xref: /dragonfly/sys/kern/uipc_syscalls.c (revision 6a3cbbc2)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
33  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
34  */
35 
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysproto.h>
42 #include <sys/malloc.h>
43 #include <sys/filedesc.h>
44 #include <sys/event.h>
45 #include <sys/proc.h>
46 #include <sys/fcntl.h>
47 #include <sys/file.h>
48 #include <sys/filio.h>
49 #include <sys/kern_syscall.h>
50 #include <sys/mbuf.h>
51 #include <sys/protosw.h>
52 #include <sys/sfbuf.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/socketops.h>
56 #include <sys/uio.h>
57 #include <sys/vnode.h>
58 #include <sys/lock.h>
59 #include <sys/mount.h>
60 #include <sys/jail.h>
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64 #include <vm/vm.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_kern.h>
69 #include <vm/vm_extern.h>
70 #include <sys/file2.h>
71 #include <sys/signalvar.h>
72 #include <sys/serialize.h>
73 
74 #include <sys/thread2.h>
75 #include <sys/msgport2.h>
76 #include <sys/socketvar2.h>
77 #include <net/netmsg2.h>
78 #include <vm/vm_page2.h>
79 
80 extern int use_soaccept_pred_fast;
81 extern int use_sendfile_async;
82 extern int use_soconnect_async;
83 
84 /*
85  * System call interface to the socket abstraction.
86  */
87 
88 extern	struct fileops socketops;
89 
90 /*
91  * socket_args(int domain, int type, int protocol)
92  */
93 int
94 kern_socket(int domain, int type, int protocol, int *res)
95 {
96 	struct thread *td = curthread;
97 	struct filedesc *fdp = td->td_proc->p_fd;
98 	struct socket *so;
99 	struct file *fp;
100 	int fd, error;
101 	u_int fflags = 0;
102 	int oflags = 0;
103 
104 	KKASSERT(td->td_lwp);
105 
106 	if (type & SOCK_NONBLOCK) {
107 		type &= ~SOCK_NONBLOCK;
108 		fflags |= FNONBLOCK;
109 	}
110 	if (type & SOCK_CLOEXEC) {
111 		type &= ~SOCK_CLOEXEC;
112 		oflags |= O_CLOEXEC;
113 	}
114 
115 	error = falloc(td->td_lwp, &fp, &fd);
116 	if (error)
117 		return (error);
118 	error = socreate(domain, &so, type, protocol, td);
119 	if (error) {
120 		fsetfd(fdp, NULL, fd);
121 	} else {
122 		fp->f_type = DTYPE_SOCKET;
123 		fp->f_flag = FREAD | FWRITE | fflags;
124 		fp->f_ops = &socketops;
125 		fp->f_data = so;
126 		if (oflags & O_CLOEXEC)
127 			fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
128 		*res = fd;
129 		fsetfd(fdp, fp, fd);
130 	}
131 	fdrop(fp);
132 	return (error);
133 }
134 
135 /*
136  * MPALMOSTSAFE
137  */
138 int
139 sys_socket(struct socket_args *uap)
140 {
141 	int error;
142 
143 	error = kern_socket(uap->domain, uap->type, uap->protocol,
144 			    &uap->sysmsg_iresult);
145 
146 	return (error);
147 }
148 
149 int
150 kern_bind(int s, struct sockaddr *sa)
151 {
152 	struct thread *td = curthread;
153 	struct file *fp;
154 	int error;
155 
156 	error = holdsock(td, s, &fp);
157 	if (error)
158 		return (error);
159 	error = sobind((struct socket *)fp->f_data, sa, td);
160 	dropfp(td, s, fp);
161 
162 	return (error);
163 }
164 
165 /*
166  * bind_args(int s, caddr_t name, int namelen)
167  *
168  * MPALMOSTSAFE
169  */
170 int
171 sys_bind(struct bind_args *uap)
172 {
173 	struct sockaddr *sa;
174 	int error;
175 
176 	error = getsockaddr(&sa, uap->name, uap->namelen);
177 	if (error)
178 		return (error);
179 	if (!prison_remote_ip(curthread, sa)) {
180 		kfree(sa, M_SONAME);
181 		return EAFNOSUPPORT;
182 	}
183 	error = kern_bind(uap->s, sa);
184 	kfree(sa, M_SONAME);
185 
186 	return (error);
187 }
188 
189 int
190 kern_listen(int s, int backlog)
191 {
192 	struct thread *td = curthread;
193 	struct file *fp;
194 	int error;
195 
196 	error = holdsock(td, s, &fp);
197 	if (error)
198 		return (error);
199 	error = solisten((struct socket *)fp->f_data, backlog, td);
200 	dropfp(td, s, fp);
201 
202 	return (error);
203 }
204 
205 /*
206  * listen_args(int s, int backlog)
207  *
208  * MPALMOSTSAFE
209  */
210 int
211 sys_listen(struct listen_args *uap)
212 {
213 	int error;
214 
215 	error = kern_listen(uap->s, uap->backlog);
216 	return (error);
217 }
218 
219 /*
220  * Returns the accepted socket as well.
221  *
222  * NOTE!  The sockets sitting on so_comp/so_incomp might have 0 refs, the
223  *	  pool token is absolutely required to avoid a sofree() race,
224  *	  as well as to avoid tailq handling races.
225  */
226 static boolean_t
227 soaccept_predicate(struct netmsg_so_notify *msg)
228 {
229 	struct socket *head = msg->base.nm_so;
230 	struct socket *so;
231 
232 	if (head->so_error != 0) {
233 		msg->base.lmsg.ms_error = head->so_error;
234 		return (TRUE);
235 	}
236 	lwkt_getpooltoken(head);
237 	if (!TAILQ_EMPTY(&head->so_comp)) {
238 		/* Abuse nm_so field as copy in/copy out parameter. XXX JH */
239 		so = TAILQ_FIRST(&head->so_comp);
240 		KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) == SS_COMP);
241 		TAILQ_REMOVE(&head->so_comp, so, so_list);
242 		head->so_qlen--;
243 		soclrstate(so, SS_COMP);
244 
245 		/*
246 		 * Keep a reference before clearing the so_head
247 		 * to avoid racing socket close in netisr.
248 		 */
249 		soreference(so);
250 		so->so_head = NULL;
251 
252 		lwkt_relpooltoken(head);
253 
254 		msg->base.lmsg.ms_error = 0;
255 		msg->base.nm_so = so;
256 		return (TRUE);
257 	}
258 	lwkt_relpooltoken(head);
259 	if (head->so_state & SS_CANTRCVMORE) {
260 		msg->base.lmsg.ms_error = ECONNABORTED;
261 		return (TRUE);
262 	}
263 	if (msg->nm_fflags & FNONBLOCK) {
264 		msg->base.lmsg.ms_error = EWOULDBLOCK;
265 		return (TRUE);
266 	}
267 
268 	return (FALSE);
269 }
270 
271 /*
272  * The second argument to kern_accept() is a handle to a struct sockaddr.
273  * This allows kern_accept() to return a pointer to an allocated struct
274  * sockaddr which must be freed later with FREE().  The caller must
275  * initialize *name to NULL.
