xref: /dragonfly/sys/kern/uipc_usrreq.c (revision 25a2db75)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/domain.h>
41 #include <sys/fcntl.h>
42 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
43 #include <sys/proc.h>
44 #include <sys/file.h>
45 #include <sys/filedesc.h>
46 #include <sys/mbuf.h>
47 #include <sys/nlookup.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/resourcevar.h>
52 #include <sys/stat.h>
53 #include <sys/mount.h>
54 #include <sys/sysctl.h>
55 #include <sys/un.h>
56 #include <sys/unpcb.h>
57 #include <sys/vnode.h>
58 
59 #include <sys/file2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/socketvar2.h>
62 #include <sys/msgport2.h>
63 
64 typedef struct unp_defdiscard {
65 	struct unp_defdiscard *next;
66 	struct file *fp;
67 } *unp_defdiscard_t;
68 
69 static	MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
70 static	unp_gen_t unp_gencnt;
71 static	u_int unp_count;
72 
73 static	struct unp_head unp_shead, unp_dhead;
74 
75 static struct lwkt_token unp_token = LWKT_TOKEN_INITIALIZER(unp_token);
76 static int unp_defdiscard_nest;
77 static unp_defdiscard_t unp_defdiscard_base;
78 
79 /*
80  * Unix communications domain.
81  *
82  * TODO:
83  *	RDM
84  *	rethink name space problems
85  *	need a proper out-of-band
86  *	lock pushdown
87  */
88 static struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
89 static ino_t	unp_ino = 1;		/* prototype for fake inode numbers */
90 static struct spinlock unp_ino_spin = SPINLOCK_INITIALIZER(&unp_ino_spin);
91 
92 static int     unp_attach (struct socket *, struct pru_attach_info *);
93 static void    unp_detach (struct unpcb *);
94 static int     unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
95 static int     unp_connect (struct socket *,struct sockaddr *,
96 				struct thread *);
97 static void    unp_disconnect (struct unpcb *);
98 static void    unp_shutdown (struct unpcb *);
99 static void    unp_drop (struct unpcb *, int);
100 static void    unp_gc (void);
101 static int     unp_gc_clearmarks(struct file *, void *);
102 static int     unp_gc_checkmarks(struct file *, void *);
103 static int     unp_gc_checkrefs(struct file *, void *);
104 static int     unp_revoke_gc_check(struct file *, void *);
105 static void    unp_scan (struct mbuf *, void (*)(struct file *, void *),
106 				void *data);
107 static void    unp_mark (struct file *, void *data);
108 static void    unp_discard (struct file *, void *);
109 static int     unp_internalize (struct mbuf *, struct thread *);
110 static int     unp_listen (struct unpcb *, struct thread *);
111 static void    unp_fp_externalize(struct lwp *lp, struct file *fp, int fd);
112 
113 /*
114  * SMP Considerations:
115  *
116  *	Since unp_token will be automaticly released upon execution of
117  *	blocking code, we need to reference unp_conn before any possible
118  *	blocking code to prevent it from being ripped behind our back.
119  *
120  *	Any adjustment to unp->unp_conn requires both the global unp_token
121  *	AND the per-unp token (lwkt_token_pool_lookup(unp)) to be held.
122  *
123  *	Any access to so_pcb to obtain unp requires the pool token for
124  *	unp to be held.
125  */
126 
127 /* NOTE: unp_token MUST be held */
128 static __inline void
129 unp_reference(struct unpcb *unp)
130 {
131 	atomic_add_int(&unp->unp_refcnt, 1);
132 }
133 
134 /* NOTE: unp_token MUST be held */
135 static __inline void
136 unp_free(struct unpcb *unp)
137 {
138 	KKASSERT(unp->unp_refcnt > 0);
139 	if (atomic_fetchadd_int(&unp->unp_refcnt, -1) == 1)
140 		unp_detach(unp);
141 }
142 
143 /*
144  * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
145  *	 will sofree() it when we return.
146  */
147 static void
148 uipc_abort(netmsg_t msg)
149 {
150 	struct unpcb *unp;
151 	int error;
152 
153 	lwkt_gettoken(&unp_token);
154 	unp = msg->base.nm_so->so_pcb;
155 	if (unp) {
156 		unp_drop(unp, ECONNABORTED);
157 		unp_free(unp);
158 		error = 0;
159 	} else {
160 		error = EINVAL;
161 	}
162 	lwkt_reltoken(&unp_token);
163 
164 	lwkt_replymsg(&msg->lmsg, error);
165 }
166 
167 static void
168 uipc_accept(netmsg_t msg)
169 {
170 	struct unpcb *unp;
171 	int error;
172 
173 	lwkt_gettoken(&unp_token);
174 	unp = msg->base.nm_so->so_pcb;
175 	if (unp == NULL) {
176 		error = EINVAL;
177 	} else {
178 		struct unpcb *unp2 = unp->unp_conn;
179 
180 		/*
181 		 * Pass back name of connected socket,
182 		 * if it was bound and we are still connected
183 		 * (our peer may have closed already!).
