xref: /dragonfly/sys/kern/uipc_syscalls.c (revision 7485684f)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
33  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
34  */
35 
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysmsg.h>
42 #include <sys/malloc.h>
43 #include <sys/filedesc.h>
44 #include <sys/event.h>
45 #include <sys/proc.h>
46 #include <sys/fcntl.h>
47 #include <sys/file.h>
48 #include <sys/filio.h>
49 #include <sys/kern_syscall.h>
50 #include <sys/mbuf.h>
51 #include <sys/protosw.h>
52 #include <sys/sfbuf.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/socketops.h>
56 #include <sys/uio.h>
57 #include <sys/vnode.h>
58 #include <sys/lock.h>
59 #include <sys/mount.h>
60 #include <sys/jail.h>
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64 #include <vm/vm.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_kern.h>
69 #include <vm/vm_extern.h>
70 #include <sys/file2.h>
71 #include <sys/signalvar.h>
72 #include <sys/serialize.h>
73 
74 #include <sys/thread2.h>
75 #include <sys/msgport2.h>
76 #include <sys/socketvar2.h>
77 #include <net/netmsg2.h>
78 #include <vm/vm_page2.h>
79 
80 extern int use_soaccept_pred_fast;
81 extern int use_sendfile_async;
82 extern int use_soconnect_async;
83 
84 /*
85  * System call interface to the socket abstraction.
86  */
87 
88 extern	struct fileops socketops;
89 
90 /*
91  * socket_args(int domain, int type, int protocol)
92  */
93 int
94 kern_socket(int domain, int type, int protocol, int *res)
95 {
96 	struct thread *td = curthread;
97 	struct filedesc *fdp = td->td_proc->p_fd;
98 	struct socket *so;
99 	struct file *fp;
100 	int fd, error;
101 	u_int fflags = 0;
102 	int oflags = 0;
103 
104 	KKASSERT(td->td_lwp);
105 
106 	if (type & SOCK_NONBLOCK) {
107 		type &= ~SOCK_NONBLOCK;
108 		fflags |= FNONBLOCK;
109 	}
110 	if (type & SOCK_CLOEXEC) {
111 		type &= ~SOCK_CLOEXEC;
112 		oflags |= O_CLOEXEC;
113 	}
114 
115 	error = falloc(td->td_lwp, &fp, &fd);
116 	if (error)
117 		return (error);
118 	error = socreate(domain, &so, type, protocol, td);
119 	if (error) {
120 		fsetfd(fdp, NULL, fd);
121 	} else {
122 		fp->f_type = DTYPE_SOCKET;
123 		fp->f_flag = FREAD | FWRITE | fflags;
124 		fp->f_ops = &socketops;
125 		fp->f_data = so;
126 		if (oflags & O_CLOEXEC)
127 			fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
128 		*res = fd;
129 		fsetfd(fdp, fp, fd);
130 	}
131 	fdrop(fp);
132 	return (error);
133 }
134 
135 /*
136  * MPALMOSTSAFE
137  */
138 int
139 sys_socket(struct sysmsg *sysmsg, const struct socket_args *uap)
140 {
141 	int error;
142 
143 	error = kern_socket(uap->domain, uap->type, uap->protocol,
144 			    &sysmsg->sysmsg_iresult);
145 
146 	return (error);
147 }
148 
149 int
150 kern_bind(int s, struct sockaddr *sa)
151 {
152 	struct thread *td = curthread;
153 	struct file *fp;
154 	int error;
155 
156 	error = holdsock(td, s, &fp);
157 	if (error)
158 		return (error);
159 	error = sobind((struct socket *)fp->f_data, sa, td);
160 	dropfp(td, s, fp);
161 
162 	return (error);
163 }
164 
165 /*
166  * bind_args(int s, caddr_t name, int namelen)
167  *
168  * MPALMOSTSAFE
169  */
170 int
171 sys_bind(struct sysmsg *sysmsg, const struct bind_args *uap)
172 {
173 	struct sockaddr *sa;
174 	int error;
175 
176 	error = getsockaddr(&sa, uap->name, uap->namelen);
177 	if (error)
178 		return (error);
179 	if (!prison_remote_ip(curthread, sa)) {
180 		kfree(sa, M_SONAME);
181 		return EAFNOSUPPORT;
182 	}
183 	error = kern_bind(uap->s, sa);
184 	kfree(sa, M_SONAME);
185 
186 	return (error);
187 }
188 
189 int
190 kern_listen(int s, int backlog)
191 {
192 	struct thread *td = curthread;
193 	struct file *fp;
194 	int error;
195 
196 	error = holdsock(td, s, &fp);
197 	if (error)
198 		return (error);
199 	error = solisten((struct socket *)fp->f_data, backlog, td);
200 	dropfp(td, s, fp);
201 
202 	return (error);
203 }
204 
205 /*
206  * listen_args(int s, int backlog)
207  *
208  * MPALMOSTSAFE
209  */
210 int
211 sys_listen(struct sysmsg *sysmsg, const struct listen_args *uap)
212 {
213 	int error;
214 
215 	error = kern_listen(uap->s, uap->backlog);
216 	return (error);
217 }
218 
219 /*
220  * Returns the accepted socket as well.
221  *
222  * NOTE!  The sockets sitting on so_comp/so_incomp might have 0 refs, the
223  *	  pool token is absolutely required to avoid a sofree() race,
224  *	  as well as to avoid tailq handling races.
225  */
226 static boolean_t
227 soaccept_predicate(struct netmsg_so_notify *msg)
228 {
229 	struct socket *head = msg->base.nm_so;
230 	struct socket *so;
231 
232 	if (head->so_error != 0) {
233 		msg->base.lmsg.ms_error = head->so_error;
234 		return (TRUE);
235 	}
236 	lwkt_getpooltoken(head);
237 	if (!TAILQ_EMPTY(&head->so_comp)) {
238 		/* Abuse nm_so field as copy in/copy out parameter. XXX JH */
239 		so = TAILQ_FIRST(&head->so_comp);
240 		KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) == SS_COMP);
241 		TAILQ_REMOVE(&head->so_comp, so, so_list);
242 		head->so_qlen--;
243 		soclrstate(so, SS_COMP);
244 
245 		/*
246 		 * Keep a reference before clearing the so_head
247 		 * to avoid racing socket close in netisr.
248 		 */
249 		soreference(so);
250 		so->so_head = NULL;
251 
252 		lwkt_relpooltoken(head);
253 
254 		msg->base.lmsg.ms_error = 0;
255 		msg->base.nm_so = so;
256 		return (TRUE);
257 	}
258 	lwkt_relpooltoken(head);
259 	if (head->so_state & SS_CANTRCVMORE) {
260 		msg->base.lmsg.ms_error = ECONNABORTED;
261 		return (TRUE);
262 	}
263 	if (msg->nm_fflags & FNONBLOCK) {
264 		msg->base.lmsg.ms_error = EWOULDBLOCK;
265 		return (TRUE);
266 	}
267 
268 	return (FALSE);
269 }
270 
271 /*
272  * The second argument to kern_accept() is a handle to a struct sockaddr.
273  * This allows kern_accept() to return a pointer to an allocated struct
274  * sockaddr which must be freed later with FREE().  The caller must
275  * initialize *name to NULL.