276  */
277 int
278 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res,
279     int sockflags)
280 {
281 	struct thread *td = curthread;
282 	struct filedesc *fdp = td->td_proc->p_fd;
283 	struct file *lfp = NULL;
284 	struct file *nfp = NULL;
285 	struct sockaddr *sa;
286 	struct socket *head, *so;
287 	struct netmsg_so_notify msg;
288 	int fd;
289 	u_int fflag;		/* type must match fp->f_flag */
290 	int error, tmp;
291 
292 	*res = -1;
293 	if (name && namelen && *namelen < 0)
294 		return (EINVAL);
295 
296 	error = holdsock(td, s, &lfp);
297 	if (error)
298 		return (error);
299 
300 	error = falloc(td->td_lwp, &nfp, &fd);
301 	if (error) {		/* Probably ran out of file descriptors. */
302 		fdrop(lfp);
303 		return (error);
304 	}
305 	head = (struct socket *)lfp->f_data;
306 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
307 		error = EINVAL;
308 		goto done;
309 	}
310 
311 	if (fflags & O_FBLOCKING)
312 		fflags |= lfp->f_flag & ~FNONBLOCK;
313 	else if (fflags & O_FNONBLOCKING)
314 		fflags |= lfp->f_flag | FNONBLOCK;
315 	else
316 		fflags = lfp->f_flag;
317 
318 	if (use_soaccept_pred_fast) {
319 		boolean_t pred;
320 
321 		/* Initialize necessary parts for soaccept_predicate() */
322 		netmsg_init(&msg.base, head, &netisr_apanic_rport, 0, NULL);
323 		msg.nm_fflags = fflags;
324 
325 		lwkt_getpooltoken(head);
326 		pred = soaccept_predicate(&msg);
327 		lwkt_relpooltoken(head);
328 
329 		if (pred) {
330 			error = msg.base.lmsg.ms_error;
331 			if (error)
332 				goto done;
333 			else
334 				goto accepted;
335 		}
336 	}
337 
338 	/* optimize for uniprocessor case later XXX JH */
339 	netmsg_init_abortable(&msg.base, head, &curthread->td_msgport,
340 			      0, netmsg_so_notify, netmsg_so_notify_doabort);
341 	msg.nm_predicate = soaccept_predicate;
342 	msg.nm_fflags = fflags;
343 	msg.nm_etype = NM_REVENT;
344 	error = lwkt_domsg(head->so_port, &msg.base.lmsg, PCATCH);
345 	if (error)
346 		goto done;
347 
348 accepted:
349 	/*
350 	 * At this point we have the connection that's ready to be accepted.
351 	 *
352 	 * NOTE! soaccept_predicate() ref'd so for us, and soaccept() expects
353 	 * 	 to eat the ref and turn it into a descriptor.
354 	 */
355 	so = msg.base.nm_so;
356 
357 	fflag = lfp->f_flag;
358 
359 	/* connection has been removed from the listen queue */
360 	KNOTE(&head->so_rcv.ssb_kq.ki_note, 0);
361 
362 	if (sockflags & SOCK_KERN_NOINHERIT) {
363 		fflag &= ~(FASYNC | FNONBLOCK);
364 		if (sockflags & SOCK_NONBLOCK)
365 			fflag |= FNONBLOCK;
366 	} else {
367 		if (head->so_sigio != NULL)
368 			fsetown(fgetown(&head->so_sigio), &so->so_sigio);
369 	}
370 
371 	nfp->f_type = DTYPE_SOCKET;
372 	nfp->f_flag = fflag;
373 	nfp->f_ops = &socketops;
374 	nfp->f_data = so;
375 	/* Sync socket async state with file flags */
376 	tmp = fflag & FASYNC;
377 	fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, td->td_ucred, NULL);
378 
379 	sa = NULL;
380 	if (so->so_faddr != NULL) {
381 		sa = so->so_faddr;
382 		so->so_faddr = NULL;
383 
384 		soaccept_generic(so);
385 		error = 0;
386 	} else {
387 		error = soaccept(so, &sa);
388 	}
389 
390 	/*
391 	 * Set the returned name and namelen as applicable.  Set the returned
392 	 * namelen to 0 for older code which might ignore the return value
393 	 * from accept.
394 	 */
395 	if (error == 0) {
396 		if (sa && name && namelen) {
397 			if (*namelen > sa->sa_len)
398 				*namelen = sa->sa_len;
399 			*name = sa;
400 		} else {
401 			if (sa)
402 				kfree(sa, M_SONAME);
403 		}
404 	}
405 
406 done:
407 	/*
408 	 * If an error occured clear the reserved descriptor, else associate
409 	 * nfp with it.
410 	 *
411 	 * Note that *res is normally ignored if an error is returned but
412 	 * a syscall message will still have access to the result code.
413 	 */
414 	if (error) {
415 		fsetfd(fdp, NULL, fd);
416 	} else {
417 		if (sockflags & SOCK_CLOEXEC)
418 			fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
419 		*res = fd;
420 		fsetfd(fdp, nfp, fd);
421 	}
422 	fdrop(nfp);
423 	dropfp(td, s, lfp);
424 
425 	return (error);
426 }
427 
428 /*
429  * accept(int s, caddr_t name, int *anamelen)
430  *
431  * MPALMOSTSAFE
432  */
433 int
434 sys_accept(struct accept_args *uap)
435 {
436 	struct sockaddr *sa = NULL;
437 	int sa_len;
438 	int error;
439 
440 	if (uap->name) {
441 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
442 		if (error)
443 			return (error);
444 
445 		error = kern_accept(uap->s, 0, &sa, &sa_len,
446 				    &uap->sysmsg_iresult, 0);
447 
448 		if (error == 0) {
449 			prison_local_ip(curthread, sa);
450 			error = copyout(sa, uap->name, sa_len);
451 		}
452 		if (error == 0) {
453 			error = copyout(&sa_len, uap->anamelen,
454 					sizeof(*uap->anamelen));
455 		}
456 		if (sa)
457 			kfree(sa, M_SONAME);
458 	} else {
459 		error = kern_accept(uap->s, 0, NULL, 0,
460 				    &uap->sysmsg_iresult, 0);
461 	}
462 	return (error);
463 }
464 
465 /*
466  * extaccept(int s, int fflags, caddr_t name, int *anamelen)
467  *
468  * MPALMOSTSAFE
469  */
470 int
471 sys_extaccept(struct extaccept_args *uap)
472 {
473 	struct sockaddr *sa = NULL;
474 	int sa_len;
475 	int error;
476 	int fflags = uap->flags & O_FMASK;
477 
478 	if (uap->name) {
479 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
480 		if (error)
481 			return (error);
482 
483 		error = kern_accept(uap->s, fflags, &sa, &sa_len,
484 				    &uap->sysmsg_iresult, 0);
485 
486 		if (error == 0) {
487 			prison_local_ip(curthread, sa);
488 			error = copyout(sa, uap->name, sa_len);
489 		}
490 		if (error == 0) {
491 			error = copyout(&sa_len, uap->anamelen,
492 			    sizeof(*uap->anamelen));
493 		}
494 		if (sa)
495 			kfree(sa, M_SONAME);
496 	} else {
497 		error = kern_accept(uap->s, fflags, NULL, 0,
498 				    &uap->sysmsg_iresult, 0);
499 	}
500 	return (error);
501 }
502 
503 /*
504  * accept4(int s, caddr_t name, int *anamelen, int flags)
505  *
506  * MPALMOSTSAFE
507  */
508 int
509 sys_accept4(struct accept4_args *uap)
510 {
511 	struct sockaddr *sa = NULL;
512 	int sa_len;
513 	int error;
514 	int sockflags;
515 
516 	if (uap->flags & ~(SOCK_NONBLOCK | SOCK_CLOEXEC))
517 		return (EINVAL);
518 	sockflags = uap->flags | SOCK_KERN_NOINHERIT;
519 
520 	if (uap->name) {
521 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
522 		if (error)
523 			return (error);
524 
525 		error = kern_accept(uap->s, 0, &sa, &sa_len,
526 				    &uap->sysmsg_iresult, sockflags);
527 
528 		if (error == 0) {
529 			prison_local_ip(curthread, sa);
530 			error = copyout(sa, uap->name, sa_len);
531 		}
532 		if (error == 0) {
533 			error = copyout(&sa_len, uap->anamelen,
534 					sizeof(*uap->anamelen));
535 		}
536 		if (sa)
537 			kfree(sa, M_SONAME);
538 	} else {
539 		error = kern_accept(uap->s, 0, NULL, 0,
540 				    &uap->sysmsg_iresult, sockflags);
541 	}
542 	return (error);
543 }
544 
545 /*
546  * Returns TRUE if predicate satisfied.
