 	error = soaccept(so, &sa);
329 
330 	/*
331 	 * Set the returned name and namelen as applicable.  Set the returned
332 	 * namelen to 0 for older code which might ignore the return value
333 	 * from accept.
334 	 */
335 	if (error == 0) {
336 		if (sa && name && namelen) {
337 			if (*namelen > sa->sa_len)
338 				*namelen = sa->sa_len;
339 			*name = sa;
340 		} else {
341 			if (sa)
342 				FREE(sa, M_SONAME);
343 		}
344 	}
345 
346 done:
347 	/*
348 	 * If an error occured clear the reserved descriptor, else associate
349 	 * nfp with it.
350 	 *
351 	 * Note that *res is normally ignored if an error is returned but
352 	 * a syscall message will still have access to the result code.
353 	 */
354 	if (error) {
355 		fsetfd(p, NULL, fd);
356 	} else {
357 		*res = fd;
358 		fsetfd(p, nfp, fd);
359 	}
360 	fdrop(nfp);
361 	fdrop(lfp);
362 	return (error);
363 }
364 
365 /*
366  * accept(int s, caddr_t name, int *anamelen)
367  */
368 int
369 sys_accept(struct accept_args *uap)
370 {
371 	struct sockaddr *sa = NULL;
372 	int sa_len;
373 	int error;
374 
375 	if (uap->name) {
376 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
377 		if (error)
378 			return (error);
379 
380 		error = kern_accept(uap->s, 0, &sa, &sa_len, &uap->sysmsg_result);
381 
382 		if (error == 0)
383 			error = copyout(sa, uap->name, sa_len);
384 		if (error == 0) {
385 			error = copyout(&sa_len, uap->anamelen,
386 			    sizeof(*uap->anamelen));
387 		}
388 		if (sa)
389 			FREE(sa, M_SONAME);
390 	} else {
391 		error = kern_accept(uap->s, 0, NULL, 0, &uap->sysmsg_result);
392 	}
393 	return (error);
394 }
395 
396 /*
397  * __accept(int s, int fflags, caddr_t name, int *anamelen)
398  */
399 int
400 sys___accept(struct __accept_args *uap)
401 {
402 	struct sockaddr *sa = NULL;
403 	int sa_len;
404 	int error;
405 	int fflags = uap->flags & O_FMASK;
406 
407 	if (uap->name) {
408 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
409 		if (error)
410 			return (error);
411 
412 		error = kern_accept(uap->s, fflags, &sa, &sa_len, &uap->sysmsg_result);
413 
414 		if (error == 0)
415 			error = copyout(sa, uap->name, sa_len);
416 		if (error == 0) {
417 			error = copyout(&sa_len, uap->anamelen,
418 			    sizeof(*uap->anamelen));
419 		}
420 		if (sa)
421 			FREE(sa, M_SONAME);
422 	} else {
423 		error = kern_accept(uap->s, fflags, NULL, 0, &uap->sysmsg_result);
424 	}
425 	return (error);
426 }
427 
428 
429 /*
430  * Returns TRUE if predicate satisfied.
431  */
432 static boolean_t
433 soconnected_predicate(struct netmsg *msg0)
434 {
435 	struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
436 	struct socket *so = msg->nm_so;
437 
438 	/* check predicate */
439 	if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
440 		msg->nm_lmsg.ms_error = so->so_error;
441 		return (TRUE);
442 	}
443 
444 	return (FALSE);
445 }
446 
447 int
448 kern_connect(int s, int fflags, struct sockaddr *sa)
449 {
450 	struct thread *td = curthread;
451 	struct proc *p = td->td_proc;
452 	struct file *fp;
453 	struct socket *so;
454 	int error;
455 
456 	error = holdsock(p->p_fd, s, &fp);
457 	if (error)
458 		return (error);
459 	so = (struct socket *)fp->f_data;
460 
461 	if (fflags & O_FBLOCKING)
462 		/* fflags &= ~FNONBLOCK; */;
463 	else if (fflags & O_FNONBLOCKING)
464 		fflags |= FNONBLOCK;
465 	else
466 		fflags = fp->f_flag;
467 
468 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
469 		error = EALREADY;
470 		goto done;
471 	}
472 	error = soconnect(so, sa, td);
473 	if (error)
474 		goto bad;
475 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
476 		error = EINPROGRESS;
477 		goto done;
478 	}
479 	if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
480 		struct netmsg_so_notify msg;
481 		lwkt_port_t port;
482 
483 		port = so->so_proto->pr_mport(so, sa, PRU_PRED);
484 		lwkt_initmsg(&msg.nm_lmsg,
485 			    &curthread->td_msgport,
486 			    MSGF_PCATCH | MSGF_ABORTABLE,
487 			    lwkt_cmd_func(netmsg_so_notify),
488 			    lwkt_cmd_func(netmsg_so_notify_abort));
489 		msg.nm_predicate = soconnected_predicate;
490 		msg.nm_so = so;
491 		msg.nm_etype = NM_REVENT;
492 		error = lwkt_domsg(port, &msg.nm_lmsg);
493 	}
494 	if (error == 0) {
495 		error = so->so_error;
496 		so->so_error = 0;
497 	}
498 bad:
499 	so->so_state &= ~SS_ISCONNECTING;
500 	if (error == ERESTART)
501 		error = EINTR;
502 done:
503 	fdrop(fp);
504 	return (error);
505 }
506 
507 /*
508  * connect_args(int s, caddr_t name, int namelen)
509  */
510 int
511 sys_connect(struct connect_args *uap)
512 {
513 	struct sockaddr *sa;
514 	int error;
515 
516 	error = getsockaddr(&sa, uap->name, uap->namelen);
517 	if (error)
518 		return (error);
519 	error = kern_connect(uap->s, 0, sa);
520 	FREE(sa, M_SONAME);
521 
522 	return (error);
523 }
524 
525 /*
526  * connect_args(int s, int fflags, caddr_t name, int namelen)
527  */
528 int
529 sys___connect(struct __connect_args *uap)
530 {
531 	struct sockaddr *sa;
532 	int error;
533 	int fflags = uap->flags & O_FMASK;
534 
535 	error = getsockaddr(&sa, uap->name, uap->namelen);
536 	if (error)
537 		return (error);
538 	error = kern_connect(uap->s, fflags, sa);
539 	FREE(sa, M_SONAME);
540 
541 	return (error);
542 }
543 
544 int
545 kern_socketpair(int domain, int type, int protocol, int *sv)
546 {
547 	struct thread *td = curthread;
548 	struct proc *p = td->td_proc;
549 	struct file *fp1, *fp2;
550 	struct socket *so1, *so2;
551 	int fd1, fd2, error;
552 
553 	KKASSERT(p);
554 	error = socreate(domain, &so1, type, protocol, td);
555 	if (error)
556 		return (error);
557 	error = socreate(domain, &so2, type, protocol, td);
558 	if (error)
559 		goto free1;
560 	error = falloc(p, &fp1, &fd1);
561 	if (error)
562 		goto free2;
563 	sv[0] = fd1;
564 	fp1->f_data = so1;
565 	error = falloc(p, &fp2, &fd2);
566 	if (error)
567 		goto free3;
568 	fp2->f_data = so2;
569 	sv[1] = fd2;
570 	error = soconnect2(so1, so2);
571 	if (error)
572 		goto free4;
573 	if (type == SOCK_DGRAM) {
574 		/*
575 		 * Datagram socket connection is asymmetric.