276  */
277 int
278 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res,
279     int sockflags)
280 {
281 	struct thread *td = curthread;
282 	struct filedesc *fdp = td->td_proc->p_fd;
283 	struct file *lfp = NULL;
284 	struct file *nfp = NULL;
285 	struct sockaddr *sa;
286 	struct socket *head, *so;
287 	struct netmsg_so_notify msg;
288 	int fd;
289 	u_int fflag;		/* type must match fp->f_flag */
290 	int error, tmp;
291 
292 	*res = -1;
293 	if (name && namelen && *namelen < 0)
294 		return (EINVAL);
295 
296 	error = holdsock(td, s, &lfp);
297 	if (error)
298 		return (error);
299 
300 	error = falloc(td->td_lwp, &nfp, &fd);
301 	if (error) {		/* Probably ran out of file descriptors. */
302 		fdrop(lfp);
303 		return (error);
304 	}
305 	head = (struct socket *)lfp->f_data;
306 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
307 		error = EINVAL;
308 		goto done;
309 	}
310 
311 	if (fflags & O_FBLOCKING)
312 		fflags |= lfp->f_flag & ~FNONBLOCK;
313 	else if (fflags & O_FNONBLOCKING)
314 		fflags |= lfp->f_flag | FNONBLOCK;
315 	else
316 		fflags = lfp->f_flag;
317 
318 	if (use_soaccept_pred_fast) {
319 		boolean_t pred;
320 
321 		/* Initialize necessary parts for soaccept_predicate() */
322 		netmsg_init(&msg.base, head, &netisr_apanic_rport, 0, NULL);
323 		msg.nm_fflags = fflags;
324 
325 		lwkt_getpooltoken(head);
326 		pred = soaccept_predicate(&msg);
327 		lwkt_relpooltoken(head);
328 
329 		if (pred) {
330 			error = msg.base.lmsg.ms_error;
331 			if (error)
332 				goto done;
333 			else
334 				goto accepted;
335 		}
336 	}
337 
338 	/* optimize for uniprocessor case later XXX JH */
339 	netmsg_init_abortable(&msg.base, head, &curthread->td_msgport,
340 			      0, netmsg_so_notify, netmsg_so_notify_doabort);
341 	msg.nm_predicate = soaccept_predicate;
342 	msg.nm_fflags = fflags;
343 	msg.nm_etype = NM_REVENT;
344 	error = lwkt_domsg(head->so_port, &msg.base.lmsg, PCATCH);
345 	if (error)
346 		goto done;
347 
348 accepted:
349 	/*
350 	 * At this point we have the connection that's ready to be accepted.
351 	 *
352 	 * NOTE! soaccept_predicate() ref'd so for us, and soaccept() expects
353 	 * 	 to eat the ref and turn it into a descriptor.
354 	 */
355 	so = msg.base.nm_so;
356 
357 	fflag = lfp->f_flag;
358 
359 	/* connection has been removed from the listen queue */
360 	KNOTE(&head->so_rcv.ssb_kq.ki_note, 0);
361 
362 	if (sockflags & SOCK_KERN_NOINHERIT) {
363 		fflag &= ~(FASYNC | FNONBLOCK);
364 		if (sockflags & SOCK_NONBLOCK)
365 			fflag |= FNONBLOCK;
366 	} else {
367 		if (head->so_sigio != NULL)
368 			fsetown(fgetown(&head->so_sigio), &so->so_sigio);
369 	}
370 
371 	nfp->f_type = DTYPE_SOCKET;
372 	nfp->f_flag = fflag;
373 	nfp->f_ops = &socketops;
374 	nfp->f_data = so;
375 	/* Sync socket async state with file flags */
376 	tmp = fflag & FASYNC;
377 	fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, td->td_ucred, NULL);
378 
379 	sa = NULL;
380 	if (so->so_faddr != NULL) {
381 		sa = so->so_faddr;
382 		so->so_faddr = NULL;
383 
384 		soaccept_generic(so);
385 		error = 0;
386 	} else {
387 		error = soaccept(so, &sa);
388 	}
389 
390 	/*
391 	 * Set the returned name and namelen as applicable.  Set the returned
392 	 * namelen to 0 for older code which might ignore the return value
393 	 * from accept.
394 	 */
395 	if (error == 0) {
396 		if (sa && name && namelen) {
397 			if (*namelen > sa->sa_len)
398 				*namelen = sa->sa_len;
399 			*name = sa;
400 		} else {
401 			if (sa)
402 				kfree(sa, M_SONAME);
403 		}
404 	}
405 
406 done:
407 	/*
408 	 * If an error occured clear the reserved descriptor, else associate
409 	 * nfp with it.
410 	 *
411 	 * Note that *res is normally ignored if an error is returned but
412 	 * a syscall message will still have access to the result code.
413 	 */
414 	if (error) {
415 		fsetfd(fdp, NULL, fd);
416 	} else {
417 		if (sockflags & SOCK_CLOEXEC)
418 			fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
419 		*res = fd;
420 		fsetfd(fdp, nfp, fd);
421 	}
422 	fdrop(nfp);
423 	dropfp(td, s, lfp);
424 
425 	return (error);
426 }
427 
428 /*
429  * accept(int s, caddr_t name, int *anamelen)
430  *
431  * MPALMOSTSAFE
432  */
433 int
434 sys_accept(struct sysmsg *sysmsg, const struct accept_args *uap)
435 {
436 	struct sockaddr *sa = NULL;
437 	int sa_len;
438 	int error;
439 
440 	if (uap->name) {
441 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
442 		if (error)
443 			return (error);
444 
445 		error = kern_accept(uap->s, 0, &sa, &sa_len,
446 				    &sysmsg->sysmsg_iresult, 0);
447 
448 		if (error == 0) {
449 			prison_local_ip(curthread, sa);
450 			error = copyout(sa, uap->name, sa_len);
451 		}
452 		if (error == 0) {
453 			error = copyout(&sa_len, uap->anamelen,
454 					sizeof(*uap->anamelen));
455 		}
456 		if (sa)
457 			kfree(sa, M_SONAME);
458 	} else {
459 		error = kern_accept(uap->s, 0, NULL, 0,
460 				    &sysmsg->sysmsg_iresult, 0);
461 	}
462 	return (error);
463 }
464 
465 /*
466  * extaccept(int s, int fflags, caddr_t name, int *anamelen)
467  *
468  * MPALMOSTSAFE
469  */
470 int
471 sys_extaccept(struct sysmsg *sysmsg, const struct extaccept_args *uap)
472 {
473 	struct sockaddr *sa = NULL;
474 	int sa_len;
475 	int error;
476 	int fflags = uap->flags & O_FMASK;
477 
478 	if (uap->name) {
479 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
480 		if (error)
481 			return (error);
482 
483 		error = kern_accept(uap->s, fflags, &sa, &sa_len,
484 				    &sysmsg->sysmsg_iresult, 0);
485 
486 		if (error == 0) {
487 			prison_local_ip(curthread, sa);
488 			error = copyout(sa, uap->name, sa_len);
489 		}
490 		if (error == 0) {
491 			error = copyout(&sa_len, uap->anamelen,
492 			    sizeof(*uap->anamelen));
493 		}
494 		if (sa)
495 			kfree(sa, M_SONAME);
496 	} else {
497 		error = kern_accept(uap->s, fflags, NULL, 0,
498 				    &sysmsg->sysmsg_iresult, 0);
499 	}
500 	return (error);
501 }
502 
503 /*
504  * accept4(int s, caddr_t name, int *anamelen, int flags)
505  *
506  * MPALMOSTSAFE
507  */
508 int
509 sys_accept4(struct sysmsg *sysmsg, const struct accept4_args *uap)
510 {
511 	struct sockaddr *sa = NULL;
512 	int sa_len;
513 	int error;
514 	int sockflags;
515 
516 	if (uap->flags & ~(SOCK_NONBLOCK | SOCK_CLOEXEC))
517 		return (EINVAL);
518 	sockflags = uap->flags | SOCK_KERN_NOINHERIT;
519 
520 	if (uap->name) {
521 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
522 		if (error)
523 			return (error);
524 
525 		error = kern_accept(uap->s, 0, &sa, &sa_len,
526 				    &sysmsg->sysmsg_iresult, sockflags);
527 
528 		if (error == 0) {
529 			prison_local_ip(curthread, sa);
530 			error = copyout(sa, uap->name, sa_len);
531 		}
532 		if (error == 0) {
533 			error = copyout(&sa_len, uap->anamelen,
534 					sizeof(*uap->anamelen));
535 		}
536 		if (sa)
537 			kfree(sa, M_SONAME);
538 	} else {
539 		error = kern_accept(uap->s, 0, NULL, 0,
540 				    &sysmsg->sysmsg_iresult, sockflags);
541 	}
542 	return (error);
543 }
544 
545 /*
546  * Returns TRUE if predicate satisfied.