184 		 */
185 		if (unp2 && unp2->unp_addr) {
186 			unp_reference(unp2);
187 			*msg->accept.nm_nam = dup_sockaddr(
188 				(struct sockaddr *)unp2->unp_addr);
189 			unp_free(unp2);
190 		} else {
191 			*msg->accept.nm_nam = dup_sockaddr(&sun_noname);
192 		}
193 		error = 0;
194 	}
195 	lwkt_reltoken(&unp_token);
196 	lwkt_replymsg(&msg->lmsg, error);
197 }
198 
199 static void
200 uipc_attach(netmsg_t msg)
201 {
202 	struct unpcb *unp;
203 	int error;
204 
205 	lwkt_gettoken(&unp_token);
206 	unp = msg->base.nm_so->so_pcb;
207 	if (unp)
208 		error = EISCONN;
209 	else
210 		error = unp_attach(msg->base.nm_so, msg->attach.nm_ai);
211 	lwkt_reltoken(&unp_token);
212 	lwkt_replymsg(&msg->lmsg, error);
213 }
214 
215 static void
216 uipc_bind(netmsg_t msg)
217 {
218 	struct unpcb *unp;
219 	int error;
220 
221 	lwkt_gettoken(&unp_token);
222 	unp = msg->base.nm_so->so_pcb;
223 	if (unp)
224 		error = unp_bind(unp, msg->bind.nm_nam, msg->bind.nm_td);
225 	else
226 		error = EINVAL;
227 	lwkt_reltoken(&unp_token);
228 	lwkt_replymsg(&msg->lmsg, error);
229 }
230 
231 static void
232 uipc_connect(netmsg_t msg)
233 {
234 	struct unpcb *unp;
235 	int error;
236 
237 	unp = msg->base.nm_so->so_pcb;
238 	if (unp) {
239 		error = unp_connect(msg->base.nm_so,
240 				    msg->connect.nm_nam,
241 				    msg->connect.nm_td);
242 	} else {
243 		error = EINVAL;
244 	}
245 	lwkt_replymsg(&msg->lmsg, error);
246 }
247 
248 static void
249 uipc_connect2(netmsg_t msg)
250 {
251 	struct unpcb *unp;
252 	int error;
253 
254 	unp = msg->connect2.nm_so1->so_pcb;
255 	if (unp) {
256 		error = unp_connect2(msg->connect2.nm_so1,
257 				     msg->connect2.nm_so2);
258 	} else {
259 		error = EINVAL;
260 	}
261 	lwkt_replymsg(&msg->lmsg, error);
262 }
263 
264 /* control is EOPNOTSUPP */
265 
266 static void
267 uipc_detach(netmsg_t msg)
268 {
269 	struct unpcb *unp;
270 	int error;
271 
272 	lwkt_gettoken(&unp_token);
273 	unp = msg->base.nm_so->so_pcb;
274 	if (unp) {
275 		unp_free(unp);
276 		error = 0;
277 	} else {
278 		error = EINVAL;
279 	}
280 	lwkt_reltoken(&unp_token);
281 	lwkt_replymsg(&msg->lmsg, error);
282 }
283 
284 static void
285 uipc_disconnect(netmsg_t msg)
286 {
287 	struct unpcb *unp;
288 	int error;
289 
290 	lwkt_gettoken(&unp_token);
291 	unp = msg->base.nm_so->so_pcb;
292 	if (unp) {
293 		unp_disconnect(unp);
294 		error = 0;
295 	} else {
296 		error = EINVAL;
297 	}
298 	lwkt_reltoken(&unp_token);
299 	lwkt_replymsg(&msg->lmsg, error);
300 }
301 
302 static void
303 uipc_listen(netmsg_t msg)
304 {
305 	struct unpcb *unp;
306 	int error;
307 
308 	lwkt_gettoken(&unp_token);
309 	unp = msg->base.nm_so->so_pcb;
310 	if (unp == NULL || unp->unp_vnode == NULL)
311 		error = EINVAL;
312 	else
313 		error = unp_listen(unp, msg->listen.nm_td);
314 	lwkt_reltoken(&unp_token);
315 	lwkt_replymsg(&msg->lmsg, error);
316 }
317 
318 static void
319 uipc_peeraddr(netmsg_t msg)
320 {
321 	struct unpcb *unp;
322 	int error;
323 
324 	lwkt_gettoken(&unp_token);
325 	unp = msg->base.nm_so->so_pcb;
326 	if (unp == NULL) {
327 		error = EINVAL;
328 	} else if (unp->unp_conn && unp->unp_conn->unp_addr) {
329 		struct unpcb *unp2 = unp->unp_conn;
330 
331 		unp_reference(unp2);
332 		*msg->peeraddr.nm_nam = dup_sockaddr(
333 				(struct sockaddr *)unp2->unp_addr);
334 		unp_free(unp2);
335 		error = 0;
336 	} else {
337 		/*
338 		 * XXX: It seems that this test always fails even when
339 		 * connection is established.  So, this else clause is
340 		 * added as workaround to return PF_LOCAL sockaddr.
341 		 */
342 		*msg->peeraddr.nm_nam = dup_sockaddr(&sun_noname);
343 		error = 0;
344 	}
345 	lwkt_reltoken(&unp_token);
346 	lwkt_replymsg(&msg->lmsg, error);
347 }
348 
349 static void
350 uipc_rcvd(netmsg_t msg)
351 {
352 	struct unpcb *unp, *unp2;
353 	struct socket *so;
354 	struct socket *so2;
355 	int error;
356 
357 	/*
358 	 * so_pcb is only modified with both the global and the unp
359 	 * pool token held.  The unp pointer is invalid until we verify
360 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
361 	 */
362 	so = msg->base.nm_so;
363 	while ((unp = so->so_pcb) != NULL) {
364 		lwkt_getpooltoken(unp);
365 		if (unp == so->so_pcb)
366 			break;
367 		lwkt_relpooltoken(unp);
368 	}
369 	if (unp == NULL) {
370 		error = EINVAL;
371 		goto done;
372 	}
373 	/* pool token held */
374 
375 	switch (so->so_type) {
376 	case SOCK_DGRAM:
377 		panic("uipc_rcvd DGRAM?");
378 		/*NOTREACHED*/
379 	case SOCK_STREAM:
380 	case SOCK_SEQPACKET:
381 		if (unp->unp_conn == NULL)
382 			break;
383 		unp2 = unp->unp_conn;	/* protected by pool token */
384 
385 		/*
386 		 * Because we are transfering mbufs directly to the
387 		 * peer socket we have to use SSB_STOP on the sender
388 		 * to prevent it from building up infinite mbufs.