547  */
548 static boolean_t
549 soconnected_predicate(struct netmsg_so_notify *msg)
550 {
551 	struct socket *so = msg->base.nm_so;
552 
553 	/* check predicate */
554 	if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
555 		msg->base.lmsg.ms_error = so->so_error;
556 		return (TRUE);
557 	}
558 
559 	return (FALSE);
560 }
561 
562 int
563 kern_connect(int s, int fflags, struct sockaddr *sa)
564 {
565 	struct thread *td = curthread;
566 	struct file *fp;
567 	struct socket *so;
568 	int error, interrupted = 0;
569 
570 	error = holdsock(td, s, &fp);
571 	if (error)
572 		return (error);
573 	so = (struct socket *)fp->f_data;
574 
575 	if (fflags & O_FBLOCKING)
576 		/* fflags &= ~FNONBLOCK; */;
577 	else if (fflags & O_FNONBLOCKING)
578 		fflags |= FNONBLOCK;
579 	else
580 		fflags = fp->f_flag;
581 
582 	if (so->so_state & SS_ISCONNECTING) {
583 		error = EALREADY;
584 		goto done;
585 	}
586 	error = soconnect(so, sa, td, use_soconnect_async ? FALSE : TRUE);
587 	if (error)
588 		goto bad;
589 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
590 		error = EINPROGRESS;
591 		goto done;
592 	}
593 	if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
594 		struct netmsg_so_notify msg;
595 
596 		netmsg_init_abortable(&msg.base, so,
597 				      &curthread->td_msgport,
598 				      0,
599 				      netmsg_so_notify,
600 				      netmsg_so_notify_doabort);
601 		msg.nm_predicate = soconnected_predicate;
602 		msg.nm_etype = NM_REVENT;
603 		error = lwkt_domsg(so->so_port, &msg.base.lmsg, PCATCH);
604 		if (error == EINTR || error == ERESTART)
605 			interrupted = 1;
606 	}
607 	if (error == 0) {
608 		error = so->so_error;
609 		so->so_error = 0;
610 	}
611 bad:
612 	if (!interrupted)
613 		soclrstate(so, SS_ISCONNECTING);
614 	if (error == ERESTART)
615 		error = EINTR;
616 done:
617 	dropfp(td, s, fp);
618 
619 	return (error);
620 }
621 
622 /*
623  * connect_args(int s, caddr_t name, int namelen)
624  *
625  * MPALMOSTSAFE
626  */
627 int
628 sys_connect(struct connect_args *uap)
629 {
630 	struct sockaddr *sa;
631 	int error;
632 
633 	error = getsockaddr(&sa, uap->name, uap->namelen);
634 	if (error)
635 		return (error);
636 	if (!prison_remote_ip(curthread, sa)) {
637 		kfree(sa, M_SONAME);
638 		return EAFNOSUPPORT;
639 	}
640 	error = kern_connect(uap->s, 0, sa);
641 	kfree(sa, M_SONAME);
642 
643 	return (error);
644 }
645 
646 /*
647  * connect_args(int s, int fflags, caddr_t name, int namelen)
648  *
649  * MPALMOSTSAFE
650  */
651 int
652 sys_extconnect(struct extconnect_args *uap)
653 {
654 	struct sockaddr *sa;
655 	int error;
656 	int fflags = uap->flags & O_FMASK;
657 
658 	error = getsockaddr(&sa, uap->name, uap->namelen);
659 	if (error)
660 		return (error);
661 	if (!prison_remote_ip(curthread, sa)) {
662 		kfree(sa, M_SONAME);
663 		return EAFNOSUPPORT;
664 	}
665 	error = kern_connect(uap->s, fflags, sa);
666 	kfree(sa, M_SONAME);
667 
668 	return (error);
669 }
670 
671 int
672 kern_socketpair(int domain, int type, int protocol, int *sv)
673 {
674 	struct thread *td = curthread;
675 	struct filedesc *fdp;
676 	struct file *fp1, *fp2;
677 	struct socket *so1, *so2;
678 	int fd1, fd2, error;
679 	u_int fflags = 0;
680 	int oflags = 0;
681 
682 	if (type & SOCK_NONBLOCK) {
683 		type &= ~SOCK_NONBLOCK;
684 		fflags |= FNONBLOCK;
685 	}
686 	if (type & SOCK_CLOEXEC) {
687 		type &= ~SOCK_CLOEXEC;
688 		oflags |= O_CLOEXEC;
689 	}
690 
691 	fdp = td->td_proc->p_fd;
692 	error = socreate(domain, &so1, type, protocol, td);
693 	if (error)
694 		return (error);
695 	error = socreate(domain, &so2, type, protocol, td);
696 	if (error)
697 		goto free1;
698 	error = falloc(td->td_lwp, &fp1, &fd1);
699 	if (error)
700 		goto free2;
701 	sv[0] = fd1;
702 	fp1->f_data = so1;
703 	error = falloc(td->td_lwp, &fp2, &fd2);
704 	if (error)
705 		goto free3;
706 	fp2->f_data = so2;
707 	sv[1] = fd2;
708 	error = soconnect2(so1, so2);
709 	if (error)
710 		goto free4;
711 	if (type == SOCK_DGRAM) {
712 		/*
713 		 * Datagram socket connection is asymmetric.
