xref: /dragonfly/sys/kern/uipc_syscalls.c (revision d4ef6694)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
33  * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
34  */
35 
36 #include "opt_ktrace.h"
37 #include "opt_sctp.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/sysproto.h>
43 #include <sys/malloc.h>
44 #include <sys/filedesc.h>
45 #include <sys/event.h>
46 #include <sys/proc.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/kern_syscall.h>
51 #include <sys/mbuf.h>
52 #include <sys/protosw.h>
53 #include <sys/sfbuf.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/socketops.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 #include <sys/lock.h>
60 #include <sys/mount.h>
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64 #include <vm/vm.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_kern.h>
69 #include <vm/vm_extern.h>
70 #include <sys/file2.h>
71 #include <sys/signalvar.h>
72 #include <sys/serialize.h>
73 
74 #include <sys/thread2.h>
75 #include <sys/msgport2.h>
76 #include <sys/socketvar2.h>
77 #include <net/netmsg2.h>
78 #include <vm/vm_page2.h>
79 
80 #ifdef SCTP
81 #include <netinet/sctp_peeloff.h>
82 #endif /* SCTP */
83 
84 extern int use_soaccept_pred_fast;
85 extern int use_sendfile_async;
86 extern int use_soconnect_async;
87 
88 /*
89  * System call interface to the socket abstraction.
90  */
91 
92 extern	struct fileops socketops;
93 
94 /*
95  * socket_args(int domain, int type, int protocol)
96  */
97 int
98 kern_socket(int domain, int type, int protocol, int *res)
99 {
100 	struct thread *td = curthread;
101 	struct filedesc *fdp = td->td_proc->p_fd;
102 	struct socket *so;
103 	struct file *fp;
104 	int fd, error;
105 
106 	KKASSERT(td->td_lwp);
107 
108 	error = falloc(td->td_lwp, &fp, &fd);
109 	if (error)
110 		return (error);
111 	error = socreate(domain, &so, type, protocol, td);
112 	if (error) {
113 		fsetfd(fdp, NULL, fd);
114 	} else {
115 		fp->f_type = DTYPE_SOCKET;
116 		fp->f_flag = FREAD | FWRITE;
117 		fp->f_ops = &socketops;
118 		fp->f_data = so;
119 		*res = fd;
120 		fsetfd(fdp, fp, fd);
121 	}
122 	fdrop(fp);
123 	return (error);
124 }
125 
126 /*
127  * MPALMOSTSAFE
128  */
129 int
130 sys_socket(struct socket_args *uap)
131 {
132 	int error;
133 
134 	error = kern_socket(uap->domain, uap->type, uap->protocol,
135 			    &uap->sysmsg_iresult);
136 
137 	return (error);
138 }
139 
140 int
141 kern_bind(int s, struct sockaddr *sa)
142 {
143 	struct thread *td = curthread;
144 	struct proc *p = td->td_proc;
145 	struct file *fp;
146 	int error;
147 
148 	KKASSERT(p);
149 	error = holdsock(p->p_fd, s, &fp);
150 	if (error)
151 		return (error);
152 	error = sobind((struct socket *)fp->f_data, sa, td);
153 	fdrop(fp);
154 	return (error);
155 }
156 
157 /*
158  * bind_args(int s, caddr_t name, int namelen)
159  *
160  * MPALMOSTSAFE
161  */
162 int
163 sys_bind(struct bind_args *uap)
164 {
165 	struct sockaddr *sa;
166 	int error;
167 
168 	error = getsockaddr(&sa, uap->name, uap->namelen);
169 	if (error)
170 		return (error);
171 	error = kern_bind(uap->s, sa);
172 	kfree(sa, M_SONAME);
173 
174 	return (error);
175 }
176 
177 int
178 kern_listen(int s, int backlog)
179 {
180 	struct thread *td = curthread;
181 	struct proc *p = td->td_proc;
182 	struct file *fp;
183 	int error;
184 
185 	KKASSERT(p);
186 	error = holdsock(p->p_fd, s, &fp);
187 	if (error)
188 		return (error);
189 	error = solisten((struct socket *)fp->f_data, backlog, td);
190 	fdrop(fp);
191 	return(error);
192 }
193 
194 /*
195  * listen_args(int s, int backlog)
196  *
197  * MPALMOSTSAFE
198  */
199 int
200 sys_listen(struct listen_args *uap)
201 {
202 	int error;
203 
204 	error = kern_listen(uap->s, uap->backlog);
205 	return (error);
206 }
207 
208 /*
209  * Returns the accepted socket as well.
210  *
211  * NOTE!  The sockets sitting on so_comp/so_incomp might have 0 refs, the
212  *	  pool token is absolutely required to avoid a sofree() race,
213  *	  as well as to avoid tailq handling races.
214  */
215 static boolean_t
216 soaccept_predicate(struct netmsg_so_notify *msg)
217 {
218 	struct socket *head = msg->base.nm_so;
219 	struct socket *so;
220 
221 	if (head->so_error != 0) {
222 		msg->base.lmsg.ms_error = head->so_error;
223 		return (TRUE);
224 	}
225 	lwkt_getpooltoken(head);
226 	if (!TAILQ_EMPTY(&head->so_comp)) {
227 		/* Abuse nm_so field as copy in/copy out parameter. XXX JH */
228 		so = TAILQ_FIRST(&head->so_comp);
229 		TAILQ_REMOVE(&head->so_comp, so, so_list);
230 		head->so_qlen--;
231 		soclrstate(so, SS_COMP);
232 		so->so_head = NULL;
233 		soreference(so);
234 
235 		lwkt_relpooltoken(head);
236 
237 		msg->base.lmsg.ms_error = 0;
238 		msg->base.nm_so = so;
239 		return (TRUE);
240 	}
241 	lwkt_relpooltoken(head);
242 	if (head->so_state & SS_CANTRCVMORE) {
243 		msg->base.lmsg.ms_error = ECONNABORTED;
244 		return (TRUE);
245 	}
246 	if (msg->nm_fflags & FNONBLOCK) {
247 		msg->base.lmsg.ms_error = EWOULDBLOCK;
248 		return (TRUE);
249 	}
250 
251 	return (FALSE);
252 }
253 
254 /*
255  * The second argument to kern_accept() is a handle to a struct sockaddr.
256  * This allows kern_accept() to return a pointer to an allocated struct
257  * sockaddr which must be freed later with FREE().  The caller must
258  * initialize *name to NULL.
259  */
260 int
261 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res)
262 {
263 	struct thread *td = curthread;
264 	struct filedesc *fdp = td->td_proc->p_fd;
265 	struct file *lfp = NULL;
266 	struct file *nfp = NULL;
267 	struct sockaddr *sa;
268 	struct socket *head, *so;
269 	struct netmsg_so_notify msg;
270 	int fd;
271 	u_int fflag;		/* type must match fp->f_flag */
272 	int error, tmp;
273 
274 	*res = -1;
275 	if (name && namelen && *namelen < 0)
276 		return (EINVAL);
277 
278 	error = holdsock(td->td_proc->p_fd, s, &lfp);
279 	if (error)
280 		return (error);
281 
282 	error = falloc(td->td_lwp, &nfp, &fd);
283 	if (error) {		/* Probably ran out of file descriptors. */
284 		fdrop(lfp);
285 		return (error);
286 	}
287 	head = (struct socket *)lfp->f_data;
288 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
289 		error = EINVAL;
290 		goto done;
291 	}
292 
293 	if (fflags & O_FBLOCKING)
294 		fflags |= lfp->f_flag & ~FNONBLOCK;
295 	else if (fflags & O_FNONBLOCKING)
296 		fflags |= lfp->f_flag | FNONBLOCK;
297 	else
298 		fflags = lfp->f_flag;
299 
300 	if (use_soaccept_pred_fast) {
301 		boolean_t pred;
302 
303 		/* Initialize necessary parts for soaccept_predicate() */
304 		netmsg_init(&msg.base, head, &netisr_apanic_rport, 0, NULL);
305 		msg.nm_fflags = fflags;
306 
307 		lwkt_getpooltoken(head);
308 		pred = soaccept_predicate(&msg);
309 		lwkt_relpooltoken(head);
310 
311 		if (pred) {
312 			error = msg.base.lmsg.ms_error;
313 			if (error)
314 				goto done;
315 			else
316 				goto accepted;
317 		}
318 	}
319 
320 	/* optimize for uniprocessor case later XXX JH */
321 	netmsg_init_abortable(&msg.base, head, &curthread->td_msgport,
322 			      0, netmsg_so_notify, netmsg_so_notify_doabort);
323 	msg.nm_predicate = soaccept_predicate;
324 	msg.nm_fflags = fflags;
325 	msg.nm_etype = NM_REVENT;
326 	error = lwkt_domsg(head->so_port, &msg.base.lmsg, PCATCH);
327 	if (error)
328 		goto done;
329 
330 accepted:
331 	/*
332 	 * At this point we have the connection that's ready to be accepted.