389 		 *
390 		 * As in several places in this module w ehave to ref unp2
391 		 * to ensure that it does not get ripped out from under us
392 		 * if we block on the so2 token or in sowwakeup().
393 		 */
394 		so2 = unp2->unp_socket;
395 		unp_reference(unp2);
396 		lwkt_gettoken(&so2->so_rcv.ssb_token);
397 		if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
398 		    so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
399 		) {
400 			atomic_clear_int(&so2->so_snd.ssb_flags, SSB_STOP);
401 
402 			sowwakeup(so2);
403 		}
404 		lwkt_reltoken(&so2->so_rcv.ssb_token);
405 		unp_free(unp2);
406 		break;
407 	default:
408 		panic("uipc_rcvd unknown socktype");
409 		/*NOTREACHED*/
410 	}
411 	error = 0;
412 	lwkt_relpooltoken(unp);
413 done:
414 	lwkt_replymsg(&msg->lmsg, error);
415 }
416 
417 /* pru_rcvoob is EOPNOTSUPP */
418 
419 static void
420 uipc_send(netmsg_t msg)
421 {
422 	struct unpcb *unp, *unp2;
423 	struct socket *so;
424 	struct socket *so2;
425 	struct mbuf *control;
426 	struct mbuf *m;
427 	int error = 0;
428 
429 	so = msg->base.nm_so;
430 	control = msg->send.nm_control;
431 	m = msg->send.nm_m;
432 
433 	/*
434 	 * so_pcb is only modified with both the global and the unp
435 	 * pool token held.  The unp pointer is invalid until we verify
436 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
437 	 */
438 	so = msg->base.nm_so;
439 	while ((unp = so->so_pcb) != NULL) {
440 		lwkt_getpooltoken(unp);
441 		if (unp == so->so_pcb)
442 			break;
443 		lwkt_relpooltoken(unp);
444 	}
445 	if (unp == NULL) {
446 		error = EINVAL;
447 		goto done;
448 	}
449 	/* pool token held */
450 
451 	if (msg->send.nm_flags & PRUS_OOB) {
452 		error = EOPNOTSUPP;
453 		goto release;
454 	}
455 
456 	wakeup_start_delayed();
457 
458 	if (control && (error = unp_internalize(control, msg->send.nm_td)))
459 		goto release;
460 
461 	switch (so->so_type) {
462 	case SOCK_DGRAM:
463 	{
464 		struct sockaddr *from;
465 
466 		if (msg->send.nm_addr) {
467 			if (unp->unp_conn) {
468 				error = EISCONN;
469 				break;
470 			}
471 			error = unp_connect(so,
472 					    msg->send.nm_addr,
473 					    msg->send.nm_td);
474 			if (error)
475 				break;
476 		} else {
477 			if (unp->unp_conn == NULL) {
478 				error = ENOTCONN;
479 				break;
480 			}
481 		}
482 		unp2 = unp->unp_conn;
483 		so2 = unp2->unp_socket;
484 		if (unp->unp_addr)
485 			from = (struct sockaddr *)unp->unp_addr;
486 		else
487 			from = &sun_noname;
488 
489 		unp_reference(unp2);
490 
491 		lwkt_gettoken(&so2->so_rcv.ssb_token);
492 		if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
493 			sorwakeup(so2);
494 			m = NULL;
495 			control = NULL;
496 		} else {
497 			error = ENOBUFS;
498 		}
499 		if (msg->send.nm_addr)
500 			unp_disconnect(unp);
501 		lwkt_reltoken(&so2->so_rcv.ssb_token);
502 
503 		unp_free(unp2);
504 		break;
505 	}
506 
507 	case SOCK_STREAM:
508 	case SOCK_SEQPACKET:
509 		/* Connect if not connected yet. */
510 		/*
511 		 * Note: A better implementation would complain
512 		 * if not equal to the peer's address.
513 		 */
514 		if (!(so->so_state & SS_ISCONNECTED)) {
515 			if (msg->send.nm_addr) {
516 				error = unp_connect(so,
517 						    msg->send.nm_addr,
518 						    msg->send.nm_td);
519 				if (error)
520 					break;	/* XXX */
521 			} else {
522 				error = ENOTCONN;
523 				break;
524 			}
525 		}
526 
527 		if (so->so_state & SS_CANTSENDMORE) {
528 			error = EPIPE;
529 			break;
530 		}
531 		if (unp->unp_conn == NULL)
532 			panic("uipc_send connected but no connection?");
533 		unp2 = unp->unp_conn;
534 		so2 = unp2->unp_socket;
535 
536 		unp_reference(unp2);
537 
538 		/*
539 		 * Send to paired receive port, and then reduce
540 		 * send buffer hiwater marks to maintain backpressure.
541 		 * Wake up readers.
542 		 */
543 		lwkt_gettoken(&so2->so_rcv.ssb_token);
544 		if (control) {
545 			if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
546 				control = NULL;
547 				m = NULL;
548 			}
549 		} else if (so->so_type == SOCK_SEQPACKET) {
550 			sbappendrecord(&so2->so_rcv.sb, m);
551 			m = NULL;
552 		} else {
553 			sbappend(&so2->so_rcv.sb, m);
554 			m = NULL;
555 		}
556 
557 		/*
558 		 * Because we are transfering mbufs directly to the
559 		 * peer socket we have to use SSB_STOP on the sender
560 		 * to prevent it from building up infinite mbufs.