576 		 */
577 		 error = soconnect2(so2, so1);
578 		 if (error)
579 			goto free4;
580 	}
581 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
582 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
583 	fp1->f_ops = fp2->f_ops = &socketops;
584 	fsetfd(p, fp1, fd1);
585 	fsetfd(p, fp2, fd2);
586 	fdrop(fp1);
587 	fdrop(fp2);
588 	return (error);
589 free4:
590 	fsetfd(p, NULL, fd2);
591 	fdrop(fp2);
592 free3:
593 	fsetfd(p, NULL, fd1);
594 	fdrop(fp1);
595 free2:
596 	(void)soclose(so2, 0);
597 free1:
598 	(void)soclose(so1, 0);
599 	return (error);
600 }
601 
602 /*
603  * socketpair(int domain, int type, int protocol, int *rsv)
604  */
605 int
606 sys_socketpair(struct socketpair_args *uap)
607 {
608 	int error, sockv[2];
609 
610 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
611 
612 	if (error == 0)
613 		error = copyout(sockv, uap->rsv, sizeof(sockv));
614 	return (error);
615 }
616 
617 int
618 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
619     struct mbuf *control, int flags, int *res)
620 {
621 	struct thread *td = curthread;
622 	struct proc *p = td->td_proc;
623 	struct file *fp;
624 	int len, error;
625 	struct socket *so;
626 #ifdef KTRACE
627 	struct iovec *ktriov = NULL;
628 	struct uio ktruio;
629 #endif
630 
631 	error = holdsock(p->p_fd, s, &fp);
632 	if (error)
633 		return (error);
634 	if (auio->uio_resid < 0) {
635 		error = EINVAL;
636 		goto done;
637 	}
638 #ifdef KTRACE
639 	if (KTRPOINT(td, KTR_GENIO)) {
640 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
641 
642 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
643 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
644 		ktruio = *auio;
645 	}
646 #endif
647 	len = auio->uio_resid;
648 	so = (struct socket *)fp->f_data;
649 	if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
650 		if (fp->f_flag & FNONBLOCK)
651 			flags |= MSG_FNONBLOCKING;
652 	}
653 	error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
654 	if (error) {
655 		if (auio->uio_resid != len && (error == ERESTART ||
656 		    error == EINTR || error == EWOULDBLOCK))
657 			error = 0;
658 		if (error == EPIPE)
659 			psignal(p, SIGPIPE);
660 	}
661 #ifdef KTRACE
662 	if (ktriov != NULL) {
663 		if (error == 0) {
664 			ktruio.uio_iov = ktriov;
665 			ktruio.uio_resid = len - auio->uio_resid;
666 			ktrgenio(p, s, UIO_WRITE, &ktruio, error);
667 		}
668 		FREE(ktriov, M_TEMP);
669 	}
670 #endif
671 	if (error == 0)
672 		*res  = len - auio->uio_resid;
673 done:
674 	fdrop(fp);
675 	return (error);
676 }
677 
678 /*
679  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
680  */
681 int
682 sys_sendto(struct sendto_args *uap)
683 {
684 	struct thread *td = curthread;
685 	struct uio auio;
686 	struct iovec aiov;
687 	struct sockaddr *sa = NULL;
688 	int error;
689 
690 	if (uap->to) {
691 		error = getsockaddr(&sa, uap->to, uap->tolen);
692 		if (error)
693 			return (error);
694 	}
695 	aiov.iov_base = uap->buf;
696 	aiov.iov_len = uap->len;
697 	auio.uio_iov = &aiov;
698 	auio.uio_iovcnt = 1;
699 	auio.uio_offset = 0;
700 	auio.uio_resid = uap->len;
701 	auio.uio_segflg = UIO_USERSPACE;
702 	auio.uio_rw = UIO_WRITE;
703 	auio.uio_td = td;
704 
705 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
706 	    &uap->sysmsg_result);
707 
708 	if (sa)
709 		FREE(sa, M_SONAME);
710 	return (error);
711 }
712 
713 /*
714  * sendmsg_args(int s, caddr_t msg, int flags)
715  */
716 int
717 sys_sendmsg(struct sendmsg_args *uap)
718 {
719 	struct thread *td = curthread;
720 	struct msghdr msg;
721 	struct uio auio;
722 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
723 	struct sockaddr *sa = NULL;
724 	struct mbuf *control = NULL;
725 	int error;
726 
727 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
728 	if (error)
729 		return (error);
730 
731 	/*
732 	 * Conditionally copyin msg.msg_name.