547  */
548 static boolean_t
549 soconnected_predicate(struct netmsg_so_notify *msg)
550 {
551 	struct socket *so = msg->base.nm_so;
552 
553 	/* check predicate */
554 	if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
555 		msg->base.lmsg.ms_error = so->so_error;
556 		return (TRUE);
557 	}
558 
559 	return (FALSE);
560 }
561 
562 int
563 kern_connect(int s, int fflags, struct sockaddr *sa)
564 {
565 	struct thread *td = curthread;
566 	struct file *fp;
567 	struct socket *so;
568 	int error, interrupted = 0;
569 
570 	error = holdsock(td, s, &fp);
571 	if (error)
572 		return (error);
573 	so = (struct socket *)fp->f_data;
574 
575 	if (fflags & O_FBLOCKING)
576 		/* fflags &= ~FNONBLOCK; */;
577 	else if (fflags & O_FNONBLOCKING)
578 		fflags |= FNONBLOCK;
579 	else
580 		fflags = fp->f_flag;
581 
582 	if (so->so_state & SS_ISCONNECTING) {
583 		error = EALREADY;
584 		goto done;
585 	}
586 	error = soconnect(so, sa, td, use_soconnect_async ? FALSE : TRUE);
587 	if (error)
588 		goto bad;
589 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
590 		error = EINPROGRESS;
591 		goto done;
592 	}
593 	if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
594 		struct netmsg_so_notify msg;
595 
596 		netmsg_init_abortable(&msg.base, so,
597 				      &curthread->td_msgport,
598 				      0,
599 				      netmsg_so_notify,
600 				      netmsg_so_notify_doabort);
601 		msg.nm_predicate = soconnected_predicate;
602 		msg.nm_etype = NM_REVENT;
603 		error = lwkt_domsg(so->so_port, &msg.base.lmsg, PCATCH);
604 		if (error == EINTR || error == ERESTART)
605 			interrupted = 1;
606 	}
607 	if (error == 0) {
608 		error = so->so_error;
609 		so->so_error = 0;
610 	}
611 bad:
612 	if (!interrupted)
613 		soclrstate(so, SS_ISCONNECTING);
614 	if (error == ERESTART)
615 		error = EINTR;
616 done:
617 	dropfp(td, s, fp);
618 
619 	return (error);
620 }
621 
622 /*
623  * connect_args(int s, caddr_t name, int namelen)
624  *
625  * MPALMOSTSAFE
626  */
627 int
628 sys_connect(struct sysmsg *sysmsg, const struct connect_args *uap)
629 {
630 	struct sockaddr *sa;
631 	int error;
632 
633 	error = getsockaddr(&sa, uap->name, uap->namelen);
634 	if (error)
635 		return (error);
636 	if (!prison_remote_ip(curthread, sa)) {
637 		kfree(sa, M_SONAME);
638 		return EAFNOSUPPORT;
639 	}
640 	error = kern_connect(uap->s, 0, sa);
641 	kfree(sa, M_SONAME);
642 
643 	return (error);
644 }
645 
646 /*
647  * connect_args(int s, int fflags, caddr_t name, int namelen)
648  *
649  * MPALMOSTSAFE
650  */
651 int
652 sys_extconnect(struct sysmsg *sysmsg, const struct extconnect_args *uap)
653 {
654 	struct sockaddr *sa;
655 	int error;
656 	int fflags = uap->flags & O_FMASK;
657 
658 	error = getsockaddr(&sa, uap->name, uap->namelen);
659 	if (error)
660 		return (error);
661 	if (!prison_remote_ip(curthread, sa)) {
662 		kfree(sa, M_SONAME);
663 		return EAFNOSUPPORT;
664 	}
665 	error = kern_connect(uap->s, fflags, sa);
666 	kfree(sa, M_SONAME);
667 
668 	return (error);
669 }
670 
671 int
672 kern_socketpair(int domain, int type, int protocol, int *sv)
673 {
674 	struct thread *td = curthread;
675 	struct filedesc *fdp;
676 	struct file *fp1, *fp2;
677 	struct socket *so1, *so2;
678 	struct ucred *cred = curthread->td_ucred;
679 	int fd1, fd2, error;
680 	u_int fflags = 0;
681 	int oflags = 0;
682 
683 	if (type & SOCK_NONBLOCK) {
684 		type &= ~SOCK_NONBLOCK;
685 		fflags |= FNONBLOCK;
686 	}
687 	if (type & SOCK_CLOEXEC) {
688 		type &= ~SOCK_CLOEXEC;
689 		oflags |= O_CLOEXEC;
690 	}
691 
692 	fdp = td->td_proc->p_fd;
693 	error = socreate(domain, &so1, type, protocol, td);
694 	if (error)
695 		return (error);
696 	error = socreate(domain, &so2, type, protocol, td);
697 	if (error)
698 		goto free1;
699 	error = falloc(td->td_lwp, &fp1, &fd1);
700 	if (error)
701 		goto free2;
702 	sv[0] = fd1;
703 	fp1->f_data = so1;
704 	error = falloc(td->td_lwp, &fp2, &fd2);
705 	if (error)
706 		goto free3;
707 	fp2->f_data = so2;
708 	sv[1] = fd2;
709 	error = soconnect2(so1, so2, cred);
710 	if (error)
711 		goto free4;
712 	if (type == SOCK_DGRAM) {
713 		/*
714 		 * Datagram socket connection is asymmetric.