561 		 */
562 		if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
563 		    so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
564 		) {
565 			atomic_set_int(&so->so_snd.ssb_flags, SSB_STOP);
566 		}
567 		lwkt_reltoken(&so2->so_rcv.ssb_token);
568 		sorwakeup(so2);
569 
570 		unp_free(unp2);
571 		break;
572 
573 	default:
574 		panic("uipc_send unknown socktype");
575 	}
576 
577 	/*
578 	 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
579 	 */
580 	if (msg->send.nm_flags & PRUS_EOF) {
581 		socantsendmore(so);
582 		unp_shutdown(unp);
583 	}
584 
585 	if (control && error != 0)
586 		unp_dispose(control);
587 release:
588 	lwkt_relpooltoken(unp);
589 	wakeup_end_delayed();
590 done:
591 
592 	if (control)
593 		m_freem(control);
594 	if (m)
595 		m_freem(m);
596 	lwkt_replymsg(&msg->lmsg, error);
597 }
598 
599 /*
600  * MPSAFE
601  */
602 static void
603 uipc_sense(netmsg_t msg)
604 {
605 	struct unpcb *unp;
606 	struct socket *so;
607 	struct stat *sb;
608 	int error;
609 
610 	so = msg->base.nm_so;
611 	sb = msg->sense.nm_stat;
612 
613 	/*
614 	 * so_pcb is only modified with both the global and the unp
615 	 * pool token held.  The unp pointer is invalid until we verify
616 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
617 	 */
618 	while ((unp = so->so_pcb) != NULL) {
619 		lwkt_getpooltoken(unp);
620 		if (unp == so->so_pcb)
621 			break;
622 		lwkt_relpooltoken(unp);
623 	}
624 	if (unp == NULL) {
625 		error = EINVAL;
626 		goto done;
627 	}
628 	/* pool token held */
629 
630 	sb->st_blksize = so->so_snd.ssb_hiwat;
631 	sb->st_dev = NOUDEV;
632 	if (unp->unp_ino == 0) {	/* make up a non-zero inode number */
633 		spin_lock(&unp_ino_spin);
634 		unp->unp_ino = unp_ino++;
635 		spin_unlock(&unp_ino_spin);
636 	}
637 	sb->st_ino = unp->unp_ino;
638 	error = 0;
639 	lwkt_relpooltoken(unp);
640 done:
641 	lwkt_replymsg(&msg->lmsg, error);
642 }
643 
644 static void
645 uipc_shutdown(netmsg_t msg)
646 {
647 	struct socket *so;
648 	struct unpcb *unp;
649 	int error;
650 
651 	/*
652 	 * so_pcb is only modified with both the global and the unp
653 	 * pool token held.  The unp pointer is invalid until we verify
654 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
655 	 */
656 	so = msg->base.nm_so;
657 	while ((unp = so->so_pcb) != NULL) {
658 		lwkt_getpooltoken(unp);
659 		if (unp == so->so_pcb)
660 			break;
661 		lwkt_relpooltoken(unp);
662 	}
663 	if (unp) {
664 		/* pool token held */
665 		socantsendmore(so);
666 		unp_shutdown(unp);
667 		lwkt_relpooltoken(unp);
668 		error = 0;
669 	} else {
670 		error = EINVAL;
671 	}
672 	lwkt_replymsg(&msg->lmsg, error);
673 }
674 
675 static void
676 uipc_sockaddr(netmsg_t msg)
677 {
678 	struct socket *so;
679 	struct unpcb *unp;
680 	int error;
681 
682 	/*
683 	 * so_pcb is only modified with both the global and the unp
684 	 * pool token held.  The unp pointer is invalid until we verify
685 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
686 	 */
687 	so = msg->base.nm_so;
688 	while ((unp = so->so_pcb) != NULL) {
689 		lwkt_getpooltoken(unp);
690 		if (unp == so->so_pcb)
691 			break;
692 		lwkt_relpooltoken(unp);
693 	}
694 	if (unp) {
695 		/* pool token held */
696 		if (unp->unp_addr) {
697 			*msg->sockaddr.nm_nam =
698 				dup_sockaddr((struct sockaddr *)unp->unp_addr);
699 		}
700 		lwkt_relpooltoken(unp);
701 		error = 0;
702 	} else {
703 		error = EINVAL;
704 	}
705 	lwkt_replymsg(&msg->lmsg, error);
706 }
707 
708 struct pr_usrreqs uipc_usrreqs = {
709 	.pru_abort = uipc_abort,
710 	.pru_accept = uipc_accept,
711 	.pru_attach = uipc_attach,
712 	.pru_bind = uipc_bind,
713 	.pru_connect = uipc_connect,
714 	.pru_connect2 = uipc_connect2,
715 	.pru_control = pr_generic_notsupp,
716 	.pru_detach = uipc_detach,
717 	.pru_disconnect = uipc_disconnect,
718 	.pru_listen = uipc_listen,
719 	.pru_peeraddr = uipc_peeraddr,
720 	.pru_rcvd = uipc_rcvd,
721 	.pru_rcvoob = pr_generic_notsupp,
722 	.pru_send = uipc_send,
723 	.pru_sense = uipc_sense,
724 	.pru_shutdown = uipc_shutdown,
725 	.pru_sockaddr = uipc_sockaddr,
726 	.pru_sosend = sosend,
727 	.pru_soreceive = soreceive
728 };
729 
730 void
731 uipc_ctloutput(netmsg_t msg)
732 {
733 	struct socket *so;
734 	struct sockopt *sopt;
735 	struct unpcb *unp;
736 	int error = 0;
737 
738 	lwkt_gettoken(&unp_token);
739 	so = msg->base.nm_so;
740 	sopt = msg->ctloutput.nm_sopt;
741 	unp = so->so_pcb;
742 
743 	switch (sopt->sopt_dir) {
744 	case SOPT_GET:
745 		switch (sopt->sopt_name) {
746 		case LOCAL_PEERCRED:
747 			if (unp->unp_flags & UNP_HAVEPC)
748 				soopt_from_kbuf(sopt, &unp->unp_peercred,
749 						sizeof(unp->unp_peercred));
750 			else {
751 				if (so->so_type == SOCK_STREAM)
752 					error = ENOTCONN;
753 				else if (so->so_type == SOCK_SEQPACKET)
754 					error = ENOTCONN;
755 				else
756 					error = EINVAL;
757 			}
758 			break;
759 		default:
760 			error = EOPNOTSUPP;
761 			break;
762 		}
763 		break;
764 	case SOPT_SET:
765 	default:
766 		error = EOPNOTSUPP;
767 		break;
768 	}
769 	lwkt_reltoken(&unp_token);
770 	lwkt_replymsg(&msg->lmsg, error);
771 }
772 
773 /*
774  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
775  * for stream sockets, although the total for sender and receiver is
776  * actually only PIPSIZ.