733 	 */
734 	if (msg.msg_name) {
735 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
736 		if (error)
737 			return (error);
738 	}
739 
740 	/*
741 	 * Populate auio.
742 	 */
743 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
744 			     &auio.uio_resid);
745 	if (error)
746 		goto cleanup;
747 	auio.uio_iov = iov;
748 	auio.uio_iovcnt = msg.msg_iovlen;
749 	auio.uio_offset = 0;
750 	auio.uio_segflg = UIO_USERSPACE;
751 	auio.uio_rw = UIO_WRITE;
752 	auio.uio_td = td;
753 
754 	/*
755 	 * Conditionally copyin msg.msg_control.
756 	 */
757 	if (msg.msg_control) {
758 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
759 		    msg.msg_controllen > MLEN) {
760 			error = EINVAL;
761 			goto cleanup;
762 		}
763 		control = m_get(MB_WAIT, MT_CONTROL);
764 		if (control == NULL) {
765 			error = ENOBUFS;
766 			goto cleanup;
767 		}
768 		control->m_len = msg.msg_controllen;
769 		error = copyin(msg.msg_control, mtod(control, caddr_t),
770 		    msg.msg_controllen);
771 		if (error) {
772 			m_free(control);
773 			goto cleanup;
774 		}
775 	}
776 
777 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
778 	    &uap->sysmsg_result);
779 
780 cleanup:
781 	if (sa)
782 		FREE(sa, M_SONAME);
783 	iovec_free(&iov, aiov);
784 	return (error);
785 }
786 
787 /*
788  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
789  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
790  * Don't forget to FREE() and m_free() these if they are returned.
791  */
792 int
793 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
794     struct mbuf **control, int *flags, int *res)
795 {
796 	struct thread *td = curthread;
797 	struct proc *p = td->td_proc;
798 	struct file *fp;
799 	int len, error;
800 	int lflags;
801 	struct socket *so;
802 #ifdef KTRACE
803 	struct iovec *ktriov = NULL;
804 	struct uio ktruio;
805 #endif
806 
807 	error = holdsock(p->p_fd, s, &fp);
808 	if (error)
809 		return (error);
810 	if (auio->uio_resid < 0) {
811 		error = EINVAL;
812 		goto done;
813 	}
814 #ifdef KTRACE
815 	if (KTRPOINT(td, KTR_GENIO)) {
816 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
817 
818 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
819 		bcopy(auio->uio_iov, ktriov, iovlen);
820 		ktruio = *auio;
821 	}
822 #endif
823 	len = auio->uio_resid;
824 	so = (struct socket *)fp->f_data;
825 
826 	if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
827 		if (fp->f_flag & FNONBLOCK) {
828 			if (flags) {
829 				*flags |= MSG_FNONBLOCKING;
830 			} else {
831 				lflags = MSG_FNONBLOCKING;
832 				flags = &lflags;
833 			}
834 		}
835 	}
836 
837 	error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
838 	if (error) {
839 		if (auio->uio_resid != len && (error == ERESTART ||
840 		    error == EINTR || error == EWOULDBLOCK))
841 			error = 0;
842 	}
843 #ifdef KTRACE
844 	if (ktriov != NULL) {
845 		if (error == 0) {
846 			ktruio.uio_iov = ktriov;
847 			ktruio.uio_resid = len - auio->uio_resid;
848 			ktrgenio(p, s, UIO_READ, &ktruio, error);
849 		}
850 		FREE(ktriov, M_TEMP);
851 	}
852 #endif
853 	if (error == 0)
854 		*res = len - auio->uio_resid;
855 done:
856 	fdrop(fp);
857 	return (error);
858 }
859 
860 /*
861  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
862  *			caddr_t from, int *fromlenaddr)
863  */
864 int
865 sys_recvfrom(struct recvfrom_args *uap)
866 {
867 	struct thread *td = curthread;
868 	struct uio auio;
869 	struct iovec aiov;
870 	struct sockaddr *sa = NULL;
871 	int error, fromlen;
872 
873 	if (uap->from && uap->fromlenaddr) {
874 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
875 		if (error)
876 			return (error);
877 		if (fromlen < 0)
878 			return (EINVAL);
879 	} else {
880 		fromlen = 0;
881 	}
882 	aiov.iov_base = uap->buf;
883 	aiov.iov_len = uap->len;
884 	auio.uio_iov = &aiov;
885 	auio.uio_iovcnt = 1;
886 	auio.uio_offset = 0;
887 	auio.uio_resid = uap->len;
888 	auio.uio_segflg = UIO_USERSPACE;
889 	auio.uio_rw = UIO_READ;
890 	auio.uio_td = td;
891 
892 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
893 	    &uap->flags, &uap->sysmsg_result);
894 
895 	if (error == 0 && uap->from) {
896 		/* note: sa may still be NULL */
897 		if (sa) {
898 			fromlen = MIN(fromlen, sa->sa_len);
899 			error = copyout(sa, uap->from, fromlen);
900 		} else {
901 			fromlen = 0;
902 		}
903 		if (error == 0) {
904 			error = copyout(&fromlen, uap->fromlenaddr,
905 					sizeof(fromlen));
906 		}
907 	}
908 	if (sa)
909 		FREE(sa, M_SONAME);
910 
911 	return (error);
912 }
913 
914 /*
915  * recvmsg_args(int s, struct msghdr *msg, int flags)
916  */
917 int
918 sys_recvmsg(struct recvmsg_args *uap)
919 {
920 	struct thread *td = curthread;
921 	struct msghdr msg;
922 	struct uio auio;
923 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
924 	struct mbuf *m, *control = NULL;
925 	struct sockaddr *sa = NULL;
926 	caddr_t ctlbuf;
927 	socklen_t *ufromlenp, *ucontrollenp;
928 	int error, fromlen, controllen, len, flags, *uflagsp;
929 
930 	/*
931 	 * This copyin handles everything except the iovec.