715 		 */
716 		 error = soconnect2(so2, so1, cred);
717 		 if (error)
718 			goto free4;
719 	}
720 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
721 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE|fflags;
722 	fp1->f_ops = fp2->f_ops = &socketops;
723 	if (oflags & O_CLOEXEC) {
724 		fdp->fd_files[fd1].fileflags |= UF_EXCLOSE;
725 		fdp->fd_files[fd2].fileflags |= UF_EXCLOSE;
726 	}
727 	fsetfd(fdp, fp1, fd1);
728 	fsetfd(fdp, fp2, fd2);
729 	fdrop(fp1);
730 	fdrop(fp2);
731 	return (error);
732 free4:
733 	fsetfd(fdp, NULL, fd2);
734 	fdrop(fp2);
735 free3:
736 	fsetfd(fdp, NULL, fd1);
737 	fdrop(fp1);
738 free2:
739 	(void)soclose(so2, 0);
740 free1:
741 	(void)soclose(so1, 0);
742 	return (error);
743 }
744 
745 /*
746  * socketpair(int domain, int type, int protocol, int *rsv)
747  */
748 int
749 sys_socketpair(struct sysmsg *sysmsg, const struct socketpair_args *uap)
750 {
751 	int error, sockv[2];
752 
753 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
754 
755 	if (error == 0) {
756 		error = copyout(sockv, uap->rsv, sizeof(sockv));
757 
758 		if (error != 0) {
759 			kern_close(sockv[0]);
760 			kern_close(sockv[1]);
761 		}
762 	}
763 
764 	return (error);
765 }
766 
767 int
768 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
769 	     struct mbuf *control, int flags, size_t *res)
770 {
771 	struct thread *td = curthread;
772 	struct lwp *lp = td->td_lwp;
773 	struct proc *p = td->td_proc;
774 	struct file *fp;
775 	size_t len;
776 	int error;
777 	struct socket *so;
778 #ifdef KTRACE
779 	struct iovec *ktriov = NULL;
780 	struct uio ktruio;
781 #endif
782 
783 	error = holdsock(td, s, &fp);
784 	if (error)
785 		return (error);
786 #ifdef KTRACE
787 	if (KTRPOINT(td, KTR_GENIO)) {
788 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
789 
790 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
791 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
792 		ktruio = *auio;
793 	}
794 #endif
795 	len = auio->uio_resid;
796 	so = (struct socket *)fp->f_data;
797 	if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
798 		if (fp->f_flag & FNONBLOCK)
799 			flags |= MSG_FNONBLOCKING;
800 	}
801 	error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
802 	if (error) {
803 		if (auio->uio_resid != len && (error == ERESTART ||
804 		    error == EINTR || error == EWOULDBLOCK))
805 			error = 0;
806 		if (error == EPIPE && !(flags & MSG_NOSIGNAL) &&
807 		    !(so->so_options & SO_NOSIGPIPE))
808 			lwpsignal(p, lp, SIGPIPE);
809 	}
810 #ifdef KTRACE
811 	if (ktriov != NULL) {
812 		if (error == 0) {
813 			ktruio.uio_iov = ktriov;
814 			ktruio.uio_resid = len - auio->uio_resid;
815 			ktrgenio(lp, s, UIO_WRITE, &ktruio, error);
816 		}
817 		kfree(ktriov, M_TEMP);
818 	}
819 #endif
820 	if (error == 0)
821 		*res  = len - auio->uio_resid;
822 	dropfp(td, s, fp);
823 
824 	return (error);
825 }
826 
827 /*
828  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
829  *
830  * MPALMOSTSAFE
831  */
832 int
833 sys_sendto(struct sysmsg *sysmsg, const struct sendto_args *uap)
834 {
835 	struct thread *td = curthread;
836 	struct uio auio;
837 	struct iovec aiov;
838 	struct sockaddr *sa = NULL;
839 	int error;
840 
841 	if (uap->to) {
842 		error = getsockaddr(&sa, uap->to, uap->tolen);
843 		if (error)
844 			return (error);
845 		if (!prison_remote_ip(curthread, sa)) {
846 			kfree(sa, M_SONAME);
847 			return EAFNOSUPPORT;
848 		}
849 	}
850 	aiov.iov_base = uap->buf;
851 	aiov.iov_len = uap->len;
852 	auio.uio_iov = &aiov;
853 	auio.uio_iovcnt = 1;
854 	auio.uio_offset = 0;
855 	auio.uio_resid = uap->len;
856 	auio.uio_segflg = UIO_USERSPACE;
857 	auio.uio_rw = UIO_WRITE;
858 	auio.uio_td = td;
859 
860 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
861 			     &sysmsg->sysmsg_szresult);
862 
863 	if (sa)
864 		kfree(sa, M_SONAME);
865 	return (error);
866 }
867 
868 /*
869  * sendmsg_args(int s, caddr_t msg, int flags)
870  *
871  * MPALMOSTSAFE
872  */
873 int
874 sys_sendmsg(struct sysmsg *sysmsg, const struct sendmsg_args *uap)
875 {
876 	struct thread *td = curthread;
877 	struct msghdr msg;
878 	struct uio auio;
879 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
880 	struct sockaddr *sa = NULL;
881 	struct mbuf *control = NULL;
882 	int error;
883 
884 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
885 	if (error)
886 		return (error);
887 
888 	/*
889 	 * Conditionally copyin msg.msg_name.
890 	 */
891 	if (msg.msg_name) {
892 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
893 		if (error)
894 			return (error);
895 		if (!prison_remote_ip(curthread, sa)) {
896 			kfree(sa, M_SONAME);
897 			return EAFNOSUPPORT;
898 		}
899 	}
900 
901 	/*
902 	 * Populate auio.
903 	 */
904 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
905 			     &auio.uio_resid);
906 	if (error)
907 		goto cleanup2;
908 	auio.uio_iov = iov;
909 	auio.uio_iovcnt = msg.msg_iovlen;
910 	auio.uio_offset = 0;
911 	auio.uio_segflg = UIO_USERSPACE;
912 	auio.uio_rw = UIO_WRITE;
913 	auio.uio_td = td;
914 
915 	/*
916 	 * Conditionally copyin msg.msg_control.
917 	 */
918 	if (msg.msg_control) {
919 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
920 		    msg.msg_controllen > MLEN) {
921 			error = EINVAL;
922 			goto cleanup;
923 		}
924 		control = m_get(M_WAITOK, MT_CONTROL);
925 		control->m_len = msg.msg_controllen;
926 		error = copyin(msg.msg_control, mtod(control, caddr_t),
927 			       msg.msg_controllen);
928 		if (error) {
929 			m_free(control);
930 			goto cleanup;
931 		}
932 	}
933 
934 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
935 			     &sysmsg->sysmsg_szresult);
936 
937 cleanup:
938 	iovec_free(&iov, aiov);
939 cleanup2:
940 	if (sa)
941 		kfree(sa, M_SONAME);
942 	return (error);
943 }
944 
945 /*
946  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
947  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
948  * Don't forget to FREE() and m_free() these if they are returned.
949  */
950 int
951 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
952 	     struct mbuf **control, int *flags, size_t *res)
953 {
954 	struct thread *td = curthread;
955 	struct file *fp;
956 	size_t len;
957 	int error;
958 	int lflags;
959 	struct socket *so;
960 #ifdef KTRACE
961 	struct iovec *ktriov = NULL;
962 	struct uio ktruio;
963 #endif
964 
965 	error = holdsock(td, s, &fp);
966 	if (error)
967 		return (error);
968 #ifdef KTRACE
969 	if (KTRPOINT(td, KTR_GENIO)) {
970 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
971 
972 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
973 		bcopy(auio->uio_iov, ktriov, iovlen);
974 		ktruio = *auio;
975 	}
976 #endif
977 	len = auio->uio_resid;
978 	so = (struct socket *)fp->f_data;
979 
980 	if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
981 		if (fp->f_flag & FNONBLOCK) {
982 			if (flags) {
983 				*flags |= MSG_FNONBLOCKING;
984 			} else {
985 				lflags = MSG_FNONBLOCKING;
986 				flags = &lflags;
987 			}
988 		}
989 	}
990 
991 	error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
992 	if (error) {
993 		if (auio->uio_resid != len && (error == ERESTART ||
994 		    error == EINTR || error == EWOULDBLOCK))
995 			error = 0;
996 	}
997 #ifdef KTRACE
998 	if (ktriov != NULL) {
999 		if (error == 0) {
1000 			ktruio.uio_iov = ktriov;
1001 			ktruio.uio_resid = len - auio->uio_resid;
1002 			ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error);
1003 		}
1004 		kfree(ktriov, M_TEMP);
1005 	}
1006 #endif
1007 	if (error == 0)
1008 		*res = len - auio->uio_resid;
1009 	dropfp(td, s, fp);
1010 
1011 	return (error);
1012 }
1013 
1014 /*
1015  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
1016  *			caddr_t from, int *fromlenaddr)
1017  *
1018  * MPALMOSTSAFE
1019  */
1020 int
1021 sys_recvfrom(struct sysmsg *sysmsg, const struct recvfrom_args *uap)
1022 {
1023 	struct thread *td = curthread;
1024 	struct uio auio;
1025 	struct iovec aiov;
1026 	struct sockaddr *sa = NULL;
1027 	int error, fromlen;
1028 	int flags;
1029 
1030 	if (uap->from && uap->fromlenaddr) {
1031 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
1032 		if (error)
1033 			return (error);
1034 		if (fromlen < 0)
1035 			return (EINVAL);
1036 	} else {
1037 		fromlen = 0;
1038 	}
1039 	aiov.iov_base = uap->buf;
1040 	aiov.iov_len = uap->len;
1041 	auio.uio_iov = &aiov;
1042 	auio.uio_iovcnt = 1;
1043 	auio.uio_offset = 0;
1044 	auio.uio_resid = uap->len;
1045 	auio.uio_segflg = UIO_USERSPACE;
1046 	auio.uio_rw = UIO_READ;
1047 	auio.uio_td = td;
1048 	flags = uap->flags;
1049 
1050 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
1051 			     &flags, &sysmsg->sysmsg_szresult);
1052 
1053 	if (error == 0 && uap->from) {
1054 		/* note: sa may still be NULL */
1055 		if (sa) {
1056 			fromlen = MIN(fromlen, sa->sa_len);
1057 			prison_local_ip(curthread, sa);
1058 			error = copyout(sa, uap->from, fromlen);
1059 		} else {
1060 			fromlen = 0;
1061 		}
1062 		if (error == 0) {
1063 			error = copyout(&fromlen, uap->fromlenaddr,
1064 					sizeof(fromlen));
1065 		}
1066 	}
1067 	if (sa)
1068 		kfree(sa, M_SONAME);
1069 
1070 	return (error);
1071 }
1072 
1073 /*
1074  * recvmsg_args(int s, struct msghdr *msg, int flags)
1075  *
1076  * MPALMOSTSAFE
1077  */
1078 int
1079 sys_recvmsg(struct sysmsg *sysmsg, const struct recvmsg_args *uap)
1080 {
1081 	struct thread *td = curthread;
1082 	struct msghdr msg;
1083 	struct uio auio;
1084 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1085 	struct mbuf *m, *control = NULL;
1086 	struct sockaddr *sa = NULL;
1087 	caddr_t ctlbuf;
1088 	socklen_t *ufromlenp, *ucontrollenp;
1089 	int error, fromlen, controllen, len, flags, *uflagsp;
1090 
1091 	/*
1092 	 * This copyin handles everything except the iovec.