777  *
778  * Datagram sockets really use the sendspace as the maximum datagram size,
779  * and don't really want to reserve the sendspace.  Their recvspace should
780  * be large enough for at least one max-size datagram plus address.
781  *
782  * We want the local send/recv space to be significant larger then lo0's
783  * mtu of 16384.
784  */
785 #ifndef PIPSIZ
786 #define	PIPSIZ	57344
787 #endif
788 static u_long	unpst_sendspace = PIPSIZ;
789 static u_long	unpst_recvspace = PIPSIZ;
790 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
791 static u_long	unpdg_recvspace = 4*1024;
792 
793 static int	unp_rights;			/* file descriptors in flight */
794 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin);
795 
796 SYSCTL_DECL(_net_local_seqpacket);
797 SYSCTL_DECL(_net_local_stream);
798 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
799     &unpst_sendspace, 0, "Size of stream socket send buffer");
800 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
801     &unpst_recvspace, 0, "Size of stream socket receive buffer");
802 
803 SYSCTL_DECL(_net_local_dgram);
804 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
805     &unpdg_sendspace, 0, "Max datagram socket size");
806 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
807     &unpdg_recvspace, 0, "Size of datagram socket receive buffer");
808 
809 SYSCTL_DECL(_net_local);
810 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
811    "File descriptors in flight");
812 
813 static int
814 unp_attach(struct socket *so, struct pru_attach_info *ai)
815 {
816 	struct unpcb *unp;
817 	int error;
818 
819 	lwkt_gettoken(&unp_token);
820 
821 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
822 		switch (so->so_type) {
823 
824 		case SOCK_STREAM:
825 		case SOCK_SEQPACKET:
826 			error = soreserve(so, unpst_sendspace, unpst_recvspace,
827 					  ai->sb_rlimit);
828 			break;
829 
830 		case SOCK_DGRAM:
831 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
832 					  ai->sb_rlimit);
833 			break;
834 
835 		default:
836 			panic("unp_attach");
837 		}
838 		if (error)
839 			goto failed;
840 	}
841 	unp = kmalloc(sizeof(*unp), M_UNPCB, M_WAITOK | M_ZERO | M_NULLOK);
842 	if (unp == NULL) {
843 		error = ENOBUFS;
844 		goto failed;
845 	}
846 	unp->unp_refcnt = 1;
847 	unp->unp_gencnt = ++unp_gencnt;
848 	unp_count++;
849 	LIST_INIT(&unp->unp_refs);
850 	unp->unp_socket = so;
851 	unp->unp_rvnode = ai->fd_rdir;		/* jail cruft XXX JH */
852 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
853 			 : &unp_shead, unp, unp_link);
854 	so->so_pcb = (caddr_t)unp;
855 	soreference(so);
856 	error = 0;
857 failed:
858 	lwkt_reltoken(&unp_token);
859 	return error;
860 }
861 
862 static void
863 unp_detach(struct unpcb *unp)
864 {
865 	struct socket *so;
866 
867 	lwkt_gettoken(&unp_token);
868 	lwkt_getpooltoken(unp);
869 
870 	LIST_REMOVE(unp, unp_link);	/* both tokens required */
871 	unp->unp_gencnt = ++unp_gencnt;
872 	--unp_count;
873 	if (unp->unp_vnode) {
874 		unp->unp_vnode->v_socket = NULL;
875 		vrele(unp->unp_vnode);
876 		unp->unp_vnode = NULL;
877 	}
878 	if (unp->unp_conn)
879 		unp_disconnect(unp);
880 	while (!LIST_EMPTY(&unp->unp_refs))
881 		unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
882 	soisdisconnected(unp->unp_socket);
883 	so = unp->unp_socket;
884 	soreference(so);		/* for delayed sorflush */
885 	KKASSERT(so->so_pcb == unp);
886 	so->so_pcb = NULL;		/* both tokens required */
887 	unp->unp_socket = NULL;
888 	sofree(so);		/* remove pcb ref */
889 
890 	if (unp_rights) {
891 		/*
892 		 * Normally the receive buffer is flushed later,
893 		 * in sofree, but if our receive buffer holds references
894 		 * to descriptors that are now garbage, we will dispose
895 		 * of those descriptor references after the garbage collector
896 		 * gets them (resulting in a "panic: closef: count < 0").