932 	 */
933 	error = copyin(uap->msg, &msg, sizeof(msg));
934 	if (error)
935 		return (error);
936 
937 	if (msg.msg_name && msg.msg_namelen < 0)
938 		return (EINVAL);
939 	if (msg.msg_control && msg.msg_controllen < 0)
940 		return (EINVAL);
941 
942 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
943 	    msg_namelen));
944 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
945 	    msg_controllen));
946 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
947 	    msg_flags));
948 
949 	/*
950 	 * Populate auio.
951 	 */
952 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
953 			     &auio.uio_resid);
954 	if (error)
955 		return (error);
956 	auio.uio_iov = iov;
957 	auio.uio_iovcnt = msg.msg_iovlen;
958 	auio.uio_offset = 0;
959 	auio.uio_segflg = UIO_USERSPACE;
960 	auio.uio_rw = UIO_READ;
961 	auio.uio_td = td;
962 
963 	flags = uap->flags;
964 
965 	error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio,
966 	    msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result);
967 
968 	/*
969 	 * Conditionally copyout the name and populate the namelen field.
970 	 */
971 	if (error == 0 && msg.msg_name) {
972 		fromlen = MIN(msg.msg_namelen, sa->sa_len);
973 		error = copyout(sa, msg.msg_name, fromlen);
974 		if (error == 0)
975 			error = copyout(&fromlen, ufromlenp,
976 			    sizeof(*ufromlenp));
977 	}
978 
979 	/*
980 	 * Copyout msg.msg_control and msg.msg_controllen.
981 	 */
982 	if (error == 0 && msg.msg_control) {
983 		len = msg.msg_controllen;
984 		m = control;
985 		ctlbuf = (caddr_t)msg.msg_control;
986 
987 		while(m && len > 0) {
988 			unsigned int tocopy;
989 
990 			if (len >= m->m_len) {
991 				tocopy = m->m_len;
992 			} else {
993 				msg.msg_flags |= MSG_CTRUNC;
994 				tocopy = len;
995 			}
996 
997 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
998 			if (error)
999 				goto cleanup;
1000 
1001 			ctlbuf += tocopy;
1002 			len -= tocopy;
1003 			m = m->m_next;
1004 		}
1005 		controllen = ctlbuf - (caddr_t)msg.msg_control;
1006 		error = copyout(&controllen, ucontrollenp,
1007 		    sizeof(*ucontrollenp));
1008 	}
1009 
1010 	if (error == 0)
1011 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1012 
1013 cleanup:
1014 	if (sa)
1015 		FREE(sa, M_SONAME);
1016 	iovec_free(&iov, aiov);
1017 	if (control)
1018 		m_freem(control);
1019 	return (error);
1020 }
1021 
1022 /*
1023  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1024  * in kernel pointer instead of a userland pointer.  This allows us
1025  * to manipulate socket options in the emulation code.
1026  */
1027 int
1028 kern_setsockopt(int s, struct sockopt *sopt)
1029 {
1030 	struct thread *td = curthread;
1031 	struct proc *p = td->td_proc;
1032 	struct file *fp;
1033 	int error;
1034 
1035 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1036 		return (EFAULT);
1037 	if (sopt->sopt_valsize < 0)
1038 		return (EINVAL);
1039 
1040 	error = holdsock(p->p_fd, s, &fp);
1041 	if (error)
1042 		return (error);
1043 
1044 	error = sosetopt((struct socket *)fp->f_data, sopt);
1045 	fdrop(fp);
1046 	return (error);
1047 }
1048 
1049 /*
1050  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1051  */
1052 int
1053 sys_setsockopt(struct setsockopt_args *uap)
1054 {
1055 	struct thread *td = curthread;
1056 	struct sockopt sopt;
1057 	int error;
1058 
1059 	sopt.sopt_level = uap->level;
1060 	sopt.sopt_name = uap->name;
1061 	sopt.sopt_val = uap->val;
1062 	sopt.sopt_valsize = uap->valsize;
1063 	sopt.sopt_td = td;
1064 
1065 	error = kern_setsockopt(uap->s, &sopt);
1066 	return(error);
1067 }
1068 
1069 /*
1070  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1071  * in kernel pointer instead of a userland pointer.  This allows us
1072  * to manipulate socket options in the emulation code.
1073  */
1074 int
1075 kern_getsockopt(int s, struct sockopt *sopt)
1076 {
1077 	struct thread *td = curthread;
1078 	struct proc *p = td->td_proc;
1079 	struct file *fp;
1080 	int error;
1081 
1082 	if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1083 		return (EFAULT);
1084 	if (sopt->sopt_valsize < 0)
1085 		return (EINVAL);
1086 
1087 	error = holdsock(p->p_fd, s, &fp);
1088 	if (error)
1089 		return (error);
1090 
1091 	error = sogetopt((struct socket *)fp->f_data, sopt);
1092 	fdrop(fp);
1093 	return (error);
1094 }
1095 
1096 /*
1097  * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1098  */
1099 int
1100 sys_getsockopt(struct getsockopt_args *uap)
1101 {
1102 	struct thread *td = curthread;
1103 	struct	sockopt sopt;
1104 	int	error, valsize;
1105 
1106 	if (uap->val) {
1107 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1108 		if (error)
1109 			return (error);
1110 		if (valsize < 0)
1111 			return (EINVAL);
1112 	} else {
1113 		valsize = 0;
1114 	}
1115 
1116 	sopt.sopt_level = uap->level;
1117 	sopt.sopt_name = uap->name;
1118 	sopt.sopt_val = uap->val;
1119 	sopt.sopt_valsize = valsize;
1120 	sopt.sopt_td = td;
1121 
1122 	error = kern_getsockopt(uap->s, &sopt);
1123 	if (error == 0) {
1124 		valsize = sopt.sopt_valsize;
1125 		error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1126 	}
1127 	return (error);
1128 }
1129 
1130 /*
1131  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1132  * This allows kern_getsockname() to return a pointer to an allocated struct
1133  * sockaddr which must be freed later with FREE().  The caller must
1134  * initialize *name to NULL.