1093 	 */
1094 	error = copyin(uap->msg, &msg, sizeof(msg));
1095 	if (error)
1096 		return (error);
1097 
1098 	if (msg.msg_name && msg.msg_namelen < 0)
1099 		return (EINVAL);
1100 	if (msg.msg_control && msg.msg_controllen < 0)
1101 		return (EINVAL);
1102 
1103 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1104 		    msg_namelen));
1105 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1106 		       msg_controllen));
1107 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
1108 							msg_flags));
1109 
1110 	/*
1111 	 * Populate auio.
1112 	 */
1113 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
1114 			     &auio.uio_resid);
1115 	if (error)
1116 		return (error);
1117 	auio.uio_iov = iov;
1118 	auio.uio_iovcnt = msg.msg_iovlen;
1119 	auio.uio_offset = 0;
1120 	auio.uio_segflg = UIO_USERSPACE;
1121 	auio.uio_rw = UIO_READ;
1122 	auio.uio_td = td;
1123 
1124 	flags = uap->flags;
1125 
1126 	error = kern_recvmsg(uap->s,
1127 			     (msg.msg_name ? &sa : NULL), &auio,
1128 			     (msg.msg_control ? &control : NULL), &flags,
1129 			     &sysmsg->sysmsg_szresult);
1130 
1131 	/*
1132 	 * Conditionally copyout the name and populate the namelen field.
1133 	 */
1134 	if (error == 0 && msg.msg_name) {
1135 		/* note: sa may still be NULL */
1136 		if (sa != NULL) {
1137 			fromlen = MIN(msg.msg_namelen, sa->sa_len);
1138 			prison_local_ip(curthread, sa);
1139 			error = copyout(sa, msg.msg_name, fromlen);
1140 		} else {
1141 			fromlen = 0;
1142 		}
1143 		if (error == 0)
1144 			error = copyout(&fromlen, ufromlenp,
1145 			    sizeof(*ufromlenp));
1146 	}
1147 
1148 	/*
1149 	 * Copyout msg.msg_control and msg.msg_controllen.
1150 	 */
1151 	if (error == 0 && msg.msg_control) {
1152 		len = msg.msg_controllen;
1153 		m = control;
1154 		ctlbuf = (caddr_t)msg.msg_control;
1155 
1156 		while(m && len > 0) {
1157 			unsigned int tocopy;
1158 
1159 			if (len >= m->m_len) {
1160 				tocopy = m->m_len;
1161 			} else {
1162 				msg.msg_flags |= MSG_CTRUNC;
1163 				tocopy = len;
1164 			}
1165 
1166 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1167 			if (error)
1168 				goto cleanup;
1169 
1170 			ctlbuf += tocopy;
1171 			len -= tocopy;
1172 			m = m->m_next;
1173 		}
1174 		controllen = ctlbuf - (caddr_t)msg.msg_control;
1175 		error = copyout(&controllen, ucontrollenp,
1176 		    sizeof(*ucontrollenp));
1177 	}
1178 
1179 	if (error == 0)
1180 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1181 
1182 cleanup:
1183 	if (sa)
1184 		kfree(sa, M_SONAME);
1185 	iovec_free(&iov, aiov);
1186 	if (control)
1187 		m_freem(control);
1188 	return (error);
1189 }
1190 
1191 /*
1192  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1193  * in kernel pointer instead of a userland pointer.  This allows us
1194  * to manipulate socket options in the emulation code.
1195  */
1196 int
1197 kern_setsockopt(int s, struct sockopt *sopt)
1198 {
1199 	struct thread *td = curthread;
1200 	struct file *fp;
1201 	int error;
1202 
1203 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1204 		return (EFAULT);
1205 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1206 		return (EINVAL);
1207 	if (sopt->sopt_valsize > SOMAXOPT_SIZE)	/* unsigned */
1208 		return (EINVAL);
1209 
1210 	error = holdsock(td, s, &fp);
1211 	if (error)
1212 		return (error);
1213 
1214 	error = sosetopt((struct socket *)fp->f_data, sopt);
1215 	dropfp(td, s, fp);
1216 
1217 	return (error);
1218 }
1219 
1220 /*
1221  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1222  *
1223  * MPALMOSTSAFE
1224  */
1225 int
1226 sys_setsockopt(struct sysmsg *sysmsg, const struct setsockopt_args *uap)
1227 {
1228 	struct thread *td = curthread;
1229 	struct sockopt sopt;
1230 	int error;
1231 
1232 	sopt.sopt_level = uap->level;
1233 	sopt.sopt_name = uap->name;
1234 	sopt.sopt_valsize = uap->valsize;
1235 	sopt.sopt_td = td;
1236 	sopt.sopt_val = NULL;
1237 
1238 	if (sopt.sopt_valsize > SOMAXOPT_SIZE) /* unsigned */
1239 		return (EINVAL);
1240 	if (uap->val) {
1241 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1242 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1243 		if (error)
1244 			goto out;
1245 	}
1246 
1247 	error = kern_setsockopt(uap->s, &sopt);
1248 out:
1249 	if (uap->val)
1250 		kfree(sopt.sopt_val, M_TEMP);
1251 	return(error);
1252 }
1253 
1254 /*
1255  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1256  * in kernel pointer instead of a userland pointer.  This allows us
1257  * to manipulate socket options in the emulation code.