333 	 *
334 	 * NOTE! soaccept_predicate() ref'd so for us, and soaccept() expects
335 	 * 	 to eat the ref and turn it into a descriptor.
336 	 */
337 	so = msg.base.nm_so;
338 
339 	fflag = lfp->f_flag;
340 
341 	/* connection has been removed from the listen queue */
342 	KNOTE(&head->so_rcv.ssb_kq.ki_note, 0);
343 
344 	if (head->so_sigio != NULL)
345 		fsetown(fgetown(&head->so_sigio), &so->so_sigio);
346 
347 	nfp->f_type = DTYPE_SOCKET;
348 	nfp->f_flag = fflag;
349 	nfp->f_ops = &socketops;
350 	nfp->f_data = so;
351 	/* Sync socket nonblocking/async state with file flags */
352 	tmp = fflag & FNONBLOCK;
353 	fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, td->td_ucred, NULL);
354 	tmp = fflag & FASYNC;
355 	fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, td->td_ucred, NULL);
356 
357 	sa = NULL;
358 	if (so->so_faddr != NULL) {
359 		sa = so->so_faddr;
360 		so->so_faddr = NULL;
361 
362 		soaccept_generic(so);
363 		error = 0;
364 	} else {
365 		error = soaccept(so, &sa);
366 	}
367 
368 	/*
369 	 * Set the returned name and namelen as applicable.  Set the returned
370 	 * namelen to 0 for older code which might ignore the return value
371 	 * from accept.
372 	 */
373 	if (error == 0) {
374 		if (sa && name && namelen) {
375 			if (*namelen > sa->sa_len)
376 				*namelen = sa->sa_len;
377 			*name = sa;
378 		} else {
379 			if (sa)
380 				kfree(sa, M_SONAME);
381 		}
382 	}
383 
384 done:
385 	/*
386 	 * If an error occured clear the reserved descriptor, else associate
387 	 * nfp with it.
388 	 *
389 	 * Note that *res is normally ignored if an error is returned but
390 	 * a syscall message will still have access to the result code.
391 	 */
392 	if (error) {
393 		fsetfd(fdp, NULL, fd);
394 	} else {
395 		*res = fd;
396 		fsetfd(fdp, nfp, fd);
397 	}
398 	fdrop(nfp);
399 	fdrop(lfp);
400 	return (error);
401 }
402 
403 /*
404  * accept(int s, caddr_t name, int *anamelen)
405  *
406  * MPALMOSTSAFE
407  */
408 int
409 sys_accept(struct accept_args *uap)
410 {
411 	struct sockaddr *sa = NULL;
412 	int sa_len;
413 	int error;
414 
415 	if (uap->name) {
416 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
417 		if (error)
418 			return (error);
419 
420 		error = kern_accept(uap->s, 0, &sa, &sa_len,
421 				    &uap->sysmsg_iresult);
422 
423 		if (error == 0)
424 			error = copyout(sa, uap->name, sa_len);
425 		if (error == 0) {
426 			error = copyout(&sa_len, uap->anamelen,
427 			    sizeof(*uap->anamelen));
428 		}
429 		if (sa)
430 			kfree(sa, M_SONAME);
431 	} else {
432 		error = kern_accept(uap->s, 0, NULL, 0,
433 				    &uap->sysmsg_iresult);
434 	}
435 	return (error);
436 }
437 
438 /*
439  * extaccept(int s, int fflags, caddr_t name, int *anamelen)
440  *
441  * MPALMOSTSAFE
442  */
443 int
444 sys_extaccept(struct extaccept_args *uap)
445 {
446 	struct sockaddr *sa = NULL;
447 	int sa_len;
448 	int error;
449 	int fflags = uap->flags & O_FMASK;
450 
451 	if (uap->name) {
452 		error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
453 		if (error)
454 			return (error);
455 
456 		error = kern_accept(uap->s, fflags, &sa, &sa_len,
457 				    &uap->sysmsg_iresult);
458 
459 		if (error == 0)
460 			error = copyout(sa, uap->name, sa_len);
461 		if (error == 0) {
462 			error = copyout(&sa_len, uap->anamelen,
463 			    sizeof(*uap->anamelen));
464 		}
465 		if (sa)
466 			kfree(sa, M_SONAME);
467 	} else {
468 		error = kern_accept(uap->s, fflags, NULL, 0,
469 				    &uap->sysmsg_iresult);
470 	}
471 	return (error);
472 }
473 
474 
475 /*
476  * Returns TRUE if predicate satisfied.
477  */
478 static boolean_t
479 soconnected_predicate(struct netmsg_so_notify *msg)
480 {
481 	struct socket *so = msg->base.nm_so;
482 
483 	/* check predicate */
484 	if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
485 		msg->base.lmsg.ms_error = so->so_error;
486 		return (TRUE);
487 	}
488 
489 	return (FALSE);
490 }
491 
492 int
493 kern_connect(int s, int fflags, struct sockaddr *sa)
494 {
495 	struct thread *td = curthread;
496 	struct proc *p = td->td_proc;
497 	struct file *fp;
498 	struct socket *so;
499 	int error, interrupted = 0;
500 
501 	error = holdsock(p->p_fd, s, &fp);
502 	if (error)
503 		return (error);
504 	so = (struct socket *)fp->f_data;
505 
506 	if (fflags & O_FBLOCKING)
507 		/* fflags &= ~FNONBLOCK; */;
508 	else if (fflags & O_FNONBLOCKING)
509 		fflags |= FNONBLOCK;
510 	else
511 		fflags = fp->f_flag;
512 
513 	if (so->so_state & SS_ISCONNECTING) {
514 		error = EALREADY;
515 		goto done;
516 	}
517 	error = soconnect(so, sa, td, use_soconnect_async ? FALSE : TRUE);
518 	if (error)
519 		goto bad;
520 	if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
521 		error = EINPROGRESS;
522 		goto done;
523 	}
524 	if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
525 		struct netmsg_so_notify msg;
526 
527 		netmsg_init_abortable(&msg.base, so,
528 				      &curthread->td_msgport,
529 				      0,
530 				      netmsg_so_notify,
531 				      netmsg_so_notify_doabort);
532 		msg.nm_predicate = soconnected_predicate;
533 		msg.nm_etype = NM_REVENT;
534 		error = lwkt_domsg(so->so_port, &msg.base.lmsg, PCATCH);
535 		if (error == EINTR || error == ERESTART)
536 			interrupted = 1;
537 	}
538 	if (error == 0) {
539 		error = so->so_error;
540 		so->so_error = 0;
541 	}
542 bad:
543 	if (!interrupted)
544 		soclrstate(so, SS_ISCONNECTING);
545 	if (error == ERESTART)
546 		error = EINTR;
547 done:
548 	fdrop(fp);
549 	return (error);
550 }
551 
552 /*
553  * connect_args(int s, caddr_t name, int namelen)
554  *
555  * MPALMOSTSAFE
556  */
557 int
558 sys_connect(struct connect_args *uap)
559 {
560 	struct sockaddr *sa;
561 	int error;
562 
563 	error = getsockaddr(&sa, uap->name, uap->namelen);
564 	if (error)
565 		return (error);
566 	error = kern_connect(uap->s, 0, sa);
567 	kfree(sa, M_SONAME);
568 
569 	return (error);
570 }
571 
572 /*
573  * connect_args(int s, int fflags, caddr_t name, int namelen)
574  *
575  * MPALMOSTSAFE
576  */
577 int
578 sys_extconnect(struct extconnect_args *uap)
579 {
580 	struct sockaddr *sa;
581 	int error;
582 	int fflags = uap->flags & O_FMASK;
583 
584 	error = getsockaddr(&sa, uap->name, uap->namelen);
585 	if (error)
586 		return (error);
587 	error = kern_connect(uap->s, fflags, sa);
588 	kfree(sa, M_SONAME);
589 
590 	return (error);
591 }
592 
593 int
594 kern_socketpair(int domain, int type, int protocol, int *sv)
595 {
596 	struct thread *td = curthread;
597 	struct filedesc *fdp;
598 	struct file *fp1, *fp2;
599 	struct socket *so1, *so2;
600 	int fd1, fd2, error;
601 
602 	fdp = td->td_proc->p_fd;
603 	error = socreate(domain, &so1, type, protocol, td);
604 	if (error)
605 		return (error);
606 	error = socreate(domain, &so2, type, protocol, td);
607 	if (error)
608 		goto free1;
609 	error = falloc(td->td_lwp, &fp1, &fd1);
610 	if (error)
611 		goto free2;
612 	sv[0] = fd1;
613 	fp1->f_data = so1;
614 	error = falloc(td->td_lwp, &fp2, &fd2);
615 	if (error)
616 		goto free3;
617 	fp2->f_data = so2;
618 	sv[1] = fd2;
619 	error = soconnect2(so1, so2);
620 	if (error)
621 		goto free4;
622 	if (type == SOCK_DGRAM) {
623 		/*
624 		 * Datagram socket connection is asymmetric.