714 		 */
715 		 error = soconnect2(so2, so1);
716 		 if (error)
717 			goto free4;
718 	}
719 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
720 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE|fflags;
721 	fp1->f_ops = fp2->f_ops = &socketops;
722 	if (oflags & O_CLOEXEC) {
723 		fdp->fd_files[fd1].fileflags |= UF_EXCLOSE;
724 		fdp->fd_files[fd2].fileflags |= UF_EXCLOSE;
725 	}
726 	fsetfd(fdp, fp1, fd1);
727 	fsetfd(fdp, fp2, fd2);
728 	fdrop(fp1);
729 	fdrop(fp2);
730 	return (error);
731 free4:
732 	fsetfd(fdp, NULL, fd2);
733 	fdrop(fp2);
734 free3:
735 	fsetfd(fdp, NULL, fd1);
736 	fdrop(fp1);
737 free2:
738 	(void)soclose(so2, 0);
739 free1:
740 	(void)soclose(so1, 0);
741 	return (error);
742 }
743 
744 /*
745  * socketpair(int domain, int type, int protocol, int *rsv)
746  */
747 int
748 sys_socketpair(struct socketpair_args *uap)
749 {
750 	int error, sockv[2];
751 
752 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
753 
754 	if (error == 0) {
755 		error = copyout(sockv, uap->rsv, sizeof(sockv));
756 
757 		if (error != 0) {
758 			kern_close(sockv[0]);
759 			kern_close(sockv[1]);
760 		}
761 	}
762 
763 	return (error);
764 }
765 
766 int
767 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
768 	     struct mbuf *control, int flags, size_t *res)
769 {
770 	struct thread *td = curthread;
771 	struct lwp *lp = td->td_lwp;
772 	struct proc *p = td->td_proc;
773 	struct file *fp;
774 	size_t len;
775 	int error;
776 	struct socket *so;
777 #ifdef KTRACE
778 	struct iovec *ktriov = NULL;
779 	struct uio ktruio;
780 #endif
781 
782 	error = holdsock(td, s, &fp);
783 	if (error)
784 		return (error);
785 #ifdef KTRACE
786 	if (KTRPOINT(td, KTR_GENIO)) {
787 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
788 
789 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
790 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
791 		ktruio = *auio;
792 	}
793 #endif
794 	len = auio->uio_resid;
795 	so = (struct socket *)fp->f_data;
796 	if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
797 		if (fp->f_flag & FNONBLOCK)
798 			flags |= MSG_FNONBLOCKING;
799 	}
800 	error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
801 	if (error) {
802 		if (auio->uio_resid != len && (error == ERESTART ||
803 		    error == EINTR || error == EWOULDBLOCK))
804 			error = 0;
805 		if (error == EPIPE && !(flags & MSG_NOSIGNAL) &&
806 		    !(so->so_options & SO_NOSIGPIPE))
807 			lwpsignal(p, lp, SIGPIPE);
808 	}
809 #ifdef KTRACE
810 	if (ktriov != NULL) {
811 		if (error == 0) {
812 			ktruio.uio_iov = ktriov;
813 			ktruio.uio_resid = len - auio->uio_resid;
814 			ktrgenio(lp, s, UIO_WRITE, &ktruio, error);
815 		}
816 		kfree(ktriov, M_TEMP);
817 	}
818 #endif
819 	if (error == 0)
820 		*res  = len - auio->uio_resid;
821 	dropfp(td, s, fp);
822 
823 	return (error);
824 }
825 
826 /*
827  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
828  *
829  * MPALMOSTSAFE
830  */
831 int
832 sys_sendto(struct sendto_args *uap)
833 {
834 	struct thread *td = curthread;
835 	struct uio auio;
836 	struct iovec aiov;
837 	struct sockaddr *sa = NULL;
838 	int error;
839 
840 	if (uap->to) {
841 		error = getsockaddr(&sa, uap->to, uap->tolen);
842 		if (error)
843 			return (error);
844 		if (!prison_remote_ip(curthread, sa)) {
845 			kfree(sa, M_SONAME);
846 			return EAFNOSUPPORT;
847 		}
848 	}
849 	aiov.iov_base = uap->buf;
850 	aiov.iov_len = uap->len;
851 	auio.uio_iov = &aiov;
852 	auio.uio_iovcnt = 1;
853 	auio.uio_offset = 0;
854 	auio.uio_resid = uap->len;
855 	auio.uio_segflg = UIO_USERSPACE;
856 	auio.uio_rw = UIO_WRITE;
857 	auio.uio_td = td;
858 
859 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
860 			     &uap->sysmsg_szresult);
861 
862 	if (sa)
863 		kfree(sa, M_SONAME);
864 	return (error);
865 }
866 
867 /*
868  * sendmsg_args(int s, caddr_t msg, int flags)
869  *
870  * MPALMOSTSAFE
871  */
872 int
873 sys_sendmsg(struct sendmsg_args *uap)
874 {
875 	struct thread *td = curthread;
876 	struct msghdr msg;
877 	struct uio auio;
878 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
879 	struct sockaddr *sa = NULL;
880 	struct mbuf *control = NULL;
881 	int error;
882 
883 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
884 	if (error)
885 		return (error);
886 
887 	/*
888 	 * Conditionally copyin msg.msg_name.
889 	 */
890 	if (msg.msg_name) {
891 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
892 		if (error)
893 			return (error);
894 		if (!prison_remote_ip(curthread, sa)) {
895 			kfree(sa, M_SONAME);
896 			return EAFNOSUPPORT;
897 		}
898 	}
899 
900 	/*
901 	 * Populate auio.
902 	 */
903 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
904 			     &auio.uio_resid);
905 	if (error)
906 		goto cleanup2;
907 	auio.uio_iov = iov;
908 	auio.uio_iovcnt = msg.msg_iovlen;
909 	auio.uio_offset = 0;
910 	auio.uio_segflg = UIO_USERSPACE;
911 	auio.uio_rw = UIO_WRITE;
912 	auio.uio_td = td;
913 
914 	/*
915 	 * Conditionally copyin msg.msg_control.
916 	 */
917 	if (msg.msg_control) {
918 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
919 		    msg.msg_controllen > MLEN) {
920 			error = EINVAL;
921 			goto cleanup;
922 		}
923 		control = m_get(M_WAITOK, MT_CONTROL);
924 		if (control == NULL) {
925 			error = ENOBUFS;
926 			goto cleanup;
927 		}
928 		control->m_len = msg.msg_controllen;
929 		error = copyin(msg.msg_control, mtod(control, caddr_t),
930 			       msg.msg_controllen);
931 		if (error) {
932 			m_free(control);
933 			goto cleanup;
934 		}
935 	}
936 
937 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
938 			     &uap->sysmsg_szresult);
939 
940 cleanup:
941 	iovec_free(&iov, aiov);
942 cleanup2:
943 	if (sa)
944 		kfree(sa, M_SONAME);
945 	return (error);
946 }
947 
948 /*
949  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
950  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
951  * Don't forget to FREE() and m_free() these if they are returned.
952  */
953 int
954 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
955 	     struct mbuf **control, int *flags, size_t *res)
956 {
957 	struct thread *td = curthread;
958 	struct file *fp;
959 	size_t len;
960 	int error;
961 	int lflags;
962 	struct socket *so;
963 #ifdef KTRACE
964 	struct iovec *ktriov = NULL;
965 	struct uio ktruio;
966 #endif
967 
968 	error = holdsock(td, s, &fp);
969 	if (error)
970 		return (error);
971 #ifdef KTRACE
972 	if (KTRPOINT(td, KTR_GENIO)) {
973 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
974 
975 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
976 		bcopy(auio->uio_iov, ktriov, iovlen);
977 		ktruio = *auio;
978 	}
979 #endif
980 	len = auio->uio_resid;
981 	so = (struct socket *)fp->f_data;
982 
983 	if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
984 		if (fp->f_flag & FNONBLOCK) {
985 			if (flags) {
986 				*flags |= MSG_FNONBLOCKING;
987 			} else {
988 				lflags = MSG_FNONBLOCKING;
989 				flags = &lflags;
990 			}
991 		}
992 	}
993 
994 	error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
995 	if (error) {
996 		if (auio->uio_resid != len && (error == ERESTART ||
997 		    error == EINTR || error == EWOULDBLOCK))
998 			error = 0;
999 	}
1000 #ifdef KTRACE
1001 	if (ktriov != NULL) {
1002 		if (error == 0) {
1003 			ktruio.uio_iov = ktriov;
1004 			ktruio.uio_resid = len - auio->uio_resid;
1005 			ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error);
1006 		}
1007 		kfree(ktriov, M_TEMP);
1008 	}
1009 #endif
1010 	if (error == 0)
1011 		*res = len - auio->uio_resid;
1012 	dropfp(td, s, fp);
1013 
1014 	return (error);
1015 }
1016 
1017 /*
1018  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
1019  *			caddr_t from, int *fromlenaddr)
1020  *
1021  * MPALMOSTSAFE
1022  */
1023 int
1024 sys_recvfrom(struct recvfrom_args *uap)
1025 {
1026 	struct thread *td = curthread;
1027 	struct uio auio;
1028 	struct iovec aiov;
1029 	struct sockaddr *sa = NULL;
1030 	int error, fromlen;
1031 
1032 	if (uap->from && uap->fromlenaddr) {
1033 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
1034 		if (error)
1035 			return (error);
1036 		if (fromlen < 0)
1037 			return (EINVAL);
1038 	} else {
1039 		fromlen = 0;
1040 	}
1041 	aiov.iov_base = uap->buf;
1042 	aiov.iov_len = uap->len;
1043 	auio.uio_iov = &aiov;
1044 	auio.uio_iovcnt = 1;
1045 	auio.uio_offset = 0;
1046 	auio.uio_resid = uap->len;
1047 	auio.uio_segflg = UIO_USERSPACE;
1048 	auio.uio_rw = UIO_READ;
1049 	auio.uio_td = td;
1050 
1051 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
1052 			     &uap->flags, &uap->sysmsg_szresult);
1053 
1054 	if (error == 0 && uap->from) {
1055 		/* note: sa may still be NULL */
1056 		if (sa) {
1057 			fromlen = MIN(fromlen, sa->sa_len);
1058 			prison_local_ip(curthread, sa);
1059 			error = copyout(sa, uap->from, fromlen);
1060 		} else {
1061 			fromlen = 0;
1062 		}
1063 		if (error == 0) {
1064 			error = copyout(&fromlen, uap->fromlenaddr,
1065 					sizeof(fromlen));
1066 		}
1067 	}
1068 	if (sa)
1069 		kfree(sa, M_SONAME);
1070 
1071 	return (error);
1072 }
1073 
1074 /*
1075  * recvmsg_args(int s, struct msghdr *msg, int flags)
1076  *
1077  * MPALMOSTSAFE
1078  */
1079 int
1080 sys_recvmsg(struct recvmsg_args *uap)
1081 {
1082 	struct thread *td = curthread;
1083 	struct msghdr msg;
1084 	struct uio auio;
1085 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1086 	struct mbuf *m, *control = NULL;
1087 	struct sockaddr *sa = NULL;
1088 	caddr_t ctlbuf;
1089 	socklen_t *ufromlenp, *ucontrollenp;
1090 	int error, fromlen, controllen, len, flags, *uflagsp;
1091 
1092 	/*
1093 	 * This copyin handles everything except the iovec.