1258  */
1259 int
1260 kern_getsockopt(int s, struct sockopt *sopt)
1261 {
1262 	struct thread *td = curthread;
1263 	struct file *fp;
1264 	int error;
1265 
1266 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1267 		return (EFAULT);
1268 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1269 		return (EINVAL);
1270 
1271 	error = holdsock(td, s, &fp);
1272 	if (error)
1273 		return (error);
1274 
1275 	error = sogetopt((struct socket *)fp->f_data, sopt);
1276 	dropfp(td, s, fp);
1277 
1278 	return (error);
1279 }
1280 
1281 /*
1282  * getsockopt_args(int s, int level, int name, caddr_t val, int *avalsize)
1283  *
1284  * MPALMOSTSAFE
1285  */
1286 int
1287 sys_getsockopt(struct sysmsg *sysmsg, const struct getsockopt_args *uap)
1288 {
1289 	struct thread *td = curthread;
1290 	struct sockopt sopt;
1291 	int error, valsize, valszmax, mflag = 0;
1292 
1293 	if (uap->val) {
1294 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1295 		if (error)
1296 			return (error);
1297 	} else {
1298 		valsize = 0;
1299 	}
1300 
1301 	sopt.sopt_level = uap->level;
1302 	sopt.sopt_name = uap->name;
1303 	sopt.sopt_valsize = valsize;
1304 	sopt.sopt_td = td;
1305 	sopt.sopt_val = NULL;
1306 
1307 	if (td->td_proc->p_ucred->cr_uid == 0) {
1308 		valszmax = SOMAXOPT_SIZE0;
1309 		mflag = M_NULLOK;
1310 	} else {
1311 		valszmax = SOMAXOPT_SIZE;
1312 	}
1313 	if (sopt.sopt_valsize > valszmax) /* unsigned */
1314 		return (EINVAL);
1315 	if (uap->val) {
1316 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP,
1317 		    M_WAITOK | mflag);
1318 		if (sopt.sopt_val == NULL)
1319 			return (ENOBUFS);
1320 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1321 		if (error)
1322 			goto out;
1323 	}
1324 
1325 	error = kern_getsockopt(uap->s, &sopt);
1326 	if (error)
1327 		goto out;
1328 	valsize = sopt.sopt_valsize;
1329 	error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1330 	if (error)
1331 		goto out;
1332 	if (uap->val)
1333 		error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1334 out:
1335 	if (uap->val)
1336 		kfree(sopt.sopt_val, M_TEMP);
1337 	return (error);
1338 }
1339 
1340 /*
1341  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1342  * This allows kern_getsockname() to return a pointer to an allocated struct
1343  * sockaddr which must be freed later with FREE().  The caller must
1344  * initialize *name to NULL.
1345  */
1346 int
1347 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1348 {
1349 	struct thread *td = curthread;
1350 	struct file *fp;
1351 	struct socket *so;
1352 	struct sockaddr *sa = NULL;
1353 	int error;
1354 
1355 	error = holdsock(td, s, &fp);
1356 	if (error)
1357 		return (error);
1358 	if (*namelen < 0) {
1359 		fdrop(fp);
1360 		return (EINVAL);
1361 	}
1362 	so = (struct socket *)fp->f_data;
1363 	error = so_pru_sockaddr(so, &sa);
1364 	if (error == 0) {
1365 		if (sa == NULL) {
1366 			*namelen = 0;
1367 		} else {
1368 			*namelen = MIN(*namelen, sa->sa_len);
1369 			*name = sa;
1370 		}
1371 	}
1372 	dropfp(td, s, fp);
1373 
1374 	return (error);
1375 }
1376 
1377 /*
1378  * getsockname_args(int fdes, caddr_t asa, int *alen)
1379  *
1380  * Get socket name.
1381  *
1382  * MPALMOSTSAFE
1383  */
1384 int
1385 sys_getsockname(struct sysmsg *sysmsg, const struct getsockname_args *uap)
1386 {
1387 	struct sockaddr *sa = NULL;
1388 	struct sockaddr satmp;
1389 	int error, sa_len_in, sa_len_out;
1390 
1391 	error = copyin(uap->alen, &sa_len_in, sizeof(sa_len_in));
1392 	if (error)
1393 		return (error);
1394 
1395 	sa_len_out = sa_len_in;
1396 	error = kern_getsockname(uap->fdes, &sa, &sa_len_out);
1397 
1398 	if (error == 0) {
1399 		if (sa) {
1400 			prison_local_ip(curthread, sa);
1401 			error = copyout(sa, uap->asa, sa_len_out);
1402 		} else {
1403 			/*
1404 			 * unnamed uipc sockets don't bother storing
1405 			 * sockaddr, simulate an AF_LOCAL sockaddr.
1406 			 */
1407 			sa_len_out = sizeof(satmp);
1408 			if (sa_len_out > sa_len_in)
1409 				sa_len_out = sa_len_in;
1410 			if (sa_len_out < 0)
1411 				sa_len_out = 0;
1412 			bzero(&satmp, sizeof(satmp));
1413 			satmp.sa_len = sa_len_out;
1414 			satmp.sa_family = AF_LOCAL;
1415 			error = copyout(&satmp, uap->asa, sa_len_out);
1416 		}
1417 	}
1418 	if (error == 0 && sa_len_out != sa_len_in)
1419 		error = copyout(&sa_len_out, uap->alen, sizeof(*uap->alen));
1420 	if (sa)
1421 		kfree(sa, M_SONAME);
1422 	return (error);
1423 }
1424 
1425 /*
1426  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1427  * This allows kern_getpeername() to return a pointer to an allocated struct
1428  * sockaddr which must be freed later with FREE().  The caller must
1429  * initialize *name to NULL.
1430  */
1431 int
1432 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1433 {
1434 	struct thread *td = curthread;
1435 	struct file *fp;
1436 	struct socket *so;
1437 	struct sockaddr *sa = NULL;
1438 	int error;
1439 
1440 	error = holdsock(td, s, &fp);
1441 	if (error)
1442 		return (error);
1443 	if (*namelen < 0) {
1444 		fdrop(fp);
1445 		return (EINVAL);
1446 	}
1447 	so = (struct socket *)fp->f_data;
1448 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1449 		fdrop(fp);
1450 		return (ENOTCONN);
1451 	}
1452 	error = so_pru_peeraddr(so, &sa);
1453 	if (error == 0) {
1454 		if (sa == NULL) {
1455 			*namelen = 0;
1456 		} else {
1457 			*namelen = MIN(*namelen, sa->sa_len);
1458 			*name = sa;
1459 		}
1460 	}
1461 	dropfp(td, s, fp);
1462 
1463 	return (error);
1464 }
1465 
1466 /*
1467  * getpeername_args(int fdes, caddr_t asa, int *alen)
1468  *
1469  * Get name of peer for connected socket.
1470  *
1471  * MPALMOSTSAFE
1472  */
1473 int
1474 sys_getpeername(struct sysmsg *sysmsg, const struct getpeername_args *uap)
1475 {
1476 	struct sockaddr *sa = NULL;
1477 	int error, sa_len;
1478 
1479 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1480 	if (error)
1481 		return (error);
1482 
1483 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1484 
1485 	if (error == 0) {
1486 		prison_local_ip(curthread, sa);
1487 		error = copyout(sa, uap->asa, sa_len);
1488 	}
1489 	if (error == 0)
1490 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1491 	if (sa)
1492 		kfree(sa, M_SONAME);
1493 	return (error);
1494 }
1495 
1496 int
1497 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1498 {
1499 	struct sockaddr *sa;
1500 	int error;
1501 
1502 	*namp = NULL;
1503 	if (len > SOCK_MAXADDRLEN)
1504 		return ENAMETOOLONG;
1505 	if (len < offsetof(struct sockaddr, sa_data[0]))
1506 		return EDOM;
1507 	sa = kmalloc(len, M_SONAME, M_WAITOK);
1508 	error = copyin(uaddr, sa, len);
1509 	if (error) {
1510 		kfree(sa, M_SONAME);
1511 	} else {
1512 		sa->sa_len = len;
1513 		*namp = sa;
1514 	}
1515 	return error;
1516 }
1517 
1518 /*
1519  * Detach a mapped page and release resources back to the system.