625 		 */
626 		 error = soconnect2(so2, so1);
627 		 if (error)
628 			goto free4;
629 	}
630 	fp1->f_type = fp2->f_type = DTYPE_SOCKET;
631 	fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
632 	fp1->f_ops = fp2->f_ops = &socketops;
633 	fsetfd(fdp, fp1, fd1);
634 	fsetfd(fdp, fp2, fd2);
635 	fdrop(fp1);
636 	fdrop(fp2);
637 	return (error);
638 free4:
639 	fsetfd(fdp, NULL, fd2);
640 	fdrop(fp2);
641 free3:
642 	fsetfd(fdp, NULL, fd1);
643 	fdrop(fp1);
644 free2:
645 	(void)soclose(so2, 0);
646 free1:
647 	(void)soclose(so1, 0);
648 	return (error);
649 }
650 
651 /*
652  * socketpair(int domain, int type, int protocol, int *rsv)
653  */
654 int
655 sys_socketpair(struct socketpair_args *uap)
656 {
657 	int error, sockv[2];
658 
659 	error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
660 
661 	if (error == 0) {
662 		error = copyout(sockv, uap->rsv, sizeof(sockv));
663 
664 		if (error != 0) {
665 			kern_close(sockv[0]);
666 			kern_close(sockv[1]);
667 		}
668 	}
669 
670 	return (error);
671 }
672 
673 int
674 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
675 	     struct mbuf *control, int flags, size_t *res)
676 {
677 	struct thread *td = curthread;
678 	struct lwp *lp = td->td_lwp;
679 	struct proc *p = td->td_proc;
680 	struct file *fp;
681 	size_t len;
682 	int error;
683 	struct socket *so;
684 #ifdef KTRACE
685 	struct iovec *ktriov = NULL;
686 	struct uio ktruio;
687 #endif
688 
689 	error = holdsock(p->p_fd, s, &fp);
690 	if (error)
691 		return (error);
692 #ifdef KTRACE
693 	if (KTRPOINT(td, KTR_GENIO)) {
694 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
695 
696 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
697 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
698 		ktruio = *auio;
699 	}
700 #endif
701 	len = auio->uio_resid;
702 	so = (struct socket *)fp->f_data;
703 	if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
704 		if (fp->f_flag & FNONBLOCK)
705 			flags |= MSG_FNONBLOCKING;
706 	}
707 	error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
708 	if (error) {
709 		if (auio->uio_resid != len && (error == ERESTART ||
710 		    error == EINTR || error == EWOULDBLOCK))
711 			error = 0;
712 		if (error == EPIPE && !(flags & MSG_NOSIGNAL) &&
713 		    !(so->so_options & SO_NOSIGPIPE))
714 			lwpsignal(p, lp, SIGPIPE);
715 	}
716 #ifdef KTRACE
717 	if (ktriov != NULL) {
718 		if (error == 0) {
719 			ktruio.uio_iov = ktriov;
720 			ktruio.uio_resid = len - auio->uio_resid;
721 			ktrgenio(lp, s, UIO_WRITE, &ktruio, error);
722 		}
723 		kfree(ktriov, M_TEMP);
724 	}
725 #endif
726 	if (error == 0)
727 		*res  = len - auio->uio_resid;
728 	fdrop(fp);
729 	return (error);
730 }
731 
732 /*
733  * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
734  *
735  * MPALMOSTSAFE
736  */
737 int
738 sys_sendto(struct sendto_args *uap)
739 {
740 	struct thread *td = curthread;
741 	struct uio auio;
742 	struct iovec aiov;
743 	struct sockaddr *sa = NULL;
744 	int error;
745 
746 	if (uap->to) {
747 		error = getsockaddr(&sa, uap->to, uap->tolen);
748 		if (error)
749 			return (error);
750 	}
751 	aiov.iov_base = uap->buf;
752 	aiov.iov_len = uap->len;
753 	auio.uio_iov = &aiov;
754 	auio.uio_iovcnt = 1;
755 	auio.uio_offset = 0;
756 	auio.uio_resid = uap->len;
757 	auio.uio_segflg = UIO_USERSPACE;
758 	auio.uio_rw = UIO_WRITE;
759 	auio.uio_td = td;
760 
761 	error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
762 			     &uap->sysmsg_szresult);
763 
764 	if (sa)
765 		kfree(sa, M_SONAME);
766 	return (error);
767 }
768 
769 /*
770  * sendmsg_args(int s, caddr_t msg, int flags)
771  *
772  * MPALMOSTSAFE
773  */
774 int
775 sys_sendmsg(struct sendmsg_args *uap)
776 {
777 	struct thread *td = curthread;
778 	struct msghdr msg;
779 	struct uio auio;
780 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
781 	struct sockaddr *sa = NULL;
782 	struct mbuf *control = NULL;
783 	int error;
784 
785 	error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
786 	if (error)
787 		return (error);
788 
789 	/*
790 	 * Conditionally copyin msg.msg_name.
791 	 */
792 	if (msg.msg_name) {
793 		error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
794 		if (error)
795 			return (error);
796 	}
797 
798 	/*
799 	 * Populate auio.
800 	 */
801 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
802 			     &auio.uio_resid);
803 	if (error)
804 		goto cleanup2;
805 	auio.uio_iov = iov;
806 	auio.uio_iovcnt = msg.msg_iovlen;
807 	auio.uio_offset = 0;
808 	auio.uio_segflg = UIO_USERSPACE;
809 	auio.uio_rw = UIO_WRITE;
810 	auio.uio_td = td;
811 
812 	/*
813 	 * Conditionally copyin msg.msg_control.