1135  */
1136 int
1137 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1138 {
1139 	struct thread *td = curthread;
1140 	struct proc *p = td->td_proc;
1141 	struct file *fp;
1142 	struct socket *so;
1143 	struct sockaddr *sa = NULL;
1144 	int error;
1145 
1146 	error = holdsock(p->p_fd, s, &fp);
1147 	if (error)
1148 		return (error);
1149 	if (*namelen < 0) {
1150 		fdrop(fp);
1151 		return (EINVAL);
1152 	}
1153 	so = (struct socket *)fp->f_data;
1154 	error = so_pru_sockaddr(so, &sa);
1155 	if (error == 0) {
1156 		if (sa == 0) {
1157 			*namelen = 0;
1158 		} else {
1159 			*namelen = MIN(*namelen, sa->sa_len);
1160 			*name = sa;
1161 		}
1162 	}
1163 
1164 	fdrop(fp);
1165 	return (error);
1166 }
1167 
1168 /*
1169  * getsockname_args(int fdes, caddr_t asa, int *alen)
1170  *
1171  * Get socket name.
1172  */
1173 int
1174 sys_getsockname(struct getsockname_args *uap)
1175 {
1176 	struct sockaddr *sa = NULL;
1177 	int error, sa_len;
1178 
1179 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1180 	if (error)
1181 		return (error);
1182 
1183 	error = kern_getsockname(uap->fdes, &sa, &sa_len);
1184 
1185 	if (error == 0)
1186 		error = copyout(sa, uap->asa, sa_len);
1187 	if (error == 0)
1188 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1189 	if (sa)
1190 		FREE(sa, M_SONAME);
1191 	return (error);
1192 }
1193 
1194 /*
1195  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1196  * This allows kern_getpeername() to return a pointer to an allocated struct
1197  * sockaddr which must be freed later with FREE().  The caller must
1198  * initialize *name to NULL.
1199  */
1200 int
1201 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1202 {
1203 	struct thread *td = curthread;
1204 	struct proc *p = td->td_proc;
1205 	struct file *fp;
1206 	struct socket *so;
1207 	struct sockaddr *sa = NULL;
1208 	int error;
1209 
1210 	error = holdsock(p->p_fd, s, &fp);
1211 	if (error)
1212 		return (error);
1213 	if (*namelen < 0) {
1214 		fdrop(fp);
1215 		return (EINVAL);
1216 	}
1217 	so = (struct socket *)fp->f_data;
1218 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1219 		fdrop(fp);
1220 		return (ENOTCONN);
1221 	}
1222 	error = so_pru_peeraddr(so, &sa);
1223 	if (error == 0) {
1224 		if (sa == 0) {
1225 			*namelen = 0;
1226 		} else {
1227 			*namelen = MIN(*namelen, sa->sa_len);
1228 			*name = sa;
1229 		}
1230 	}
1231 
1232 	fdrop(fp);
1233 	return (error);
1234 }
1235 
1236 /*
1237  * getpeername_args(int fdes, caddr_t asa, int *alen)
1238  *
1239  * Get name of peer for connected socket.
1240  */
1241 int
1242 sys_getpeername(struct getpeername_args *uap)
1243 {
1244 	struct sockaddr *sa = NULL;
1245 	int error, sa_len;
1246 
1247 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1248 	if (error)
1249 		return (error);
1250 
1251 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1252 
1253 	if (error == 0)
1254 		error = copyout(sa, uap->asa, sa_len);
1255 	if (error == 0)
1256 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1257 	if (sa)
1258 		FREE(sa, M_SONAME);
1259 	return (error);
1260 }
1261 
1262 int
1263 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1264 {
1265 	struct sockaddr *sa;
1266 	int error;
1267 
1268 	*namp = NULL;
1269 	if (len > SOCK_MAXADDRLEN)
1270 		return ENAMETOOLONG;
1271 	if (len < offsetof(struct sockaddr, sa_data[0]))
1272 		return EDOM;
1273 	MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1274 	error = copyin(uaddr, sa, len);
1275 	if (error) {
1276 		FREE(sa, M_SONAME);
1277 	} else {
1278 #if BYTE_ORDER != BIG_ENDIAN
1279 		/*
1280 		 * The bind(), connect(), and sendto() syscalls were not
1281 		 * versioned for COMPAT_43.  Thus, this check must stay.
1282 		 */
1283 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1284 			sa->sa_family = sa->sa_len;
1285 #endif
1286 		sa->sa_len = len;
1287 		*namp = sa;
1288 	}
1289 	return error;
1290 }
1291 
1292 /*
1293  * Detach a mapped page and release resources back to the system.
1294  * We must release our wiring and if the object is ripped out
1295  * from under the vm_page we become responsible for freeing the
1296  * page.  These routines must be MPSAFE.
1297  *
1298  * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING
1299  *
1300  * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required.
1301  */
1302 static void
1303 sf_buf_mref(void *arg)
1304 {
1305 	struct sfbuf_mref *sfm = arg;
1306 
1307 	/*
1308 	 * We must already hold a ref so there is no race to 0, just
1309 	 * atomically increment the count.
1310 	 */
1311 	atomic_add_int(&sfm->mref_count, 1);
1312 }
1313 
1314 static void
1315 sf_buf_mfree(void *arg)
1316 {
1317 	struct sfbuf_mref *sfm = arg;
1318 	vm_page_t m;
1319 
1320 	KKASSERT(sfm->mref_count > 0);
1321 	if (sfm->mref_count == 1) {
1322 		/*
1323 		 * We are the only holder so no further locking is required,
1324 		 * the sfbuf can simply be freed.
1325 		 */
1326 		sfm->mref_count = 0;
1327 		goto freeit;
1328 	} else {
1329 		/*
1330 		 * There may be other holders, we must obtain the serializer
1331 		 * to protect against a sf_buf_mfree() race to 0.  An atomic
1332 		 * operation is still required for races against
1333 		 * sf_buf_mref().
1334 		 *
1335 		 * XXX vm_page_*() and SFBUF routines not MPSAFE yet.