1520  * We must release our wiring and if the object is ripped out
1521  * from under the vm_page we become responsible for freeing the
1522  * page.
1523  *
1524  * MPSAFE
1525  */
1526 static void
1527 sf_buf_mfree(void *arg)
1528 {
1529 	struct sf_buf *sf = arg;
1530 	vm_page_t m;
1531 
1532 	m = sf_buf_page(sf);
1533 	if (sf_buf_free(sf)) {
1534 		/* sf invalid now */
1535 		vm_page_sbusy_drop(m);
1536 #if 0
1537 		if (m->object == NULL &&
1538 		    m->wire_count == 0 &&
1539 		    (m->flags & PG_NEED_COMMIT) == 0) {
1540 			vm_page_free(m);
1541 		} else {
1542 			vm_page_wakeup(m);
1543 		}
1544 #endif
1545 	}
1546 }
1547 
1548 /*
1549  * sendfile(2).
1550  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1551  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1552  *
1553  * Send a file specified by 'fd' and starting at 'offset' to a socket
1554  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1555  * nbytes == 0. Optionally add a header and/or trailer to the socket
1556  * output. If specified, write the total number of bytes sent into *sbytes.
1557  *
1558  * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1559  * the headers to count against the remaining bytes to be sent from
1560  * the file descriptor.  We may wish to implement a compatibility syscall
1561  * in the future.
1562  *
1563  * MPALMOSTSAFE
1564  */
1565 int
1566 sys_sendfile(struct sysmsg *sysmsg, const struct sendfile_args *uap)
1567 {
1568 	struct thread *td = curthread;
1569 	struct file *fp;
1570 	struct vnode *vp = NULL;
1571 	struct sf_hdtr hdtr;
1572 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1573 	struct uio auio;
1574 	struct mbuf *mheader = NULL;
1575 	size_t hbytes = 0;
1576 	size_t tbytes;
1577 	off_t hdtr_size = 0;
1578 	off_t sbytes;
1579 	int error;
1580 
1581 	/*
1582 	 * Do argument checking. Must be a regular file in, stream
1583 	 * type and connected socket out, positive offset.
1584 	 */
1585 	fp = holdfp(td, uap->fd, FREAD);
1586 	if (fp == NULL) {
1587 		return (EBADF);
1588 	}
1589 	if (fp->f_type != DTYPE_VNODE) {
1590 		fdrop(fp);
1591 		return (EINVAL);
1592 	}
1593 	vp = (struct vnode *)fp->f_data;
1594 	vref(vp);
1595 	dropfp(td, uap->fd, fp);
1596 
1597 	/*
1598 	 * If specified, get the pointer to the sf_hdtr struct for
1599 	 * any headers/trailers.
1600 	 */
1601 	if (uap->hdtr) {
1602 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1603 		if (error)
1604 			goto done;
1605 		/*
1606 		 * Send any headers.
1607 		 */
1608 		if (hdtr.headers) {
1609 			error = iovec_copyin(hdtr.headers, &iov, aiov,
1610 					     hdtr.hdr_cnt, &hbytes);
1611 			if (error)
1612 				goto done;
1613 			auio.uio_iov = iov;
1614 			auio.uio_iovcnt = hdtr.hdr_cnt;
1615 			auio.uio_offset = 0;
1616 			auio.uio_segflg = UIO_USERSPACE;
1617 			auio.uio_rw = UIO_WRITE;
1618 			auio.uio_td = td;
1619 			auio.uio_resid = hbytes;
1620 
1621 			mheader = m_uiomove(&auio);
1622 
1623 			iovec_free(&iov, aiov);
1624 			if (mheader == NULL)
1625 				goto done;
1626 		}
1627 	}
1628 
1629 	error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1630 			      &sbytes, uap->flags);
1631 	if (error)
1632 		goto done;
1633 
1634 	/*
1635 	 * Send trailers. Wimp out and use writev(2).
1636 	 */
1637 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1638 		error = iovec_copyin(hdtr.trailers, &iov, aiov,
1639 				     hdtr.trl_cnt, &auio.uio_resid);
1640 		if (error)
1641 			goto done;
1642 		auio.uio_iov = iov;
1643 		auio.uio_iovcnt = hdtr.trl_cnt;
1644 		auio.uio_offset = 0;
1645 		auio.uio_segflg = UIO_USERSPACE;
1646 		auio.uio_rw = UIO_WRITE;
1647 		auio.uio_td = td;
1648 
1649 		tbytes = 0;	/* avoid gcc warnings */
1650 		error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1651 
1652 		iovec_free(&iov, aiov);
1653 		if (error)
1654 			goto done;
1655 		hdtr_size += tbytes;	/* trailer bytes successfully sent */
1656 	}
1657 
1658 done:
1659 	if (vp)
1660 		vrele(vp);
1661 	if (uap->sbytes != NULL) {
1662 		sbytes += hdtr_size;
1663 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1664 	}
1665 	return (error);
1666 }
1667 
1668 int
1669 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1670 	      struct mbuf *mheader, off_t *sbytes, int flags)
1671 {
1672 	struct thread *td = curthread;
1673 	struct vm_object *obj;
1674 	struct socket *so;
1675 	struct file *fp;
1676 	struct mbuf *m, *mp;
1677 	struct sf_buf *sf;
1678 	struct vm_page *pg;
1679 	off_t off, xfsize, xbytes;
1680 	off_t hbytes = 0;
1681 	int error = 0;
1682 
1683 	if (vp->v_type != VREG) {
1684 		error = EINVAL;
1685 		goto done0;
1686 	}
1687 	if ((obj = vp->v_object) == NULL) {
1688 		error = EINVAL;
1689 		goto done0;
1690 	}
1691 	error = holdsock(td, sfd, &fp);
1692 	if (error)
1693 		goto done0;
1694 	so = (struct socket *)fp->f_data;
1695 	if (so->so_type != SOCK_STREAM) {
1696 		error = EINVAL;
1697 		goto done1;
1698 	}
1699 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1700 		error = ENOTCONN;
1701 		goto done1;
1702 	}
1703 	if (offset < 0) {
1704 		error = EINVAL;
1705 		goto done1;
1706 	}
1707 
1708 	/*
1709 	 * preallocation is required for asynchronous passing of mbufs,
1710 	 * otherwise we can wind up building up an infinite number of
1711 	 * mbufs during the asynchronous latency.
1712 	 */
1713 	if ((so->so_snd.ssb_flags & (SSB_PREALLOC | SSB_STOPSUPP)) == 0) {
1714 		error = EINVAL;
1715 		goto done1;
1716 	}
1717 
1718 	*sbytes = 0;
1719 	xbytes = 0;
1720 
1721 	/*
1722 	 * Protect against multiple writers to the socket.
1723 	 * We need at least a shared lock on the VM object
1724 	 */
1725 	ssb_lock(&so->so_snd, M_WAITOK);
1726 	vm_object_hold_shared(obj);
1727 
1728 	/*
1729 	 * Loop through the pages in the file, starting with the requested
1730 	 * offset. Get a file page (do I/O if necessary), map the file page
1731 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1732 	 * it on the socket.
1733 	 */
1734 	for (off = offset; ;
1735 	     off += xfsize, *sbytes += xfsize + hbytes, xbytes += xfsize) {
1736 		vm_pindex_t pindex;
1737 		vm_offset_t pgoff;
1738 		long space;
1739 		int loops;
1740 
1741 		pindex = OFF_TO_IDX(off);
1742 		loops = 0;
1743 
1744 retry_lookup:
1745 		/*
1746 		 * Calculate the amount to transfer. Not to exceed a page,
1747 		 * the EOF, or the passed in nbytes.