814 	 */
815 	if (msg.msg_control) {
816 		if (msg.msg_controllen < sizeof(struct cmsghdr) ||
817 		    msg.msg_controllen > MLEN) {
818 			error = EINVAL;
819 			goto cleanup;
820 		}
821 		control = m_get(MB_WAIT, MT_CONTROL);
822 		if (control == NULL) {
823 			error = ENOBUFS;
824 			goto cleanup;
825 		}
826 		control->m_len = msg.msg_controllen;
827 		error = copyin(msg.msg_control, mtod(control, caddr_t),
828 			       msg.msg_controllen);
829 		if (error) {
830 			m_free(control);
831 			goto cleanup;
832 		}
833 	}
834 
835 	error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
836 			     &uap->sysmsg_szresult);
837 
838 cleanup:
839 	iovec_free(&iov, aiov);
840 cleanup2:
841 	if (sa)
842 		kfree(sa, M_SONAME);
843 	return (error);
844 }
845 
846 /*
847  * kern_recvmsg() takes a handle to sa and control.  If the handle is non-
848  * null, it returns a dynamically allocated struct sockaddr and an mbuf.
849  * Don't forget to FREE() and m_free() these if they are returned.
850  */
851 int
852 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
853 	     struct mbuf **control, int *flags, size_t *res)
854 {
855 	struct thread *td = curthread;
856 	struct proc *p = td->td_proc;
857 	struct file *fp;
858 	size_t len;
859 	int error;
860 	int lflags;
861 	struct socket *so;
862 #ifdef KTRACE
863 	struct iovec *ktriov = NULL;
864 	struct uio ktruio;
865 #endif
866 
867 	error = holdsock(p->p_fd, s, &fp);
868 	if (error)
869 		return (error);
870 #ifdef KTRACE
871 	if (KTRPOINT(td, KTR_GENIO)) {
872 		int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
873 
874 		ktriov = kmalloc(iovlen, M_TEMP, M_WAITOK);
875 		bcopy(auio->uio_iov, ktriov, iovlen);
876 		ktruio = *auio;
877 	}
878 #endif
879 	len = auio->uio_resid;
880 	so = (struct socket *)fp->f_data;
881 
882 	if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
883 		if (fp->f_flag & FNONBLOCK) {
884 			if (flags) {
885 				*flags |= MSG_FNONBLOCKING;
886 			} else {
887 				lflags = MSG_FNONBLOCKING;
888 				flags = &lflags;
889 			}
890 		}
891 	}
892 
893 	error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
894 	if (error) {
895 		if (auio->uio_resid != len && (error == ERESTART ||
896 		    error == EINTR || error == EWOULDBLOCK))
897 			error = 0;
898 	}
899 #ifdef KTRACE
900 	if (ktriov != NULL) {
901 		if (error == 0) {
902 			ktruio.uio_iov = ktriov;
903 			ktruio.uio_resid = len - auio->uio_resid;
904 			ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error);
905 		}
906 		kfree(ktriov, M_TEMP);
907 	}
908 #endif
909 	if (error == 0)
910 		*res = len - auio->uio_resid;
911 	fdrop(fp);
912 	return (error);
913 }
914 
915 /*
916  * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
917  *			caddr_t from, int *fromlenaddr)
918  *
919  * MPALMOSTSAFE
920  */
921 int
922 sys_recvfrom(struct recvfrom_args *uap)
923 {
924 	struct thread *td = curthread;
925 	struct uio auio;
926 	struct iovec aiov;
927 	struct sockaddr *sa = NULL;
928 	int error, fromlen;
929 
930 	if (uap->from && uap->fromlenaddr) {
931 		error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
932 		if (error)
933 			return (error);
934 		if (fromlen < 0)
935 			return (EINVAL);
936 	} else {
937 		fromlen = 0;
938 	}
939 	aiov.iov_base = uap->buf;
940 	aiov.iov_len = uap->len;
941 	auio.uio_iov = &aiov;
942 	auio.uio_iovcnt = 1;
943 	auio.uio_offset = 0;
944 	auio.uio_resid = uap->len;
945 	auio.uio_segflg = UIO_USERSPACE;
946 	auio.uio_rw = UIO_READ;
947 	auio.uio_td = td;
948 
949 	error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
950 			     &uap->flags, &uap->sysmsg_szresult);
951 
952 	if (error == 0 && uap->from) {
953 		/* note: sa may still be NULL */
954 		if (sa) {
955 			fromlen = MIN(fromlen, sa->sa_len);
956 			error = copyout(sa, uap->from, fromlen);
957 		} else {
958 			fromlen = 0;
959 		}
960 		if (error == 0) {
961 			error = copyout(&fromlen, uap->fromlenaddr,
962 					sizeof(fromlen));
963 		}
964 	}
965 	if (sa)
966 		kfree(sa, M_SONAME);
967 
968 	return (error);
969 }
970 
971 /*
972  * recvmsg_args(int s, struct msghdr *msg, int flags)
973  *
974  * MPALMOSTSAFE
975  */
976 int
977 sys_recvmsg(struct recvmsg_args *uap)
978 {
979 	struct thread *td = curthread;
980 	struct msghdr msg;
981 	struct uio auio;
982 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
983 	struct mbuf *m, *control = NULL;
984 	struct sockaddr *sa = NULL;
985 	caddr_t ctlbuf;
986 	socklen_t *ufromlenp, *ucontrollenp;
987 	int error, fromlen, controllen, len, flags, *uflagsp;
988 
989 	/*
990 	 * This copyin handles everything except the iovec.
991 	 */
992 	error = copyin(uap->msg, &msg, sizeof(msg));
993 	if (error)
994 		return (error);
995 
996 	if (msg.msg_name && msg.msg_namelen < 0)
997 		return (EINVAL);
998 	if (msg.msg_control && msg.msg_controllen < 0)
999 		return (EINVAL);
1000 
1001 	ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1002 		    msg_namelen));
1003 	ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
1004 		       msg_controllen));
1005 	uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
1006 							msg_flags));
1007 
1008 	/*
1009 	 * Populate auio.
1010 	 */
1011 	error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
1012 			     &auio.uio_resid);
1013 	if (error)
1014 		return (error);
1015 	auio.uio_iov = iov;
1016 	auio.uio_iovcnt = msg.msg_iovlen;
1017 	auio.uio_offset = 0;
1018 	auio.uio_segflg = UIO_USERSPACE;
1019 	auio.uio_rw = UIO_READ;
1020 	auio.uio_td = td;
1021 
1022 	flags = uap->flags;
1023 
1024 	error = kern_recvmsg(uap->s,
1025 			     (msg.msg_name ? &sa : NULL), &auio,
1026 			     (msg.msg_control ? &control : NULL), &flags,
1027 			     &uap->sysmsg_szresult);
1028 
1029 	/*
1030 	 * Conditionally copyout the name and populate the namelen field.
1031 	 */
1032 	if (error == 0 && msg.msg_name) {
1033 		/* note: sa may still be NULL */
1034 		if (sa != NULL) {
1035 			fromlen = MIN(msg.msg_namelen, sa->sa_len);
1036 			error = copyout(sa, msg.msg_name, fromlen);
1037 		} else {
1038 			fromlen = 0;
1039 		}
1040 		if (error == 0)
1041 			error = copyout(&fromlen, ufromlenp,
1042 			    sizeof(*ufromlenp));
1043 	}
1044 
1045 	/*
1046 	 * Copyout msg.msg_control and msg.msg_controllen.