1094 	 */
1095 	error = copyin(uap->msg, &msg, sizeof(msg));
1096 	if (error)
1097 		return (error);
1098 
1099 	if (msg.msg_name && msg.msg_namelen < 0)
1100 		return (EINVAL);
1101 	if (msg.msg_control && msg.msg_controllen < 0)
1102 		return (EINVAL);
1103 
1104 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1105 		    msg_namelen));
1106 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1107 		       msg_controllen));
1108 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
1109 							msg_flags));
1110 
1111 	/*
1112 	 * Populate auio.
1113 	 */
1114 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
1115 			     &auio.uio_resid);
1116 	if (error)
1117 		return (error);
1118 	auio.uio_iov = iov;
1119 	auio.uio_iovcnt = msg.msg_iovlen;
1120 	auio.uio_offset = 0;
1121 	auio.uio_segflg = UIO_USERSPACE;
1122 	auio.uio_rw = UIO_READ;
1123 	auio.uio_td = td;
1124 
1125 	flags = uap->flags;
1126 
1127 	error = kern_recvmsg(uap->s,
1128 			     (msg.msg_name ? &sa : NULL), &auio,
1129 			     (msg.msg_control ? &control : NULL), &flags,
1130 			     &uap->sysmsg_szresult);
1131 
1132 	/*
1133 	 * Conditionally copyout the name and populate the namelen field.
1134 	 */
1135 	if (error == 0 && msg.msg_name) {
1136 		/* note: sa may still be NULL */
1137 		if (sa != NULL) {
1138 			fromlen = MIN(msg.msg_namelen, sa->sa_len);
1139 			prison_local_ip(curthread, sa);
1140 			error = copyout(sa, msg.msg_name, fromlen);
1141 		} else {
1142 			fromlen = 0;
1143 		}
1144 		if (error == 0)
1145 			error = copyout(&fromlen, ufromlenp,
1146 			    sizeof(*ufromlenp));
1147 	}
1148 
1149 	/*
1150 	 * Copyout msg.msg_control and msg.msg_controllen.
1151 	 */
1152 	if (error == 0 && msg.msg_control) {
1153 		len = msg.msg_controllen;
1154 		m = control;
1155 		ctlbuf = (caddr_t)msg.msg_control;
1156 
1157 		while(m && len > 0) {
1158 			unsigned int tocopy;
1159 
1160 			if (len >= m->m_len) {
1161 				tocopy = m->m_len;
1162 			} else {
1163 				msg.msg_flags |= MSG_CTRUNC;
1164 				tocopy = len;
1165 			}
1166 
1167 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1168 			if (error)
1169 				goto cleanup;
1170 
1171 			ctlbuf += tocopy;
1172 			len -= tocopy;
1173 			m = m->m_next;
1174 		}
1175 		controllen = ctlbuf - (caddr_t)msg.msg_control;
1176 		error = copyout(&controllen, ucontrollenp,
1177 		    sizeof(*ucontrollenp));
1178 	}
1179 
1180 	if (error == 0)
1181 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1182 
1183 cleanup:
1184 	if (sa)
1185 		kfree(sa, M_SONAME);
1186 	iovec_free(&iov, aiov);
1187 	if (control)
1188 		m_freem(control);
1189 	return (error);
1190 }
1191 
1192 /*
1193  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1194  * in kernel pointer instead of a userland pointer.  This allows us
1195  * to manipulate socket options in the emulation code.
1196  */
1197 int
1198 kern_setsockopt(int s, struct sockopt *sopt)
1199 {
1200 	struct thread *td = curthread;
1201 	struct file *fp;
1202 	int error;
1203 
1204 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1205 		return (EFAULT);
1206 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1207 		return (EINVAL);
1208 	if (sopt->sopt_valsize > SOMAXOPT_SIZE)	/* unsigned */
1209 		return (EINVAL);
1210 
1211 	error = holdsock(td, s, &fp);
1212 	if (error)
1213 		return (error);
1214 
1215 	error = sosetopt((struct socket *)fp->f_data, sopt);
1216 	dropfp(td, s, fp);
1217 
1218 	return (error);
1219 }
1220 
1221 /*
1222  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1223  *
1224  * MPALMOSTSAFE
1225  */
1226 int
1227 sys_setsockopt(struct setsockopt_args *uap)
1228 {
1229 	struct thread *td = curthread;
1230 	struct sockopt sopt;
1231 	int error;
1232 
1233 	sopt.sopt_level = uap->level;
1234 	sopt.sopt_name = uap->name;
1235 	sopt.sopt_valsize = uap->valsize;
1236 	sopt.sopt_td = td;
1237 	sopt.sopt_val = NULL;
1238 
1239 	if (sopt.sopt_valsize > SOMAXOPT_SIZE) /* unsigned */
1240 		return (EINVAL);
1241 	if (uap->val) {
1242 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1243 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1244 		if (error)
1245 			goto out;
1246 	}
1247 
1248 	error = kern_setsockopt(uap->s, &sopt);
1249 out:
1250 	if (uap->val)
1251 		kfree(sopt.sopt_val, M_TEMP);
1252 	return(error);
1253 }
1254 
1255 /*
1256  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1257  * in kernel pointer instead of a userland pointer.  This allows us
1258  * to manipulate socket options in the emulation code.