1748 		 */
1749 		xfsize = vp->v_filesize - off;
1750 		if (xfsize > PAGE_SIZE)
1751 			xfsize = PAGE_SIZE;
1752 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1753 		if (PAGE_SIZE - pgoff < xfsize)
1754 			xfsize = PAGE_SIZE - pgoff;
1755 		if (nbytes && xfsize > (nbytes - xbytes))
1756 			xfsize = nbytes - xbytes;
1757 		if (xfsize <= 0)
1758 			break;
1759 		/*
1760 		 * Optimize the non-blocking case by looking at the socket space
1761 		 * before going to the extra work of constituting the sf_buf.
1762 		 */
1763 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1764 			space = ssb_space_prealloc(&so->so_snd);
1765 		else
1766 			space = ssb_space(&so->so_snd);
1767 
1768 		if ((fp->f_flag & FNONBLOCK) && space <= 0) {
1769 			if (so->so_state & SS_CANTSENDMORE)
1770 				error = EPIPE;
1771 			else
1772 				error = EAGAIN;
1773 			goto done;
1774 		}
1775 
1776 		/*
1777 		 * Attempt to look up the page.
1778 		 *
1779 		 * Try to find the data using a shared vm_object token and
1780 		 * vm_page_lookup_sbusy_try() first.
1781 		 *
1782 		 * If data is missing, use a UIO_NOCOPY VOP_READ to load
1783 		 * the missing data and loop back up.  We avoid all sorts
1784 		 * of problems by not trying to hold onto the page during
1785 		 * the I/O.
1786 		 *
1787 		 * NOTE: The soft-busy will temporary block filesystem
1788 		 *	 truncation operations when a file is removed
1789 		 *	 while the sendfile is running.
1790 		 */
1791 		pg = vm_page_lookup_sbusy_try(obj, pindex, pgoff, xfsize);
1792 		if (pg == NULL) {
1793 			struct uio auio;
1794 			struct iovec aiov;
1795 			int bsize;
1796 
1797 			if (++loops > 100000) {
1798 				kprintf("sendfile: VOP operation failed "
1799 					"to retain page\n");
1800 				error = EIO;
1801 				goto done;
1802 			}
1803 
1804 			vm_object_drop(obj);
1805 			bsize = vp->v_mount->mnt_stat.f_iosize;
1806 			auio.uio_iov = &aiov;
1807 			auio.uio_iovcnt = 1;
1808 			aiov.iov_base = 0;
1809 			aiov.iov_len = MAXBSIZE;
1810 			auio.uio_resid = MAXBSIZE;
1811 			auio.uio_offset = trunc_page(off);
1812 			auio.uio_segflg = UIO_NOCOPY;
1813 			auio.uio_rw = UIO_READ;
1814 			auio.uio_td = td;
1815 
1816 			vn_lock(vp, LK_SHARED | LK_RETRY);
1817 			error = VOP_READ_FP(vp, &auio,
1818 					 IO_VMIO | ((MAXBSIZE / bsize) << 16),
1819 					 td->td_ucred, fp);
1820 			vn_unlock(vp);
1821 			vm_object_hold_shared(obj);
1822 
1823 			if (error)
1824 				goto done;
1825 			goto retry_lookup;
1826 		}
1827 
1828 		/*
1829 		 * Get a sendfile buf. We usually wait as long as necessary,
1830 		 * but this wait can be interrupted.
1831 		 */
1832 		if ((sf = sf_buf_alloc(pg)) == NULL) {
1833 			vm_page_sbusy_drop(pg);
1834 			/* vm_page_try_to_free(pg); */
1835 			error = EINTR;
1836 			goto done;
1837 		}
1838 
1839 		/*
1840 		 * Get an mbuf header and set it up as having external storage.
1841 		 */
1842 		MGETHDR(m, M_WAITOK, MT_DATA);
1843 		m->m_ext.ext_free = sf_buf_mfree;
1844 		m->m_ext.ext_ref = sf_buf_ref;
1845 		m->m_ext.ext_arg = sf;
1846 		m->m_ext.ext_buf = (void *)sf_buf_kva(sf);
1847 		m->m_ext.ext_size = PAGE_SIZE;
1848 		m->m_data = (char *)sf_buf_kva(sf) + pgoff;
1849 		m->m_flags |= M_EXT;
1850 		m->m_pkthdr.len = m->m_len = xfsize;
1851 		KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1852 
1853 		if (mheader != NULL) {
1854 			hbytes = mheader->m_pkthdr.len;
1855 			mheader->m_pkthdr.len += m->m_pkthdr.len;
1856 			m_cat(mheader, m);
1857 			m = mheader;
1858 			mheader = NULL;
1859 		} else {
1860 			hbytes = 0;
1861 		}
1862 
1863 		/*
1864 		 * Add the buffer to the socket buffer chain.
1865 		 */
1866 		crit_enter();
1867 retry_space:
1868 		/*
1869 		 * Make sure that the socket is still able to take more data.
1870 		 * CANTSENDMORE being true usually means that the connection
1871 		 * was closed. so_error is true when an error was sensed after
1872 		 * a previous send.
1873 		 * The state is checked after the page mapping and buffer
1874 		 * allocation above since those operations may block and make
1875 		 * any socket checks stale. From this point forward, nothing
1876 		 * blocks before the pru_send (or more accurately, any blocking
1877 		 * results in a loop back to here to re-check).
1878 		 */
1879 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1880 			if (so->so_state & SS_CANTSENDMORE) {
1881 				error = EPIPE;
1882 			} else {
1883 				error = so->so_error;
1884 				so->so_error = 0;
1885 			}
1886 			m_freem(m);
1887 			crit_exit();
1888 			goto done;
1889 		}
1890 		/*
1891 		 * Wait for socket space to become available. We do this just
1892 		 * after checking the connection state above in order to avoid
1893 		 * a race condition with ssb_wait().
1894 		 */
1895 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1896 			space = ssb_space_prealloc(&so->so_snd);
1897 		else
1898 			space = ssb_space(&so->so_snd);
1899 
1900 		if (space < m->m_pkthdr.len && space < so->so_snd.ssb_lowat) {
1901 			if (fp->f_flag & FNONBLOCK) {
1902 				m_freem(m);
1903 				crit_exit();
1904 				error = EAGAIN;
1905 				goto done;
1906 			}
1907 			error = ssb_wait(&so->so_snd);
1908 			/*
1909 			 * An error from ssb_wait usually indicates that we've
1910 			 * been interrupted by a signal. If we've sent anything
1911 			 * then return bytes sent, otherwise return the error.
1912 			 */
1913 			if (error) {
1914 				m_freem(m);
1915 				crit_exit();
1916 				goto done;
1917 			}
1918 			goto retry_space;
1919 		}
1920 
1921 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1922 			for (mp = m; mp != NULL; mp = mp->m_next)
1923 				ssb_preallocstream(&so->so_snd, mp);
1924 		}
1925 		if (use_sendfile_async)
1926 			error = so_pru_senda(so, 0, m, NULL, NULL, td);
1927 		else
1928 			error = so_pru_send(so, 0, m, NULL, NULL, td);
1929 
1930 		crit_exit();
1931 		if (error)
1932 			goto done;
1933 	}
1934 	if (mheader != NULL) {
1935 		*sbytes += mheader->m_pkthdr.len;
1936 
1937 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1938 			for (mp = mheader; mp != NULL; mp = mp->m_next)
1939 				ssb_preallocstream(&so->so_snd, mp);
1940 		}
1941 		if (use_sendfile_async)
1942 			error = so_pru_senda(so, 0, mheader, NULL, NULL, td);
1943 		else
1944 			error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1945 
1946 		mheader = NULL;
1947 	}
1948 done:
1949 	vm_object_drop(obj);
1950 	ssb_unlock(&so->so_snd);
1951 done1:
1952 	dropfp(td, sfd, fp);
1953 done0:
1954 	if (mheader != NULL)
1955 		m_freem(mheader);
1956 	return (error);
1957 }
1958