1047 	 */
1048 	if (error == 0 && msg.msg_control) {
1049 		len = msg.msg_controllen;
1050 		m = control;
1051 		ctlbuf = (caddr_t)msg.msg_control;
1052 
1053 		while(m && len > 0) {
1054 			unsigned int tocopy;
1055 
1056 			if (len >= m->m_len) {
1057 				tocopy = m->m_len;
1058 			} else {
1059 				msg.msg_flags |= MSG_CTRUNC;
1060 				tocopy = len;
1061 			}
1062 
1063 			error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1064 			if (error)
1065 				goto cleanup;
1066 
1067 			ctlbuf += tocopy;
1068 			len -= tocopy;
1069 			m = m->m_next;
1070 		}
1071 		controllen = ctlbuf - (caddr_t)msg.msg_control;
1072 		error = copyout(&controllen, ucontrollenp,
1073 		    sizeof(*ucontrollenp));
1074 	}
1075 
1076 	if (error == 0)
1077 		error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1078 
1079 cleanup:
1080 	if (sa)
1081 		kfree(sa, M_SONAME);
1082 	iovec_free(&iov, aiov);
1083 	if (control)
1084 		m_freem(control);
1085 	return (error);
1086 }
1087 
1088 /*
1089  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1090  * in kernel pointer instead of a userland pointer.  This allows us
1091  * to manipulate socket options in the emulation code.
1092  */
1093 int
1094 kern_setsockopt(int s, struct sockopt *sopt)
1095 {
1096 	struct thread *td = curthread;
1097 	struct proc *p = td->td_proc;
1098 	struct file *fp;
1099 	int error;
1100 
1101 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1102 		return (EFAULT);
1103 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1104 		return (EINVAL);
1105 	if (sopt->sopt_valsize > SOMAXOPT_SIZE)	/* unsigned */
1106 		return (EINVAL);
1107 
1108 	error = holdsock(p->p_fd, s, &fp);
1109 	if (error)
1110 		return (error);
1111 
1112 	error = sosetopt((struct socket *)fp->f_data, sopt);
1113 	fdrop(fp);
1114 	return (error);
1115 }
1116 
1117 /*
1118  * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1119  *
1120  * MPALMOSTSAFE
1121  */
1122 int
1123 sys_setsockopt(struct setsockopt_args *uap)
1124 {
1125 	struct thread *td = curthread;
1126 	struct sockopt sopt;
1127 	int error;
1128 
1129 	sopt.sopt_level = uap->level;
1130 	sopt.sopt_name = uap->name;
1131 	sopt.sopt_valsize = uap->valsize;
1132 	sopt.sopt_td = td;
1133 	sopt.sopt_val = NULL;
1134 
1135 	if (sopt.sopt_valsize > SOMAXOPT_SIZE) /* unsigned */
1136 		return (EINVAL);
1137 	if (uap->val) {
1138 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1139 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1140 		if (error)
1141 			goto out;
1142 	}
1143 
1144 	error = kern_setsockopt(uap->s, &sopt);
1145 out:
1146 	if (uap->val)
1147 		kfree(sopt.sopt_val, M_TEMP);
1148 	return(error);
1149 }
1150 
1151 /*
1152  * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1153  * in kernel pointer instead of a userland pointer.  This allows us
1154  * to manipulate socket options in the emulation code.
1155  */
1156 int
1157 kern_getsockopt(int s, struct sockopt *sopt)
1158 {
1159 	struct thread *td = curthread;
1160 	struct proc *p = td->td_proc;
1161 	struct file *fp;
1162 	int error;
1163 
1164 	if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1165 		return (EFAULT);
1166 	if (sopt->sopt_val != NULL && sopt->sopt_valsize == 0)
1167 		return (EINVAL);
1168 	if (sopt->sopt_valsize > SOMAXOPT_SIZE) /* unsigned */
1169 		return (EINVAL);
1170 
1171 	error = holdsock(p->p_fd, s, &fp);
1172 	if (error)
1173 		return (error);
1174 
1175 	error = sogetopt((struct socket *)fp->f_data, sopt);
1176 	fdrop(fp);
1177 	return (error);
1178 }
1179 
1180 /*
1181  * getsockopt_args(int s, int level, int name, caddr_t val, int *avalsize)
1182  *
1183  * MPALMOSTSAFE
1184  */
1185 int
1186 sys_getsockopt(struct getsockopt_args *uap)
1187 {
1188 	struct thread *td = curthread;
1189 	struct	sockopt sopt;
1190 	int	error, valsize;
1191 
1192 	if (uap->val) {
1193 		error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1194 		if (error)
1195 			return (error);
1196 	} else {
1197 		valsize = 0;
1198 	}
1199 
1200 	sopt.sopt_level = uap->level;
1201 	sopt.sopt_name = uap->name;
1202 	sopt.sopt_valsize = valsize;
1203 	sopt.sopt_td = td;
1204 	sopt.sopt_val = NULL;
1205 
1206 	if (sopt.sopt_valsize > SOMAXOPT_SIZE) /* unsigned */
1207 		return (EINVAL);
1208 	if (uap->val) {
1209 		sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1210 		error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1211 		if (error)
1212 			goto out;
1213 	}
1214 
1215 	error = kern_getsockopt(uap->s, &sopt);
1216 	if (error)
1217 		goto out;
1218 	valsize = sopt.sopt_valsize;
1219 	error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1220 	if (error)
1221 		goto out;
1222 	if (uap->val)
1223 		error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1224 out:
1225 	if (uap->val)
1226 		kfree(sopt.sopt_val, M_TEMP);
1227 	return (error);
1228 }
1229 
1230 /*
1231  * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1232  * This allows kern_getsockname() to return a pointer to an allocated struct
1233  * sockaddr which must be freed later with FREE().  The caller must
1234  * initialize *name to NULL.
1235  */
1236 int
1237 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1238 {
1239 	struct thread *td = curthread;
1240 	struct proc *p = td->td_proc;
1241 	struct file *fp;
1242 	struct socket *so;
1243 	struct sockaddr *sa = NULL;
1244 	int error;
1245 
1246 	error = holdsock(p->p_fd, s, &fp);
1247 	if (error)
1248 		return (error);
1249 	if (*namelen < 0) {
1250 		fdrop(fp);
1251 		return (EINVAL);
1252 	}
1253 	so = (struct socket *)fp->f_data;
1254 	error = so_pru_sockaddr(so, &sa);
1255 	if (error == 0) {
1256 		if (sa == NULL) {
1257 			*namelen = 0;
1258 		} else {
1259 			*namelen = MIN(*namelen, sa->sa_len);
1260 			*name = sa;
1261 		}
1262 	}
1263 
1264 	fdrop(fp);
1265 	return (error);
1266 }
1267 
1268 /*
1269  * getsockname_args(int fdes, caddr_t asa, int *alen)
1270  *
1271  * Get socket name.
1272  *
1273  * MPALMOSTSAFE
1274  */
1275 int
1276 sys_getsockname(struct getsockname_args *uap)
1277 {
1278 	struct sockaddr *sa = NULL;
1279 	int error, sa_len;
1280 
1281 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1282 	if (error)
1283 		return (error);
1284 
1285 	error = kern_getsockname(uap->fdes, &sa, &sa_len);
1286 
1287 	if (error == 0)
1288 		error = copyout(sa, uap->asa, sa_len);
1289 	if (error == 0)
1290 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1291 	if (sa)
1292 		kfree(sa, M_SONAME);
1293 	return (error);
1294 }
1295 
1296 /*
1297  * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1298  * This allows kern_getpeername() to return a pointer to an allocated struct
1299  * sockaddr which must be freed later with FREE().  The caller must
1300  * initialize *name to NULL.
1301  */
1302 int
1303 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1304 {
1305 	struct thread *td = curthread;
1306 	struct proc *p = td->td_proc;
1307 	struct file *fp;
1308 	struct socket *so;
1309 	struct sockaddr *sa = NULL;
1310 	int error;
1311 
1312 	error = holdsock(p->p_fd, s, &fp);
1313 	if (error)
1314 		return (error);
1315 	if (*namelen < 0) {
1316 		fdrop(fp);
1317 		return (EINVAL);
1318 	}
1319 	so = (struct socket *)fp->f_data;
1320 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1321 		fdrop(fp);
1322 		return (ENOTCONN);
1323 	}
1324 	error = so_pru_peeraddr(so, &sa);
1325 	if (error == 0) {
1326 		if (sa == NULL) {
1327 			*namelen = 0;
1328 		} else {
1329 			*namelen = MIN(*namelen, sa->sa_len);
1330 			*name = sa;
1331 		}
1332 	}
1333 
1334 	fdrop(fp);
1335 	return (error);
1336 }
1337 
1338 /*
1339  * getpeername_args(int fdes, caddr_t asa, int *alen)
1340  *
1341  * Get name of peer for connected socket.