1259  */
1260 int
1261 kern_getsockopt(int s, struct sockopt *sopt)
1262 {
1263 	struct thread *td = curthread;
1264 	struct file *fp;
1265 	int error;
1266 
1267 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1268 		return (EFAULT);
1269 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1270 		return (EINVAL);
1271 
1272 	error = holdsock(td, s, &fp);
1273 	if (error)
1274 		return (error);
1275 
1276 	error = sogetopt((struct socket *)fp->f_data, sopt);
1277 	dropfp(td, s, fp);
1278 
1279 	return (error);
1280 }
1281 
1282 /*
1283  * getsockopt_args(int s, int level, int name, caddr_t val, int *avalsize)
1284  *
1285  * MPALMOSTSAFE
1286  */
1287 int
1288 sys_getsockopt(struct getsockopt_args *uap)
1289 {
1290 	struct thread *td = curthread;
1291 	struct sockopt sopt;
1292 	int error, valsize, valszmax, mflag = 0;
1293 
1294 	if (uap->val) {
1295 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1296 		if (error)
1297 			return (error);
1298 	} else {
1299 		valsize = 0;
1300 	}
1301 
1302 	sopt.sopt_level = uap->level;
1303 	sopt.sopt_name = uap->name;
1304 	sopt.sopt_valsize = valsize;
1305 	sopt.sopt_td = td;
1306 	sopt.sopt_val = NULL;
1307 
1308 	if (td->td_proc->p_ucred->cr_uid == 0) {
1309 		valszmax = SOMAXOPT_SIZE0;
1310 		mflag = M_NULLOK;
1311 	} else {
1312 		valszmax = SOMAXOPT_SIZE;
1313 	}
1314 	if (sopt.sopt_valsize > valszmax) /* unsigned */
1315 		return (EINVAL);
1316 	if (uap->val) {
1317 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP,
1318 		    M_WAITOK | mflag);
1319 		if (sopt.sopt_val == NULL)
1320 			return (ENOBUFS);
1321 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1322 		if (error)
1323 			goto out;
1324 	}
1325 
1326 	error = kern_getsockopt(uap->s, &sopt);
1327 	if (error)
1328 		goto out;
1329 	valsize = sopt.sopt_valsize;
1330 	error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1331 	if (error)
1332 		goto out;
1333 	if (uap->val)
1334 		error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1335 out:
1336 	if (uap->val)
1337 		kfree(sopt.sopt_val, M_TEMP);
1338 	return (error);
1339 }
1340 
1341 /*
1342  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1343  * This allows kern_getsockname() to return a pointer to an allocated struct
1344  * sockaddr which must be freed later with FREE().  The caller must
1345  * initialize *name to NULL.
1346  */
1347 int
1348 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1349 {
1350 	struct thread *td = curthread;
1351 	struct file *fp;
1352 	struct socket *so;
1353 	struct sockaddr *sa = NULL;
1354 	int error;
1355 
1356 	error = holdsock(td, s, &fp);
1357 	if (error)
1358 		return (error);
1359 	if (*namelen < 0) {
1360 		fdrop(fp);
1361 		return (EINVAL);
1362 	}
1363 	so = (struct socket *)fp->f_data;
1364 	error = so_pru_sockaddr(so, &sa);
1365 	if (error == 0) {
1366 		if (sa == NULL) {
1367 			*namelen = 0;
1368 		} else {
1369 			*namelen = MIN(*namelen, sa->sa_len);
1370 			*name = sa;
1371 		}
1372 	}
1373 	dropfp(td, s, fp);
1374 
1375 	return (error);
1376 }
1377 
1378 /*
1379  * getsockname_args(int fdes, caddr_t asa, int *alen)
1380  *
1381  * Get socket name.
1382  *
1383  * MPALMOSTSAFE
1384  */
1385 int
1386 sys_getsockname(struct getsockname_args *uap)
1387 {
1388 	struct sockaddr *sa = NULL;
1389 	struct sockaddr satmp;
1390 	int error, sa_len_in, sa_len_out;
1391 
1392 	error = copyin(uap->alen, &sa_len_in, sizeof(sa_len_in));
1393 	if (error)
1394 		return (error);
1395 
1396 	sa_len_out = sa_len_in;
1397 	error = kern_getsockname(uap->fdes, &sa, &sa_len_out);
1398 
1399 	if (error == 0) {
1400 		if (sa) {
1401 			prison_local_ip(curthread, sa);
1402 			error = copyout(sa, uap->asa, sa_len_out);
1403 		} else {
1404 			/*
1405 			 * unnamed uipc sockets don't bother storing
1406 			 * sockaddr, simulate an AF_LOCAL sockaddr.
1407 			 */
1408 			sa_len_out = sizeof(satmp);
1409 			if (sa_len_out > sa_len_in)
1410 				sa_len_out = sa_len_in;
1411 			if (sa_len_out < 0)
1412 				sa_len_out = 0;
1413 			bzero(&satmp, sizeof(satmp));
1414 			satmp.sa_len = sa_len_out;
1415 			satmp.sa_family = AF_LOCAL;
1416 			error = copyout(&satmp, uap->asa, sa_len_out);
1417 		}
1418 	}
1419 	if (error == 0 && sa_len_out != sa_len_in)
1420 		error = copyout(&sa_len_out, uap->alen, sizeof(*uap->alen));
1421 	if (sa)
1422 		kfree(sa, M_SONAME);
1423 	return (error);
1424 }
1425 
1426 /*
1427  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1428  * This allows kern_getpeername() to return a pointer to an allocated struct
1429  * sockaddr which must be freed later with FREE().  The caller must
1430  * initialize *name to NULL.
1431  */
1432 int
1433 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1434 {
1435 	struct thread *td = curthread;
1436 	struct file *fp;
1437 	struct socket *so;
1438 	struct sockaddr *sa = NULL;
1439 	int error;
1440 
1441 	error = holdsock(td, s, &fp);
1442 	if (error)
1443 		return (error);
1444 	if (*namelen < 0) {
1445 		fdrop(fp);
1446 		return (EINVAL);
1447 	}
1448 	so = (struct socket *)fp->f_data;
1449 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1450 		fdrop(fp);
1451 		return (ENOTCONN);
1452 	}
1453 	error = so_pru_peeraddr(so, &sa);
1454 	if (error == 0) {
1455 		if (sa == NULL) {
1456 			*namelen = 0;
1457 		} else {
1458 			*namelen = MIN(*namelen, sa->sa_len);
1459 			*name = sa;
1460 		}
1461 	}
1462 	dropfp(td, s, fp);
1463 
1464 	return (error);
1465 }
1466 
1467 /*
1468  * getpeername_args(int fdes, caddr_t asa, int *alen)
1469  *
1470  * Get name of peer for connected socket.
1471  *
1472  * MPALMOSTSAFE
1473  */
1474 int
1475 sys_getpeername(struct getpeername_args *uap)
1476 {
1477 	struct sockaddr *sa = NULL;
1478 	int error, sa_len;
1479 
1480 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1481 	if (error)
1482 		return (error);
1483 
1484 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1485 
1486 	if (error == 0) {
1487 		prison_local_ip(curthread, sa);
1488 		error = copyout(sa, uap->asa, sa_len);
1489 	}
1490 	if (error == 0)
1491 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1492 	if (sa)
1493 		kfree(sa, M_SONAME);
1494 	return (error);
1495 }
1496 
1497 int
1498 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1499 {
1500 	struct sockaddr *sa;
1501 	int error;
1502 
1503 	*namp = NULL;
1504 	if (len > SOCK_MAXADDRLEN)
1505 		return ENAMETOOLONG;
1506 	if (len < offsetof(struct sockaddr, sa_data[0]))
1507 		return EDOM;
1508 	sa = kmalloc(len, M_SONAME, M_WAITOK);
1509 	error = copyin(uaddr, sa, len);
1510 	if (error) {
1511 		kfree(sa, M_SONAME);
1512 	} else {
1513 		sa->sa_len = len;
1514 		*namp = sa;
1515 	}
1516 	return error;
1517 }
1518 
1519 /*
1520  * Detach a mapped page and release resources back to the system.
1521  * We must release our wiring and if the object is ripped out
1522  * from under the vm_page we become responsible for freeing the
1523  * page.