1336 		 */
1337 		lwkt_serialize_enter(&sfm->serializer);
1338 		atomic_subtract_int(&sfm->mref_count, 1);
1339 		if (sfm->mref_count == 0) {
1340 			lwkt_serialize_exit(&sfm->serializer);
1341 freeit:
1342 			get_mplock();
1343 			crit_enter();
1344 			m = sf_buf_page(sfm->sf);
1345 			sf_buf_free(sfm->sf);
1346 			vm_page_unwire(m, 0);
1347 			if (m->wire_count == 0 && m->object == NULL)
1348 				vm_page_try_to_free(m);
1349 			crit_exit();
1350 			rel_mplock();
1351 			free(sfm, M_SENDFILE);
1352 		} else {
1353 			lwkt_serialize_exit(&sfm->serializer);
1354 		}
1355 	}
1356 }
1357 
1358 /*
1359  * sendfile(2).
1360  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1361  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1362  *
1363  * Send a file specified by 'fd' and starting at 'offset' to a socket
1364  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1365  * nbytes == 0. Optionally add a header and/or trailer to the socket
1366  * output. If specified, write the total number of bytes sent into *sbytes.
1367  *
1368  * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1369  * the headers to count against the remaining bytes to be sent from
1370  * the file descriptor.  We may wish to implement a compatibility syscall
1371  * in the future.
1372  */
1373 int
1374 sys_sendfile(struct sendfile_args *uap)
1375 {
1376 	struct thread *td = curthread;
1377 	struct proc *p = td->td_proc;
1378 	struct file *fp;
1379 	struct vnode *vp = NULL;
1380 	struct sf_hdtr hdtr;
1381 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1382 	struct uio auio;
1383 	struct mbuf *mheader = NULL;
1384 	off_t hdtr_size = 0, sbytes;
1385 	int error, hbytes = 0, tbytes;
1386 
1387 	KKASSERT(p);
1388 
1389 	/*
1390 	 * Do argument checking. Must be a regular file in, stream
1391 	 * type and connected socket out, positive offset.
1392 	 */
1393 	fp = holdfp(p->p_fd, uap->fd, FREAD);
1394 	if (fp == NULL) {
1395 		return (EBADF);
1396 	}
1397 	if (fp->f_type != DTYPE_VNODE) {
1398 		fdrop(fp);
1399 		return (EINVAL);
1400 	}
1401 	vp = (struct vnode *)fp->f_data;
1402 	vref(vp);
1403 	fdrop(fp);
1404 
1405 	/*
1406 	 * If specified, get the pointer to the sf_hdtr struct for
1407 	 * any headers/trailers.
1408 	 */
1409 	if (uap->hdtr) {
1410 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1411 		if (error)
1412 			goto done;
1413 		/*
1414 		 * Send any headers.
1415 		 */
1416 		if (hdtr.headers) {
1417 			error = iovec_copyin(hdtr.headers, &iov, aiov,
1418 					     hdtr.hdr_cnt, &hbytes);
1419 			if (error)
1420 				goto done;
1421 			auio.uio_iov = iov;
1422 			auio.uio_iovcnt = hdtr.hdr_cnt;
1423 			auio.uio_offset = 0;
1424 			auio.uio_segflg = UIO_USERSPACE;
1425 			auio.uio_rw = UIO_WRITE;
1426 			auio.uio_td = td;
1427 			auio.uio_resid = hbytes;
1428 
1429 			mheader = m_uiomove(&auio);
1430 
1431 			iovec_free(&iov, aiov);
1432 			if (mheader == NULL)
1433 				goto done;
1434 		}
1435 	}
1436 
1437 	error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1438 	    &sbytes, uap->flags);
1439 	if (error)
1440 		goto done;
1441 
1442 	/*
1443 	 * Send trailers. Wimp out and use writev(2).
1444 	 */
1445 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1446 		error = iovec_copyin(hdtr.trailers, &iov, aiov,
1447 				     hdtr.trl_cnt, &auio.uio_resid);
1448 		if (error)
1449 			goto done;
1450 		auio.uio_iov = iov;
1451 		auio.uio_iovcnt = hdtr.trl_cnt;
1452 		auio.uio_offset = 0;
1453 		auio.uio_segflg = UIO_USERSPACE;
1454 		auio.uio_rw = UIO_WRITE;
1455 		auio.uio_td = td;
1456 
1457 		error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1458 
1459 		iovec_free(&iov, aiov);
1460 		if (error)
1461 			goto done;
1462 		hdtr_size += tbytes;	/* trailer bytes successfully sent */
1463 	}
1464 
1465 done:
1466 	if (uap->sbytes != NULL) {
1467 		sbytes += hdtr_size;
1468 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1469 	}
1470 	if (vp)
1471 		vrele(vp);
1472 	return (error);
1473 }
1474 
1475 int
1476 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1477     struct mbuf *mheader, off_t *sbytes, int flags)
1478 {
1479 	struct thread *td = curthread;
1480 	struct proc *p = td->td_proc;
1481 	struct vm_object *obj;
1482 	struct socket *so;
1483 	struct file *fp;
1484 	struct mbuf *m;
1485 	struct sf_buf *sf;
1486 	struct sfbuf_mref *sfm;
1487 	struct vm_page *pg;
1488 	off_t off, xfsize;
1489 	off_t hbytes = 0;
1490 	int error = 0;
1491 
1492 	if (vp->v_type != VREG) {
1493 		error = EINVAL;
1494 		goto done0;
1495 	}
1496 	if ((obj = vp->v_object) == NULL) {
1497 		error = EINVAL;
1498 		goto done0;
1499 	}
1500 	error = holdsock(p->p_fd, sfd, &fp);
1501 	if (error)
1502 		goto done0;
1503 	so = (struct socket *)fp->f_data;
1504 	if (so->so_type != SOCK_STREAM) {
1505 		error = EINVAL;
1506 		goto done;
1507 	}
1508 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1509 		error = ENOTCONN;
1510 		goto done;
1511 	}
1512 	if (offset < 0) {
1513 		error = EINVAL;
1514 		goto done;
1515 	}
1516 
1517 	*sbytes = 0;
1518 	/*
1519 	 * Protect against multiple writers to the socket.