1342  *
1343  * MPALMOSTSAFE
1344  */
1345 int
1346 sys_getpeername(struct getpeername_args *uap)
1347 {
1348 	struct sockaddr *sa = NULL;
1349 	int error, sa_len;
1350 
1351 	error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1352 	if (error)
1353 		return (error);
1354 
1355 	error = kern_getpeername(uap->fdes, &sa, &sa_len);
1356 
1357 	if (error == 0)
1358 		error = copyout(sa, uap->asa, sa_len);
1359 	if (error == 0)
1360 		error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1361 	if (sa)
1362 		kfree(sa, M_SONAME);
1363 	return (error);
1364 }
1365 
1366 int
1367 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1368 {
1369 	struct sockaddr *sa;
1370 	int error;
1371 
1372 	*namp = NULL;
1373 	if (len > SOCK_MAXADDRLEN)
1374 		return ENAMETOOLONG;
1375 	if (len < offsetof(struct sockaddr, sa_data[0]))
1376 		return EDOM;
1377 	sa = kmalloc(len, M_SONAME, M_WAITOK);
1378 	error = copyin(uaddr, sa, len);
1379 	if (error) {
1380 		kfree(sa, M_SONAME);
1381 	} else {
1382 #if BYTE_ORDER != BIG_ENDIAN
1383 		/*
1384 		 * The bind(), connect(), and sendto() syscalls were not
1385 		 * versioned for COMPAT_43.  Thus, this check must stay.
1386 		 */
1387 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1388 			sa->sa_family = sa->sa_len;
1389 #endif
1390 		sa->sa_len = len;
1391 		*namp = sa;
1392 	}
1393 	return error;
1394 }
1395 
1396 /*
1397  * Detach a mapped page and release resources back to the system.
1398  * We must release our wiring and if the object is ripped out
1399  * from under the vm_page we become responsible for freeing the
1400  * page.
1401  *
1402  * MPSAFE
1403  */
1404 static void
1405 sf_buf_mfree(void *arg)
1406 {
1407 	struct sf_buf *sf = arg;
1408 	vm_page_t m;
1409 
1410 	m = sf_buf_page(sf);
1411 	if (sf_buf_free(sf)) {
1412 		/* sf invalid now */
1413 		/*
1414 		vm_page_busy_wait(m, FALSE, "sockpgf");
1415 		vm_page_wakeup(m);
1416 		*/
1417 		vm_page_unhold(m);
1418 #if 0
1419 		if (m->object == NULL &&
1420 		    m->wire_count == 0 &&
1421 		    (m->flags & PG_NEED_COMMIT) == 0) {
1422 			vm_page_free(m);
1423 		} else {
1424 			vm_page_wakeup(m);
1425 		}
1426 #endif
1427 	}
1428 }
1429 
1430 /*
1431  * sendfile(2).
1432  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1433  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1434  *
1435  * Send a file specified by 'fd' and starting at 'offset' to a socket
1436  * specified by 's'. Send only 'nbytes' of the file or until EOF if
1437  * nbytes == 0. Optionally add a header and/or trailer to the socket
1438  * output. If specified, write the total number of bytes sent into *sbytes.
1439  *
1440  * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1441  * the headers to count against the remaining bytes to be sent from
1442  * the file descriptor.  We may wish to implement a compatibility syscall
1443  * in the future.
1444  *
1445  * MPALMOSTSAFE
1446  */
1447 int
1448 sys_sendfile(struct sendfile_args *uap)
1449 {
1450 	struct thread *td = curthread;
1451 	struct proc *p = td->td_proc;
1452 	struct file *fp;
1453 	struct vnode *vp = NULL;
1454 	struct sf_hdtr hdtr;
1455 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1456 	struct uio auio;
1457 	struct mbuf *mheader = NULL;
1458 	size_t hbytes = 0;
1459 	size_t tbytes;
1460 	off_t hdtr_size = 0;
1461 	off_t sbytes;
1462 	int error;
1463 
1464 	KKASSERT(p);
1465 
1466 	/*
1467 	 * Do argument checking. Must be a regular file in, stream
1468 	 * type and connected socket out, positive offset.
1469 	 */
1470 	fp = holdfp(p->p_fd, uap->fd, FREAD);
1471 	if (fp == NULL) {
1472 		return (EBADF);
1473 	}
1474 	if (fp->f_type != DTYPE_VNODE) {
1475 		fdrop(fp);
1476 		return (EINVAL);
1477 	}
1478 	vp = (struct vnode *)fp->f_data;
1479 	vref(vp);
1480 	fdrop(fp);
1481 
1482 	/*
1483 	 * If specified, get the pointer to the sf_hdtr struct for
1484 	 * any headers/trailers.
1485 	 */
1486 	if (uap->hdtr) {
1487 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1488 		if (error)
1489 			goto done;
1490 		/*
1491 		 * Send any headers.
1492 		 */
1493 		if (hdtr.headers) {
1494 			error = iovec_copyin(hdtr.headers, &iov, aiov,
1495 					     hdtr.hdr_cnt, &hbytes);
1496 			if (error)
1497 				goto done;
1498 			auio.uio_iov = iov;
1499 			auio.uio_iovcnt = hdtr.hdr_cnt;
1500 			auio.uio_offset = 0;
1501 			auio.uio_segflg = UIO_USERSPACE;
1502 			auio.uio_rw = UIO_WRITE;
1503 			auio.uio_td = td;
1504 			auio.uio_resid = hbytes;
1505 
1506 			mheader = m_uiomove(&auio);
1507 
1508 			iovec_free(&iov, aiov);
1509 			if (mheader == NULL)
1510 				goto done;
1511 		}
1512 	}
1513 
1514 	error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1515 			      &sbytes, uap->flags);
1516 	if (error)
1517 		goto done;
1518 
1519 	/*
1520 	 * Send trailers. Wimp out and use writev(2).
1521 	 */
1522 	if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1523 		error = iovec_copyin(hdtr.trailers, &iov, aiov,
1524 				     hdtr.trl_cnt, &auio.uio_resid);
1525 		if (error)
1526 			goto done;
1527 		auio.uio_iov = iov;
1528 		auio.uio_iovcnt = hdtr.trl_cnt;
1529 		auio.uio_offset = 0;
1530 		auio.uio_segflg = UIO_USERSPACE;
1531 		auio.uio_rw = UIO_WRITE;
1532 		auio.uio_td = td;
1533 
1534 		error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1535 
1536 		iovec_free(&iov, aiov);
1537 		if (error)
1538 			goto done;
1539 		hdtr_size += tbytes;	/* trailer bytes successfully sent */
1540 	}
1541 
1542 done:
1543 	if (vp)
1544 		vrele(vp);
1545 	if (uap->sbytes != NULL) {
1546 		sbytes += hdtr_size;
1547 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1548 	}
1549 	return (error);
1550 }
1551 
1552 int
1553 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1554 	      struct mbuf *mheader, off_t *sbytes, int flags)
1555 {
1556 	struct thread *td = curthread;
1557 	struct proc *p = td->td_proc;
1558 	struct vm_object *obj;
1559 	struct socket *so;
1560 	struct file *fp;
1561 	struct mbuf *m, *mp;
1562 	struct sf_buf *sf;
1563 	struct vm_page *pg;
1564 	off_t off, xfsize, xbytes;
1565 	off_t hbytes = 0;
1566 	int error = 0;
1567 
1568 	if (vp->v_type != VREG) {
1569 		error = EINVAL;
1570 		goto done0;
1571 	}
1572 	if ((obj = vp->v_object) == NULL) {
1573 		error = EINVAL;
1574 		goto done0;
1575 	}
1576 	error = holdsock(p->p_fd, sfd, &fp);
1577 	if (error)
1578 		goto done0;
1579 	so = (struct socket *)fp->f_data;
1580 	if (so->so_type != SOCK_STREAM) {
1581 		error = EINVAL;
1582 		goto done;
1583 	}
1584 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1585 		error = ENOTCONN;
1586 		goto done;
1587 	}
1588 	if (offset < 0) {
1589 		error = EINVAL;
1590 		goto done;
1591 	}
1592 
1593 	/*
1594 	 * preallocation is required for asynchronous passing of mbufs,
1595 	 * otherwise we can wind up building up an infinite number of
1596 	 * mbufs during the asynchronous latency.