1524  *
1525  * MPSAFE
1526  */
1527 static void
1528 sf_buf_mfree(void *arg)
1529 {
1530 	struct sf_buf *sf = arg;
1531 	vm_page_t m;
1532 
1533 	m = sf_buf_page(sf);
1534 	if (sf_buf_free(sf)) {
1535 		/* sf invalid now */
1536 		vm_page_sbusy_drop(m);
1537 #if 0
1538 		if (m->object == NULL &&
1539 		    m->wire_count == 0 &&
1540 		    (m->flags & PG_NEED_COMMIT) == 0) {
1541 			vm_page_free(m);
1542 		} else {
1543 			vm_page_wakeup(m);
1544 		}
1545 #endif
1546 	}
1547 }
1548 
1549 /*
1550  * sendfile(2).
1551  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1552  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1553  *
1554  * Send a file specified by 'fd' and starting at 'offset' to a socket
1555  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1556  * nbytes == 0. Optionally add a header and/or trailer to the socket
1557  * output. If specified, write the total number of bytes sent into *sbytes.
1558  *
1559  * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1560  * the headers to count against the remaining bytes to be sent from
1561  * the file descriptor.  We may wish to implement a compatibility syscall
1562  * in the future.
1563  *
1564  * MPALMOSTSAFE
1565  */
1566 int
1567 sys_sendfile(struct sendfile_args *uap)
1568 {
1569 	struct thread *td = curthread;
1570 	struct file *fp;
1571 	struct vnode *vp = NULL;
1572 	struct sf_hdtr hdtr;
1573 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1574 	struct uio auio;
1575 	struct mbuf *mheader = NULL;
1576 	size_t hbytes = 0;
1577 	size_t tbytes;
1578 	off_t hdtr_size = 0;
1579 	off_t sbytes;
1580 	int error;
1581 
1582 	/*
1583 	 * Do argument checking. Must be a regular file in, stream
1584 	 * type and connected socket out, positive offset.
1585 	 */
1586 	fp = holdfp(td, uap->fd, FREAD);
1587 	if (fp == NULL) {
1588 		return (EBADF);
1589 	}
1590 	if (fp->f_type != DTYPE_VNODE) {
1591 		fdrop(fp);
1592 		return (EINVAL);
1593 	}
1594 	vp = (struct vnode *)fp->f_data;
1595 	vref(vp);
1596 	dropfp(td, uap->fd, fp);
1597 
1598 	/*
1599 	 * If specified, get the pointer to the sf_hdtr struct for
1600 	 * any headers/trailers.
1601 	 */
1602 	if (uap->hdtr) {
1603 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1604 		if (error)
1605 			goto done;
1606 		/*
1607 		 * Send any headers.
1608 		 */
1609 		if (hdtr.headers) {
1610 			error = iovec_copyin(hdtr.headers, &iov, aiov,
1611 					     hdtr.hdr_cnt, &hbytes);
1612 			if (error)
1613 				goto done;
1614 			auio.uio_iov = iov;
1615 			auio.uio_iovcnt = hdtr.hdr_cnt;
1616 			auio.uio_offset = 0;
1617 			auio.uio_segflg = UIO_USERSPACE;
1618 			auio.uio_rw = UIO_WRITE;
1619 			auio.uio_td = td;
1620 			auio.uio_resid = hbytes;
1621 
1622 			mheader = m_uiomove(&auio);
1623 
1624 			iovec_free(&iov, aiov);
1625 			if (mheader == NULL)
1626 				goto done;
1627 		}
1628 	}
1629 
1630 	error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1631 			      &sbytes, uap->flags);
1632 	if (error)
1633 		goto done;
1634 
1635 	/*
1636 	 * Send trailers. Wimp out and use writev(2).
1637 	 */
1638 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1639 		error = iovec_copyin(hdtr.trailers, &iov, aiov,
1640 				     hdtr.trl_cnt, &auio.uio_resid);
1641 		if (error)
1642 			goto done;
1643 		auio.uio_iov = iov;
1644 		auio.uio_iovcnt = hdtr.trl_cnt;
1645 		auio.uio_offset = 0;
1646 		auio.uio_segflg = UIO_USERSPACE;
1647 		auio.uio_rw = UIO_WRITE;
1648 		auio.uio_td = td;
1649 
1650 		tbytes = 0;	/* avoid gcc warnings */
1651 		error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1652 
1653 		iovec_free(&iov, aiov);
1654 		if (error)
1655 			goto done;
1656 		hdtr_size += tbytes;	/* trailer bytes successfully sent */
1657 	}
1658 
1659 done:
1660 	if (vp)
1661 		vrele(vp);
1662 	if (uap->sbytes != NULL) {
1663 		sbytes += hdtr_size;
1664 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1665 	}
1666 	return (error);
1667 }
1668 
1669 int
1670 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1671 	      struct mbuf *mheader, off_t *sbytes, int flags)
1672 {
1673 	struct thread *td = curthread;
1674 	struct vm_object *obj;
1675 	struct socket *so;
1676 	struct file *fp;
1677 	struct mbuf *m, *mp;
1678 	struct sf_buf *sf;
1679 	struct vm_page *pg;
1680 	off_t off, xfsize, xbytes;
1681 	off_t hbytes = 0;
1682 	int error = 0;
1683 
1684 	if (vp->v_type != VREG) {
1685 		error = EINVAL;
1686 		goto done0;
1687 	}
1688 	if ((obj = vp->v_object) == NULL) {
1689 		error = EINVAL;
1690 		goto done0;
1691 	}
1692 	error = holdsock(td, sfd, &fp);
1693 	if (error)
1694 		goto done0;
1695 	so = (struct socket *)fp->f_data;
1696 	if (so->so_type != SOCK_STREAM) {
1697 		error = EINVAL;
1698 		goto done1;
1699 	}
1700 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1701 		error = ENOTCONN;
1702 		goto done1;
1703 	}
1704 	if (offset < 0) {
1705 		error = EINVAL;
1706 		goto done1;
1707 	}
1708 
1709 	/*
1710 	 * preallocation is required for asynchronous passing of mbufs,
1711 	 * otherwise we can wind up building up an infinite number of
1712 	 * mbufs during the asynchronous latency.
1713 	 */
1714 	if ((so->so_snd.ssb_flags & (SSB_PREALLOC | SSB_STOPSUPP)) == 0) {
1715 		error = EINVAL;
1716 		goto done1;
1717 	}
1718 
1719 	*sbytes = 0;
1720 	xbytes = 0;
1721 
1722 	/*
1723 	 * Protect against multiple writers to the socket.
1724 	 * We need at least a shared lock on the VM object
1725 	 */
1726 	ssb_lock(&so->so_snd, M_WAITOK);
1727 	vm_object_hold_shared(obj);
1728 
1729 	/*
1730 	 * Loop through the pages in the file, starting with the requested
1731 	 * offset. Get a file page (do I/O if necessary), map the file page
1732 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1733 	 * it on the socket.
1734 	 */
1735 	for (off = offset; ;
1736 	     off += xfsize, *sbytes += xfsize + hbytes, xbytes += xfsize) {
1737 		vm_pindex_t pindex;
1738 		vm_offset_t pgoff;
1739 		long space;
1740 		int loops;
1741 
1742 		pindex = OFF_TO_IDX(off);
1743 		loops = 0;
1744 
1745 retry_lookup:
1746 		/*
1747 		 * Calculate the amount to transfer. Not to exceed a page,
1748 		 * the EOF, or the passed in nbytes.
1749 		 */
1750 		xfsize = vp->v_filesize - off;
1751 		if (xfsize > PAGE_SIZE)
1752 			xfsize = PAGE_SIZE;
1753 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1754 		if (PAGE_SIZE - pgoff < xfsize)
1755 			xfsize = PAGE_SIZE - pgoff;
1756 		if (nbytes && xfsize > (nbytes - xbytes))
1757 			xfsize = nbytes - xbytes;
1758 		if (xfsize <= 0)
1759 			break;
1760 		/*
1761 		 * Optimize the non-blocking case by looking at the socket space
1762 		 * before going to the extra work of constituting the sf_buf.