1520 	 */
1521 	(void) sblock(&so->so_snd, M_WAITOK);
1522 
1523 	/*
1524 	 * Loop through the pages in the file, starting with the requested
1525 	 * offset. Get a file page (do I/O if necessary), map the file page
1526 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1527 	 * it on the socket.
1528 	 */
1529 	for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) {
1530 		vm_pindex_t pindex;
1531 		vm_offset_t pgoff;
1532 
1533 		pindex = OFF_TO_IDX(off);
1534 retry_lookup:
1535 		/*
1536 		 * Calculate the amount to transfer. Not to exceed a page,
1537 		 * the EOF, or the passed in nbytes.
1538 		 */
1539 		xfsize = vp->v_filesize - off;
1540 		if (xfsize > PAGE_SIZE)
1541 			xfsize = PAGE_SIZE;
1542 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1543 		if (PAGE_SIZE - pgoff < xfsize)
1544 			xfsize = PAGE_SIZE - pgoff;
1545 		if (nbytes && xfsize > (nbytes - *sbytes))
1546 			xfsize = nbytes - *sbytes;
1547 		if (xfsize <= 0)
1548 			break;
1549 		/*
1550 		 * Optimize the non-blocking case by looking at the socket space
1551 		 * before going to the extra work of constituting the sf_buf.
1552 		 */
1553 		if ((fp->f_flag & FNONBLOCK) && sbspace(&so->so_snd) <= 0) {
1554 			if (so->so_state & SS_CANTSENDMORE)
1555 				error = EPIPE;
1556 			else
1557 				error = EAGAIN;
1558 			sbunlock(&so->so_snd);
1559 			goto done;
1560 		}
1561 		/*
1562 		 * Attempt to look up the page.
1563 		 *
1564 		 *	Allocate if not found, wait and loop if busy, then
1565 		 *	wire the page.  critical section protection is
1566 		 * 	required to maintain the object association (an
1567 		 *	interrupt can free the page) through to the
1568 		 *	vm_page_wire() call.
1569 		 */
1570 		crit_enter();
1571 		pg = vm_page_lookup(obj, pindex);
1572 		if (pg == NULL) {
1573 			pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1574 			if (pg == NULL) {
1575 				vm_wait();
1576 				crit_exit();
1577 				goto retry_lookup;
1578 			}
1579 			vm_page_wakeup(pg);
1580 		} else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1581 			crit_exit();
1582 			goto retry_lookup;
1583 		}
1584 		vm_page_wire(pg);
1585 		crit_exit();
1586 
1587 		/*
1588 		 * If page is not valid for what we need, initiate I/O
1589 		 */
1590 
1591 		if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1592 			struct uio auio;
1593 			struct iovec aiov;
1594 			int bsize;
1595 
1596 			/*
1597 			 * Ensure that our page is still around when the I/O
1598 			 * completes.
1599 			 */
1600 			vm_page_io_start(pg);
1601 
1602 			/*
1603 			 * Get the page from backing store.
1604 			 */
1605 			bsize = vp->v_mount->mnt_stat.f_iosize;
1606 			auio.uio_iov = &aiov;
1607 			auio.uio_iovcnt = 1;
1608 			aiov.iov_base = 0;
1609 			aiov.iov_len = MAXBSIZE;
1610 			auio.uio_resid = MAXBSIZE;
1611 			auio.uio_offset = trunc_page(off);
1612 			auio.uio_segflg = UIO_NOCOPY;
1613 			auio.uio_rw = UIO_READ;
1614 			auio.uio_td = td;
1615 			vn_lock(vp, LK_SHARED | LK_RETRY);
1616 			error = VOP_READ(vp, &auio,
1617 				    IO_VMIO | ((MAXBSIZE / bsize) << 16),
1618 				    p->p_ucred);
1619 			VOP_UNLOCK(vp, 0);
1620 			vm_page_flag_clear(pg, PG_ZERO);
1621 			vm_page_io_finish(pg);
1622 			if (error) {
1623 				crit_enter();
1624 				vm_page_unwire(pg, 0);
1625 				vm_page_try_to_free(pg);
1626 				crit_exit();
1627 				sbunlock(&so->so_snd);
1628 				goto done;
1629 			}
1630 		}
1631 
1632 
1633 		/*
1634 		 * Get a sendfile buf. We usually wait as long as necessary,
1635 		 * but this wait can be interrupted.
1636 		 */
1637 		if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) {
1638 			crit_enter();
1639 			vm_page_unwire(pg, 0);
1640 			vm_page_try_to_free(pg);
1641 			crit_exit();
1642 			sbunlock(&so->so_snd);
1643 			error = EINTR;
1644 			goto done;
1645 		}
1646 
1647 		/*
1648 		 * Get an mbuf header and set it up as having external storage.
1649 		 */
1650 		MGETHDR(m, MB_WAIT, MT_DATA);
1651 		if (m == NULL) {
1652 			error = ENOBUFS;
1653 			sf_buf_free(sf);
1654 			sbunlock(&so->so_snd);
1655 			goto done;
1656 		}
1657 
1658 		/*
1659 		 * sfm is a temporary hack, use a per-cpu cache for this.
1660 		 */
1661 		sfm = malloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK);
1662 		sfm->sf = sf;
1663 		sfm->mref_count = 1;
1664 		lwkt_serialize_init(&sfm->serializer);
1665 
1666 		m->m_ext.ext_free = sf_buf_mfree;
1667 		m->m_ext.ext_ref = sf_buf_mref;
1668 		m->m_ext.ext_arg = sfm;
1669 		m->m_ext.ext_buf = (void *)sf->kva;
1670 		m->m_ext.ext_size = PAGE_SIZE;
1671 		m->m_data = (char *) sf->kva + pgoff;
1672 		m->m_flags |= M_EXT;
1673 		m->m_pkthdr.len = m->m_len = xfsize;
1674 		KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1675 
1676 		if (mheader != NULL) {
1677 			hbytes = mheader->m_pkthdr.len;
1678 			mheader->m_pkthdr.len += m->m_pkthdr.len;
1679 			m_cat(mheader, m);
1680 			m = mheader;
1681 			mheader = NULL;
1682 		} else
1683 			hbytes = 0;
1684 
1685 		/*
1686 		 * Add the buffer to the socket buffer chain.