1597 	 */
1598 	if ((so->so_snd.ssb_flags & (SSB_PREALLOC | SSB_STOPSUPP)) == 0) {
1599 		error = EINVAL;
1600 		goto done;
1601 	}
1602 
1603 	*sbytes = 0;
1604 	xbytes = 0;
1605 	/*
1606 	 * Protect against multiple writers to the socket.
1607 	 */
1608 	ssb_lock(&so->so_snd, M_WAITOK);
1609 
1610 	/*
1611 	 * Loop through the pages in the file, starting with the requested
1612 	 * offset. Get a file page (do I/O if necessary), map the file page
1613 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1614 	 * it on the socket.
1615 	 */
1616 	for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes, xbytes += xfsize) {
1617 		vm_pindex_t pindex;
1618 		vm_offset_t pgoff;
1619 		long space;
1620 
1621 		pindex = OFF_TO_IDX(off);
1622 retry_lookup:
1623 		/*
1624 		 * Calculate the amount to transfer. Not to exceed a page,
1625 		 * the EOF, or the passed in nbytes.
1626 		 */
1627 		xfsize = vp->v_filesize - off;
1628 		if (xfsize > PAGE_SIZE)
1629 			xfsize = PAGE_SIZE;
1630 		pgoff = (vm_offset_t)(off & PAGE_MASK);
1631 		if (PAGE_SIZE - pgoff < xfsize)
1632 			xfsize = PAGE_SIZE - pgoff;
1633 		if (nbytes && xfsize > (nbytes - xbytes))
1634 			xfsize = nbytes - xbytes;
1635 		if (xfsize <= 0)
1636 			break;
1637 		/*
1638 		 * Optimize the non-blocking case by looking at the socket space
1639 		 * before going to the extra work of constituting the sf_buf.
1640 		 */
1641 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1642 			space = ssb_space_prealloc(&so->so_snd);
1643 		else
1644 			space = ssb_space(&so->so_snd);
1645 
1646 		if ((fp->f_flag & FNONBLOCK) && space <= 0) {
1647 			if (so->so_state & SS_CANTSENDMORE)
1648 				error = EPIPE;
1649 			else
1650 				error = EAGAIN;
1651 			ssb_unlock(&so->so_snd);
1652 			goto done;
1653 		}
1654 		/*
1655 		 * Attempt to look up the page.
1656 		 *
1657 		 * Allocate if not found, wait and loop if busy, then hold the page.
1658 		 * We hold rather than wire the page because we do not want to prevent
1659 		 * filesystem truncation operations from occuring on the file.  This
1660 		 * can happen even under normal operation if the file being sent is
1661 		 * remove()d after the sendfile() call completes, because the socket buffer
1662 		 * may still be draining.  tmpfs will crash if we try to use wire.
1663 		 */
1664 		vm_object_hold(obj);
1665 		pg = vm_page_lookup_busy_try(obj, pindex, TRUE, &error);
1666 		if (error) {
1667 			vm_page_sleep_busy(pg, TRUE, "sfpbsy");
1668 			vm_object_drop(obj);
1669 			goto retry_lookup;
1670 		}
1671 		if (pg == NULL) {
1672 			pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL |
1673 							VM_ALLOC_NULL_OK);
1674 			if (pg == NULL) {
1675 				vm_wait(0);
1676 				vm_object_drop(obj);
1677 				goto retry_lookup;
1678 			}
1679 		}
1680 		vm_page_hold(pg);
1681 		vm_object_drop(obj);
1682 
1683 		/*
1684 		 * If page is not valid for what we need, initiate I/O
1685 		 */
1686 
1687 		if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1688 			struct uio auio;
1689 			struct iovec aiov;
1690 			int bsize;
1691 
1692 			/*
1693 			 * Ensure that our page is still around when the I/O
1694 			 * completes.
1695 			 *
1696 			 * Ensure that our page is not modified while part of
1697 			 * a mbuf as this could mess up tcp checksums, DMA,
1698 			 * etc (XXX NEEDS WORK).  The softbusy is supposed to
1699 			 * help here but it actually doesn't.
1700 			 *
1701 			 * XXX THIS HAS MULTIPLE PROBLEMS.  The underlying
1702 			 *     VM pages are not protected by the soft-busy
1703 			 *     unless we vm_page_protect... READ them, and
1704 			 *     they STILL aren't protected against
1705 			 *     modification via the buffer cache (VOP_WRITE).
1706 			 *
1707 			 *     Fixing the second issue is particularly
1708 			 *     difficult.
1709 			 *
1710 			 * XXX We also can't soft-busy anyway because it can
1711 			 *     deadlock against the syncer doing a vfs_msync(),
1712 			 *     vfs_msync->vmntvnodesca->vfs_msync_scan2->
1713 			 *     vm_object_page_clean->(scan)-> ... page
1714 			 *     busy-wait.
1715 			 */
1716 			/*vm_page_io_start(pg);*/
1717 			vm_page_wakeup(pg);
1718 
1719 			/*
1720 			 * Get the page from backing store.
1721 			 */
1722 			bsize = vp->v_mount->mnt_stat.f_iosize;
1723 			auio.uio_iov = &aiov;
1724 			auio.uio_iovcnt = 1;
1725 			aiov.iov_base = 0;
1726 			aiov.iov_len = MAXBSIZE;
1727 			auio.uio_resid = MAXBSIZE;
1728 			auio.uio_offset = trunc_page(off);
1729 			auio.uio_segflg = UIO_NOCOPY;
1730 			auio.uio_rw = UIO_READ;
1731 			auio.uio_td = td;
1732 			vn_lock(vp, LK_SHARED | LK_RETRY);
1733 			error = VOP_READ(vp, &auio,
1734 				    IO_VMIO | ((MAXBSIZE / bsize) << 16),
1735 				    td->td_ucred);
1736 			vn_unlock(vp);
1737 			vm_page_flag_clear(pg, PG_ZERO);
1738 			vm_page_busy_wait(pg, FALSE, "sockpg");
1739 			/*vm_page_io_finish(pg);*/
1740 			if (error) {
1741 				vm_page_wakeup(pg);
1742 				vm_page_unhold(pg);
1743 				/* vm_page_try_to_free(pg); */
1744 				ssb_unlock(&so->so_snd);
1745 				goto done;
1746 			}
1747 		}
1748 
1749 
1750 		/*
1751 		 * Get a sendfile buf. We usually wait as long as necessary,
1752 		 * but this wait can be interrupted.
1753 		 */
1754 		if ((sf = sf_buf_alloc(pg)) == NULL) {
1755 			vm_page_wakeup(pg);
1756 			vm_page_unhold(pg);
1757 			/* vm_page_try_to_free(pg); */
1758 			ssb_unlock(&so->so_snd);
1759 			error = EINTR;
1760 			goto done;
1761 		}
1762 
1763 		/*
1764 		 * Get an mbuf header and set it up as having external storage.