897 		 */
898 		sorflush(so);
899 		unp_gc();
900 	}
901 	sofree(so);
902 	lwkt_relpooltoken(unp);
903 	lwkt_reltoken(&unp_token);
904 
905 	if (unp->unp_addr)
906 		kfree(unp->unp_addr, M_SONAME);
907 	kfree(unp, M_UNPCB);
908 }
909 
910 static int
911 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
912 {
913 	struct proc *p = td->td_proc;
914 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
915 	struct vnode *vp;
916 	struct vattr vattr;
917 	int error, namelen;
918 	struct nlookupdata nd;
919 	char buf[SOCK_MAXADDRLEN];
920 
921 	lwkt_gettoken(&unp_token);
922 	if (unp->unp_vnode != NULL) {
923 		error = EINVAL;
924 		goto failed;
925 	}
926 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
927 	if (namelen <= 0) {
928 		error = EINVAL;
929 		goto failed;
930 	}
931 	strncpy(buf, soun->sun_path, namelen);
932 	buf[namelen] = 0;	/* null-terminate the string */
933 	error = nlookup_init(&nd, buf, UIO_SYSSPACE,
934 			     NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
935 	if (error == 0)
936 		error = nlookup(&nd);
937 	if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
938 		error = EADDRINUSE;
939 	if (error)
940 		goto done;
941 
942 	VATTR_NULL(&vattr);
943 	vattr.va_type = VSOCK;
944 	vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
945 	error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
946 	if (error == 0) {
947 		if (unp->unp_vnode == NULL) {
948 			vp->v_socket = unp->unp_socket;
949 			unp->unp_vnode = vp;
950 			unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
951 			vn_unlock(vp);
952 		} else {
953 			vput(vp);		/* late race */
954 			error = EINVAL;
955 		}
956 	}
957 done:
958 	nlookup_done(&nd);
959 failed:
960 	lwkt_reltoken(&unp_token);
961 	return (error);
962 }
963 
964 static int
965 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
966 {
967 	struct proc *p = td->td_proc;
968 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
969 	struct vnode *vp;
970 	struct socket *so2, *so3;
971 	struct unpcb *unp, *unp2, *unp3;
972 	int error, len;
973 	struct nlookupdata nd;
974 	char buf[SOCK_MAXADDRLEN];
975 
976 	lwkt_gettoken(&unp_token);
977 
978 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
979 	if (len <= 0) {
980 		error = EINVAL;
981 		goto failed;
982 	}
983 	strncpy(buf, soun->sun_path, len);
984 	buf[len] = 0;
985 
986 	vp = NULL;
987 	error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
988 	if (error == 0)
989 		error = nlookup(&nd);
990 	if (error == 0)
991 		error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
992 	nlookup_done(&nd);
993 	if (error)
994 		goto failed;
995 
996 	if (vp->v_type != VSOCK) {
997 		error = ENOTSOCK;
998 		goto bad;
999 	}
1000 	error = VOP_EACCESS(vp, VWRITE, p->p_ucred);
1001 	if (error)
1002 		goto bad;
1003 	so2 = vp->v_socket;
1004 	if (so2 == NULL) {
1005 		error = ECONNREFUSED;
1006 		goto bad;
1007 	}
1008 	if (so->so_type != so2->so_type) {
1009 		error = EPROTOTYPE;
1010 		goto bad;
1011 	}
1012 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1013 		if (!(so2->so_options & SO_ACCEPTCONN) ||
1014 		    (so3 = sonewconn(so2, 0)) == NULL) {
1015 			error = ECONNREFUSED;
1016 			goto bad;
1017 		}
1018 		unp = so->so_pcb;
1019 		if (unp->unp_conn) {	/* race, already connected! */
1020 			error = EISCONN;
1021 			sofree(so3);
1022 			goto bad;
1023 		}
1024 		unp2 = so2->so_pcb;
1025 		unp3 = so3->so_pcb;
1026 		if (unp2->unp_addr)
1027 			unp3->unp_addr = (struct sockaddr_un *)
1028 				dup_sockaddr((struct sockaddr *)unp2->unp_addr);
1029 
1030 		/*
1031 		 * unp_peercred management:
1032 		 *
1033 		 * The connecter's (client's) credentials are copied
1034 		 * from its process structure at the time of connect()
1035 		 * (which is now).
1036 		 */
1037 		cru2x(p->p_ucred, &unp3->unp_peercred);
1038 		unp3->unp_flags |= UNP_HAVEPC;
1039 		/*
1040 		 * The receiver's (server's) credentials are copied
1041 		 * from the unp_peercred member of socket on which the
1042 		 * former called listen(); unp_listen() cached that
1043 		 * process's credentials at that time so we can use
1044 		 * them now.
1045 		 */
1046 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1047 		    ("unp_connect: listener without cached peercred"));
1048 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1049 		    sizeof(unp->unp_peercred));
1050 		unp->unp_flags |= UNP_HAVEPC;
1051 
1052 		so2 = so3;
1053 	}
1054 	error = unp_connect2(so, so2);
1055 bad:
1056 	vput(vp);
1057 failed:
1058 	lwkt_reltoken(&unp_token);
1059 	return (error);
1060 }
1061 
1062 /*
1063  * Connect two unix domain sockets together.
1064  *
1065  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1066  *	 pool token also be held.
1067  */
1068 int
1069 unp_connect2(struct socket *so, struct socket *so2)
1070 {
1071 	struct unpcb *unp;
1072 	struct unpcb *unp2;
1073 
1074 	lwkt_gettoken(&unp_token);
1075 	unp = so->so_pcb;
1076 	if (so2->so_type != so->so_type) {
1077 		lwkt_reltoken(&unp_token);
1078 		return (EPROTOTYPE);
1079 	}
1080 	unp2 = so2->so_pcb;
1081 	lwkt_getpooltoken(unp);
1082 	lwkt_getpooltoken(unp2);
1083 
1084 	unp->unp_conn = unp2;
1085 
1086 	switch (so->so_type) {
1087 	case SOCK_DGRAM:
1088 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1089 		soisconnected(so);
1090 		break;
1091 
1092 	case SOCK_STREAM:
1093 	case SOCK_SEQPACKET:
1094 		unp2->unp_conn = unp;
1095 		soisconnected(so);
1096 		soisconnected(so2);
1097 		break;
1098 
1099 	default:
1100 		panic("unp_connect2");
1101 	}
1102 	lwkt_relpooltoken(unp2);
1103 	lwkt_relpooltoken(unp);
1104 	lwkt_reltoken(&unp_token);
1105 	return (0);
1106 }
1107 
1108 /*
1109  * Disconnect a unix domain socket pair.