1687 		 */
1688 		crit_enter();
1689 retry_space:
1690 		/*
1691 		 * Make sure that the socket is still able to take more data.
1692 		 * CANTSENDMORE being true usually means that the connection
1693 		 * was closed. so_error is true when an error was sensed after
1694 		 * a previous send.
1695 		 * The state is checked after the page mapping and buffer
1696 		 * allocation above since those operations may block and make
1697 		 * any socket checks stale. From this point forward, nothing
1698 		 * blocks before the pru_send (or more accurately, any blocking
1699 		 * results in a loop back to here to re-check).
1700 		 */
1701 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1702 			if (so->so_state & SS_CANTSENDMORE) {
1703 				error = EPIPE;
1704 			} else {
1705 				error = so->so_error;
1706 				so->so_error = 0;
1707 			}
1708 			m_freem(m);
1709 			sbunlock(&so->so_snd);
1710 			crit_exit();
1711 			goto done;
1712 		}
1713 		/*
1714 		 * Wait for socket space to become available. We do this just
1715 		 * after checking the connection state above in order to avoid
1716 		 * a race condition with sbwait().
1717 		 */
1718 		if (sbspace(&so->so_snd) < so->so_snd.sb_lowat) {
1719 			if (fp->f_flag & FNONBLOCK) {
1720 				m_freem(m);
1721 				sbunlock(&so->so_snd);
1722 				crit_exit();
1723 				error = EAGAIN;
1724 				goto done;
1725 			}
1726 			error = sbwait(&so->so_snd);
1727 			/*
1728 			 * An error from sbwait usually indicates that we've
1729 			 * been interrupted by a signal. If we've sent anything
1730 			 * then return bytes sent, otherwise return the error.
1731 			 */
1732 			if (error) {
1733 				m_freem(m);
1734 				sbunlock(&so->so_snd);
1735 				crit_exit();
1736 				goto done;
1737 			}
1738 			goto retry_space;
1739 		}
1740 		error = so_pru_send(so, 0, m, NULL, NULL, td);
1741 		crit_exit();
1742 		if (error) {
1743 			sbunlock(&so->so_snd);
1744 			goto done;
1745 		}
1746 	}
1747 	if (mheader != NULL) {
1748 		*sbytes += mheader->m_pkthdr.len;
1749 		error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1750 		mheader = NULL;
1751 	}
1752 	sbunlock(&so->so_snd);
1753 
1754 done:
1755 	fdrop(fp);
1756 done0:
1757 	if (mheader != NULL)
1758 		m_freem(mheader);
1759 	return (error);
1760 }
1761 
1762 int
1763 sys_sctp_peeloff(struct sctp_peeloff_args *uap)
1764 {
1765 #ifdef SCTP
1766 	struct thread *td = curthread;
1767 	struct proc *p = td->td_proc;
1768 	struct file *lfp = NULL;
1769 	struct file *nfp = NULL;
1770 	int error;
1771 	struct socket *head, *so;
1772 	caddr_t assoc_id;
1773 	int fd;
1774 	short fflag;		/* type must match fp->f_flag */
1775 
1776 	assoc_id = uap->name;
1777 	error = holdsock(p->p_fd, uap->sd, &lfp);
1778 	if (error) {
1779 		return (error);
1780 	}
1781 	crit_enter();
1782 	head = (struct socket *)lfp->f_data;
1783 	error = sctp_can_peel_off(head, assoc_id);
1784 	if (error) {
1785 		crit_exit();
1786 		goto done;
1787 	}
1788 	/*
1789 	 * At this point we know we do have a assoc to pull
1790 	 * we proceed to get the fd setup. This may block
1791 	 * but that is ok.
1792 	 */
1793 
1794 	fflag = lfp->f_flag;
1795 	error = falloc(p, &nfp, &fd);
1796 	if (error) {
1797 		/*
1798 		 * Probably ran out of file descriptors. Put the
1799 		 * unaccepted connection back onto the queue and
1800 		 * do another wakeup so some other process might
1801 		 * have a chance at it.
1802 		 */
1803 		crit_exit();
1804 		goto done;
1805 	}
1806 	uap->sysmsg_result = fd;
1807 
1808 	so = sctp_get_peeloff(head, assoc_id, &error);
1809 	if (so == NULL) {
1810 		/*
1811 		 * Either someone else peeled it off OR
1812 		 * we can't get a socket.
1813 		 */
1814 		goto noconnection;
1815 	}
1816 	so->so_state &= ~SS_COMP;
1817 	so->so_state &= ~SS_NOFDREF;
1818 	so->so_head = NULL;
1819 	if (head->so_sigio != NULL)
1820 		fsetown(fgetown(head->so_sigio), &so->so_sigio);
1821 
1822 	nfp->f_type = DTYPE_SOCKET;
1823 	nfp->f_flag = fflag;
1824 	nfp->f_ops = &socketops;
1825 	nfp->f_data = so;
1826 
1827 noconnection:
1828 	/*
1829 	 * Assign the file pointer to the reserved descriptor, or clear
1830 	 * the reserved descriptor if an error occured.
1831 	 */
1832 	if (error)
1833 		fsetfd(p, NULL, fd);
1834 	else
1835 		fsetfd(p, nfp, fd);
1836 	crit_exit();
1837 	/*
1838 	 * Release explicitly held references before returning.
1839 	 */
1840 done:
1841 	if (nfp != NULL)
1842 		fdrop(nfp);
1843 	fdrop(lfp);
1844 	return (error);
1845 #else /* SCTP */
1846 	return(EOPNOTSUPP);
1847 #endif /* SCTP */
1848 }
1849