1765 		 */
1766 		MGETHDR(m, MB_WAIT, MT_DATA);
1767 		if (m == NULL) {
1768 			error = ENOBUFS;
1769 			vm_page_wakeup(pg);
1770 			vm_page_unhold(pg);
1771 			/* vm_page_try_to_free(pg); */
1772 			sf_buf_free(sf);
1773 			ssb_unlock(&so->so_snd);
1774 			goto done;
1775 		}
1776 
1777 		vm_page_wakeup(pg);
1778 
1779 		m->m_ext.ext_free = sf_buf_mfree;
1780 		m->m_ext.ext_ref = sf_buf_ref;
1781 		m->m_ext.ext_arg = sf;
1782 		m->m_ext.ext_buf = (void *)sf_buf_kva(sf);
1783 		m->m_ext.ext_size = PAGE_SIZE;
1784 		m->m_data = (char *)sf_buf_kva(sf) + pgoff;
1785 		m->m_flags |= M_EXT;
1786 		m->m_pkthdr.len = m->m_len = xfsize;
1787 		KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1788 
1789 		if (mheader != NULL) {
1790 			hbytes = mheader->m_pkthdr.len;
1791 			mheader->m_pkthdr.len += m->m_pkthdr.len;
1792 			m_cat(mheader, m);
1793 			m = mheader;
1794 			mheader = NULL;
1795 		} else
1796 			hbytes = 0;
1797 
1798 		/*
1799 		 * Add the buffer to the socket buffer chain.
1800 		 */
1801 		crit_enter();
1802 retry_space:
1803 		/*
1804 		 * Make sure that the socket is still able to take more data.
1805 		 * CANTSENDMORE being true usually means that the connection
1806 		 * was closed. so_error is true when an error was sensed after
1807 		 * a previous send.
1808 		 * The state is checked after the page mapping and buffer
1809 		 * allocation above since those operations may block and make
1810 		 * any socket checks stale. From this point forward, nothing
1811 		 * blocks before the pru_send (or more accurately, any blocking
1812 		 * results in a loop back to here to re-check).
1813 		 */
1814 		if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1815 			if (so->so_state & SS_CANTSENDMORE) {
1816 				error = EPIPE;
1817 			} else {
1818 				error = so->so_error;
1819 				so->so_error = 0;
1820 			}
1821 			m_freem(m);
1822 			ssb_unlock(&so->so_snd);
1823 			crit_exit();
1824 			goto done;
1825 		}
1826 		/*
1827 		 * Wait for socket space to become available. We do this just
1828 		 * after checking the connection state above in order to avoid
1829 		 * a race condition with ssb_wait().
1830 		 */
1831 		if (so->so_snd.ssb_flags & SSB_PREALLOC)
1832 			space = ssb_space_prealloc(&so->so_snd);
1833 		else
1834 			space = ssb_space(&so->so_snd);
1835 
1836 		if (space < m->m_pkthdr.len && space < so->so_snd.ssb_lowat) {
1837 			if (fp->f_flag & FNONBLOCK) {
1838 				m_freem(m);
1839 				ssb_unlock(&so->so_snd);
1840 				crit_exit();
1841 				error = EAGAIN;
1842 				goto done;
1843 			}
1844 			error = ssb_wait(&so->so_snd);
1845 			/*
1846 			 * An error from ssb_wait usually indicates that we've
1847 			 * been interrupted by a signal. If we've sent anything
1848 			 * then return bytes sent, otherwise return the error.
1849 			 */
1850 			if (error) {
1851 				m_freem(m);
1852 				ssb_unlock(&so->so_snd);
1853 				crit_exit();
1854 				goto done;
1855 			}
1856 			goto retry_space;
1857 		}
1858 
1859 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1860 			for (mp = m; mp != NULL; mp = mp->m_next)
1861 				ssb_preallocstream(&so->so_snd, mp);
1862 		}
1863 		if (use_sendfile_async)
1864 			error = so_pru_senda(so, 0, m, NULL, NULL, td);
1865 		else
1866 			error = so_pru_send(so, 0, m, NULL, NULL, td);
1867 
1868 		crit_exit();
1869 		if (error) {
1870 			ssb_unlock(&so->so_snd);
1871 			goto done;
1872 		}
1873 	}
1874 	if (mheader != NULL) {
1875 		*sbytes += mheader->m_pkthdr.len;
1876 
1877 		if (so->so_snd.ssb_flags & SSB_PREALLOC) {
1878 			for (mp = mheader; mp != NULL; mp = mp->m_next)
1879 				ssb_preallocstream(&so->so_snd, mp);
1880 		}
1881 		if (use_sendfile_async)
1882 			error = so_pru_senda(so, 0, mheader, NULL, NULL, td);
1883 		else
1884 			error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1885 
1886 		mheader = NULL;
1887 	}
1888 	ssb_unlock(&so->so_snd);
1889 
1890 done:
1891 	fdrop(fp);
1892 done0:
1893 	if (mheader != NULL)
1894 		m_freem(mheader);
1895 	return (error);
1896 }
1897 
1898 /*
1899  * MPALMOSTSAFE
1900  */
1901 int
1902 sys_sctp_peeloff(struct sctp_peeloff_args *uap)
1903 {
1904 #ifdef SCTP
1905 	struct thread *td = curthread;
1906 	struct filedesc *fdp = td->td_proc->p_fd;
1907 	struct file *lfp = NULL;
1908 	struct file *nfp = NULL;
1909 	int error;
1910 	struct socket *head, *so;
1911 	caddr_t assoc_id;
1912 	int fd;
1913 	short fflag;		/* type must match fp->f_flag */
1914 
1915 	assoc_id = uap->name;
1916 	error = holdsock(td->td_proc->p_fd, uap->sd, &lfp);
1917 	if (error)
1918 		return (error);
1919 
1920 	crit_enter();
1921 	head = (struct socket *)lfp->f_data;
1922 	error = sctp_can_peel_off(head, assoc_id);
1923 	if (error) {
1924 		crit_exit();
1925 		goto done;
1926 	}
1927 	/*
1928 	 * At this point we know we do have a assoc to pull
1929 	 * we proceed to get the fd setup. This may block
1930 	 * but that is ok.
1931 	 */
1932 
1933 	fflag = lfp->f_flag;
1934 	error = falloc(td->td_lwp, &nfp, &fd);
1935 	if (error) {
1936 		/*
1937 		 * Probably ran out of file descriptors. Put the
1938 		 * unaccepted connection back onto the queue and
1939 		 * do another wakeup so some other process might
1940 		 * have a chance at it.
1941 		 */
1942 		crit_exit();
1943 		goto done;
1944 	}
1945 	uap->sysmsg_iresult = fd;
1946 
1947 	so = sctp_get_peeloff(head, assoc_id, &error);
1948 	if (so == NULL) {
1949 		/*
1950 		 * Either someone else peeled it off OR
1951 		 * we can't get a socket.
1952 		 */
1953 		goto noconnection;
1954 	}
1955 	soreference(so);			/* reference needed */
1956 	soclrstate(so, SS_NOFDREF | SS_COMP);	/* when clearing NOFDREF */
1957 	so->so_head = NULL;
1958 	if (head->so_sigio != NULL)
1959 		fsetown(fgetown(&head->so_sigio), &so->so_sigio);
1960 
1961 	nfp->f_type = DTYPE_SOCKET;
1962 	nfp->f_flag = fflag;
1963 	nfp->f_ops = &socketops;
1964 	nfp->f_data = so;
1965 
1966 noconnection:
1967 	/*
1968 	 * Assign the file pointer to the reserved descriptor, or clear
1969 	 * the reserved descriptor if an error occured.
1970 	 */
1971 	if (error)
1972 		fsetfd(fdp, NULL, fd);
1973 	else
1974 		fsetfd(fdp, nfp, fd);
1975 	crit_exit();
1976 	/*
1977 	 * Release explicitly held references before returning.
1978 	 */
1979 done:
1980 	if (nfp != NULL)
1981 		fdrop(nfp);
1982 	fdrop(lfp);
1983 	return (error);
1984 #else /* SCTP */
1985 	return(EOPNOTSUPP);
1986 #endif /* SCTP */
1987 }
1988