1110  *
1111  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1112  *	 pool token also be held.
1113  */
1114 static void
1115 unp_disconnect(struct unpcb *unp)
1116 {
1117 	struct unpcb *unp2;
1118 
1119 	lwkt_gettoken(&unp_token);
1120 	lwkt_getpooltoken(unp);
1121 
1122 	while ((unp2 = unp->unp_conn) != NULL) {
1123 		lwkt_getpooltoken(unp2);
1124 		if (unp2 == unp->unp_conn)
1125 			break;
1126 		lwkt_relpooltoken(unp2);
1127 	}
1128 	if (unp2 == NULL)
1129 		goto done;
1130 
1131 	unp->unp_conn = NULL;
1132 
1133 	switch (unp->unp_socket->so_type) {
1134 	case SOCK_DGRAM:
1135 		LIST_REMOVE(unp, unp_reflink);
1136 		soclrstate(unp->unp_socket, SS_ISCONNECTED);
1137 		break;
1138 
1139 	case SOCK_STREAM:
1140 	case SOCK_SEQPACKET:
1141 		unp_reference(unp2);
1142 		unp2->unp_conn = NULL;
1143 
1144 		soisdisconnected(unp->unp_socket);
1145 		soisdisconnected(unp2->unp_socket);
1146 
1147 		unp_free(unp2);
1148 		break;
1149 	}
1150 	lwkt_relpooltoken(unp2);
1151 done:
1152 	lwkt_relpooltoken(unp);
1153 	lwkt_reltoken(&unp_token);
1154 }
1155 
1156 #ifdef notdef
1157 void
1158 unp_abort(struct unpcb *unp)
1159 {
1160 	lwkt_gettoken(&unp_token);
1161 	unp_free(unp);
1162 	lwkt_reltoken(&unp_token);
1163 }
1164 #endif
1165 
1166 static int
1167 prison_unpcb(struct thread *td, struct unpcb *unp)
1168 {
1169 	struct proc *p;
1170 
1171 	if (td == NULL)
1172 		return (0);
1173 	if ((p = td->td_proc) == NULL)
1174 		return (0);
1175 	if (!p->p_ucred->cr_prison)
1176 		return (0);
1177 	if (p->p_fd->fd_rdir == unp->unp_rvnode)
1178 		return (0);
1179 	return (1);
1180 }
1181 
1182 static int
1183 unp_pcblist(SYSCTL_HANDLER_ARGS)
1184 {
1185 	int error, i, n;
1186 	struct unpcb *unp, **unp_list;
1187 	unp_gen_t gencnt;
1188 	struct unp_head *head;
1189 
1190 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1191 
1192 	KKASSERT(curproc != NULL);
1193 
1194 	/*
1195 	 * The process of preparing the PCB list is too time-consuming and
1196 	 * resource-intensive to repeat twice on every request.
1197 	 */
1198 	if (req->oldptr == NULL) {
1199 		n = unp_count;
1200 		req->oldidx = (n + n/8) * sizeof(struct xunpcb);
1201 		return 0;
1202 	}
1203 
1204 	if (req->newptr != NULL)
1205 		return EPERM;
1206 
1207 	lwkt_gettoken(&unp_token);
1208 
1209 	/*
1210 	 * OK, now we're committed to doing something.
1211 	 */
1212 	gencnt = unp_gencnt;
1213 	n = unp_count;
1214 
1215 	unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1216 
1217 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1218 	     unp = LIST_NEXT(unp, unp_link)) {
1219 		if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
1220 			unp_list[i++] = unp;
1221 	}
1222 	n = i;			/* in case we lost some during malloc */
1223 
1224 	error = 0;
1225 	for (i = 0; i < n; i++) {
1226 		unp = unp_list[i];
1227 		if (unp->unp_gencnt <= gencnt) {
1228 			struct xunpcb xu;
1229 			xu.xu_len = sizeof xu;
1230 			xu.xu_unpp = unp;
1231 			/*
1232 			 * XXX - need more locking here to protect against
1233 			 * connect/disconnect races for SMP.