1763 		 */
1764 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1765 			space = ssb_space_prealloc(&so->so_snd);
1766 		else
1767 			space = ssb_space(&so->so_snd);
1768 
1769 		if ((fp->f_flag & FNONBLOCK) && space <= 0) {
1770 			if (so->so_state & SS_CANTSENDMORE)
1771 				error = EPIPE;
1772 			else
1773 				error = EAGAIN;
1774 			goto done;
1775 		}
1776 
1777 		/*
1778 		 * Attempt to look up the page.
1779 		 *
1780 		 * Try to find the data using a shared vm_object token and
1781 		 * vm_page_lookup_sbusy_try() first.
1782 		 *
1783 		 * If data is missing, use a UIO_NOCOPY VOP_READ to load
1784 		 * the missing data and loop back up.  We avoid all sorts
1785 		 * of problems by not trying to hold onto the page during
1786 		 * the I/O.
1787 		 *
1788 		 * NOTE: The soft-busy will temporary block filesystem
1789 		 *	 truncation operations when a file is removed
1790 		 *	 while the sendfile is running.
1791 		 */
1792 		pg = vm_page_lookup_sbusy_try(obj, pindex, pgoff, xfsize);
1793 		if (pg == NULL) {
1794 			struct uio auio;
1795 			struct iovec aiov;
1796 			int bsize;
1797 
1798 			if (++loops > 100000) {
1799 				kprintf("sendfile: VOP operation failed "
1800 					"to retain page\n");
1801 				error = EIO;
1802 				goto done;
1803 			}
1804 
1805 			vm_object_drop(obj);
1806 			bsize = vp->v_mount->mnt_stat.f_iosize;
1807 			auio.uio_iov = &aiov;
1808 			auio.uio_iovcnt = 1;
1809 			aiov.iov_base = 0;
1810 			aiov.iov_len = MAXBSIZE;
1811 			auio.uio_resid = MAXBSIZE;
1812 			auio.uio_offset = trunc_page(off);
1813 			auio.uio_segflg = UIO_NOCOPY;
1814 			auio.uio_rw = UIO_READ;
1815 			auio.uio_td = td;
1816 
1817 			vn_lock(vp, LK_SHARED | LK_RETRY);
1818 			error = VOP_READ_FP(vp, &auio,
1819 					 IO_VMIO | ((MAXBSIZE / bsize) << 16),
1820 					 td->td_ucred, fp);
1821 			vn_unlock(vp);
1822 			vm_object_hold_shared(obj);
1823 
1824 			if (error)
1825 				goto done;
1826 			goto retry_lookup;
1827 		}
1828 
1829 		/*
1830 		 * Get a sendfile buf. We usually wait as long as necessary,
1831 		 * but this wait can be interrupted.
1832 		 */
1833 		if ((sf = sf_buf_alloc(pg)) == NULL) {
1834 			vm_page_sbusy_drop(pg);
1835 			/* vm_page_try_to_free(pg); */
1836 			error = EINTR;
1837 			goto done;
1838 		}
1839 
1840 		/*
1841 		 * Get an mbuf header and set it up as having external storage.
1842 		 */
1843 		MGETHDR(m, M_WAITOK, MT_DATA);
1844 		if (m == NULL) {
1845 			error = ENOBUFS;
1846 			vm_page_sbusy_drop(pg);
1847 			/* vm_page_try_to_free(pg); */
1848 			sf_buf_free(sf);
1849 			goto done;
1850 		}
1851 
1852 		m->m_ext.ext_free = sf_buf_mfree;
1853 		m->m_ext.ext_ref = sf_buf_ref;
1854 		m->m_ext.ext_arg = sf;
1855 		m->m_ext.ext_buf = (void *)sf_buf_kva(sf);
1856 		m->m_ext.ext_size = PAGE_SIZE;
1857 		m->m_data = (char *)sf_buf_kva(sf) + pgoff;
1858 		m->m_flags |= M_EXT;
1859 		m->m_pkthdr.len = m->m_len = xfsize;
1860 		KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1861 
1862 		if (mheader != NULL) {
1863 			hbytes = mheader->m_pkthdr.len;
1864 			mheader->m_pkthdr.len += m->m_pkthdr.len;
1865 			m_cat(mheader, m);
1866 			m = mheader;
1867 			mheader = NULL;
1868 		} else {
1869 			hbytes = 0;
1870 		}
1871 
1872 		/*
1873 		 * Add the buffer to the socket buffer chain.
1874 		 */
1875 		crit_enter();
1876 retry_space:
1877 		/*
1878 		 * Make sure that the socket is still able to take more data.
1879 		 * CANTSENDMORE being true usually means that the connection
1880 		 * was closed. so_error is true when an error was sensed after
1881 		 * a previous send.
1882 		 * The state is checked after the page mapping and buffer
1883 		 * allocation above since those operations may block and make
1884 		 * any socket checks stale. From this point forward, nothing
1885 		 * blocks before the pru_send (or more accurately, any blocking
1886 		 * results in a loop back to here to re-check).
1887 		 */
1888 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1889 			if (so->so_state & SS_CANTSENDMORE) {
1890 				error = EPIPE;
1891 			} else {
1892 				error = so->so_error;
1893 				so->so_error = 0;
1894 			}
1895 			m_freem(m);
1896 			crit_exit();
1897 			goto done;
1898 		}
1899 		/*
1900 		 * Wait for socket space to become available. We do this just
1901 		 * after checking the connection state above in order to avoid
1902 		 * a race condition with ssb_wait().
1903 		 */
1904 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1905 			space = ssb_space_prealloc(&so->so_snd);
1906 		else
1907 			space = ssb_space(&so->so_snd);
1908 
1909 		if (space < m->m_pkthdr.len && space < so->so_snd.ssb_lowat) {
1910 			if (fp->f_flag & FNONBLOCK) {
1911 				m_freem(m);
1912 				crit_exit();
1913 				error = EAGAIN;
1914 				goto done;
1915 			}
1916 			error = ssb_wait(&so->so_snd);
1917 			/*
1918 			 * An error from ssb_wait usually indicates that we've
1919 			 * been interrupted by a signal. If we've sent anything
1920 			 * then return bytes sent, otherwise return the error.
1921 			 */
1922 			if (error) {
1923 				m_freem(m);
1924 				crit_exit();
1925 				goto done;
1926 			}
1927 			goto retry_space;
1928 		}
1929 
1930 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1931 			for (mp = m; mp != NULL; mp = mp->m_next)
1932 				ssb_preallocstream(&so->so_snd, mp);
1933 		}
1934 		if (use_sendfile_async)
1935 			error = so_pru_senda(so, 0, m, NULL, NULL, td);
1936 		else
1937 			error = so_pru_send(so, 0, m, NULL, NULL, td);
1938 
1939 		crit_exit();
1940 		if (error)
1941 			goto done;
1942 	}
1943 	if (mheader != NULL) {
1944 		*sbytes += mheader->m_pkthdr.len;
1945 
1946 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1947 			for (mp = mheader; mp != NULL; mp = mp->m_next)
1948 				ssb_preallocstream(&so->so_snd, mp);
1949 		}
1950 		if (use_sendfile_async)
1951 			error = so_pru_senda(so, 0, mheader, NULL, NULL, td);
1952 		else
1953 			error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1954 
1955 		mheader = NULL;
1956 	}
1957 done:
1958 	vm_object_drop(obj);
1959 	ssb_unlock(&so->so_snd);
1960 done1:
1961 	dropfp(td, sfd, fp);
1962 done0:
1963 	if (mheader != NULL)
1964 		m_freem(mheader);
1965 	return (error);
1966 }
1967