1234 			 */
1235 			if (unp->unp_addr)
1236 				bcopy(unp->unp_addr, &xu.xu_addr,
1237 				      unp->unp_addr->sun_len);
1238 			if (unp->unp_conn && unp->unp_conn->unp_addr)
1239 				bcopy(unp->unp_conn->unp_addr,
1240 				      &xu.xu_caddr,
1241 				      unp->unp_conn->unp_addr->sun_len);
1242 			bcopy(unp, &xu.xu_unp, sizeof *unp);
1243 			sotoxsocket(unp->unp_socket, &xu.xu_socket);
1244 			error = SYSCTL_OUT(req, &xu, sizeof xu);
1245 		}
1246 	}
1247 	lwkt_reltoken(&unp_token);
1248 	kfree(unp_list, M_TEMP);
1249 
1250 	return error;
1251 }
1252 
1253 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1254 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1255 	    "List of active local datagram sockets");
1256 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1257 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1258 	    "List of active local stream sockets");
1259 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1260 	    (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1261 	    "List of active local seqpacket stream sockets");
1262 
1263 static void
1264 unp_shutdown(struct unpcb *unp)
1265 {
1266 	struct socket *so;
1267 
1268 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1269 	     unp->unp_socket->so_type == SOCK_SEQPACKET) &&
1270 	    unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
1271 		socantrcvmore(so);
1272 	}
1273 }
1274 
1275 static void
1276 unp_drop(struct unpcb *unp, int err)
1277 {
1278 	struct socket *so = unp->unp_socket;
1279 
1280 	so->so_error = err;
1281 	unp_disconnect(unp);
1282 }
1283 
1284 #ifdef notdef
1285 void
1286 unp_drain(void)
1287 {
1288 	lwkt_gettoken(&unp_token);
1289 	lwkt_reltoken(&unp_token);
1290 }
1291 #endif
1292 
1293 int
1294 unp_externalize(struct mbuf *rights)
1295 {
1296 	struct thread *td = curthread;
1297 	struct proc *p = td->td_proc;		/* XXX */
1298 	struct lwp *lp = td->td_lwp;
1299 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1300 	int *fdp;
1301 	int i;
1302 	struct file **rp;
1303 	struct file *fp;
1304 	int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
1305 		/ sizeof (struct file *);
1306 	int f;
1307 
1308 	lwkt_gettoken(&unp_token);
1309 
1310 	/*
1311 	 * if the new FD's will not fit, then we free them all
1312 	 */
1313 	if (!fdavail(p, newfds)) {
1314 		rp = (struct file **)CMSG_DATA(cm);
1315 		for (i = 0; i < newfds; i++) {
1316 			fp = *rp;
1317 			/*
1318 			 * zero the pointer before calling unp_discard,
1319 			 * since it may end up in unp_gc()..
1320 			 */
1321 			*rp++ = NULL;
1322 			unp_discard(fp, NULL);
1323 		}
1324 		lwkt_reltoken(&unp_token);
1325 		return (EMSGSIZE);
1326 	}
1327 
1328 	/*
1329 	 * now change each pointer to an fd in the global table to
1330 	 * an integer that is the index to the local fd table entry
1331 	 * that we set up to point to the global one we are transferring.
1332 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1333 	 * then do it in forward order. In that case, an integer will
1334 	 * always come in the same place or before its corresponding
1335 	 * struct file pointer.
1336 	 * If sizeof (struct file *) is smaller than sizeof int, then
1337 	 * do it in reverse order.
1338 	 */
1339 	if (sizeof (struct file *) >= sizeof (int)) {
1340 		fdp = (int *)CMSG_DATA(cm);
1341 		rp = (struct file **)CMSG_DATA(cm);
1342 		for (i = 0; i < newfds; i++) {
1343 			if (fdalloc(p, 0, &f))
1344 				panic("unp_externalize");
1345 			fp = *rp++;
1346 			unp_fp_externalize(lp, fp, f);
1347 			*fdp++ = f;
1348 		}
1349 	} else {
1350 		fdp = (int *)CMSG_DATA(cm) + newfds - 1;
1351 		rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
1352 		for (i = 0; i < newfds; i++) {
1353 			if (fdalloc(p, 0, &f))
1354 				panic("unp_externalize");
1355 			fp = *rp--;
1356 			unp_fp_externalize(lp, fp, f);
1357 			*fdp-- = f;
1358 		}
1359 	}
1360 
1361 	/*
1362 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1363 	 * differs.
1364 	 */
1365 	cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1366 	rights->m_len = cm->cmsg_len;
1367 
1368 	lwkt_reltoken(&unp_token);
1369 	return (0);
1370 }
1371 
1372 static void
1373 unp_fp_externalize(struct lwp *lp, struct file *fp, int fd)
1374 {
1375 	struct file *fx;
1376 	int error;
1377 
1378 	lwkt_gettoken(&unp_token);
1379 
1380 	if (lp) {
1381 		KKASSERT(fd >= 0);
1382 		if (fp->f_flag & FREVOKED) {
1383 			kprintf("Warning: revoked fp exiting unix socket\n");
1384 			fx = NULL;
1385 			error = falloc(lp, &fx, NULL);
1386 			if (error == 0)
1387 				fsetfd(lp->lwp_proc->p_fd, fx, fd);
1388 			else
1389 				fsetfd(lp->lwp_proc->p_fd, NULL, fd);
1390 			fdrop(fx);
1391 		} else {
1392 			fsetfd(lp->lwp_proc->p_fd, fp, fd);
1393 		}
1394 	}
1395 	spin_lock(&unp_spin);
1396 	fp->f_msgcount--;
1397 	unp_rights--;
1398 	spin_unlock(&unp_spin);
1399 	fdrop(fp);
1400 
1401 	lwkt_reltoken(&unp_token);
1402 }
1403 
1404 
1405 void
1406 unp_init(void)
1407 {
1408 	LIST_INIT(&unp_dhead);
1409 	LIST_INIT(&unp_shead);
1410 	spin_init(&unp_spin);
1411 }
1412 
1413 static int
1414 unp_internalize(struct mbuf *control, struct thread *td)
1415 {
1416 	struct proc *p = td->td_proc;
1417 	struct filedesc *fdescp;
1418 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1419 	struct file **rp;
1420 	struct file *fp;
1421 	int i, fd, *fdp;
1422 	struct cmsgcred *cmcred;
1423 	int oldfds;
1424 	u_int newlen;
1425 	int error;
1426 
1427 	KKASSERT(p);
1428 	lwkt_gettoken(&unp_token);
1429 
1430 	fdescp = p->p_fd;
1431 	if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1432 	    cm->cmsg_level != SOL_SOCKET ||
1433 	    CMSG_ALIGN(cm->cmsg_len) != control->m_len) {
1434 		error = EINVAL;
1435 		goto done;
1436 	}
1437 
1438 	/*
1439 	 * Fill in credential information.
1440 	 */
1441 	if (cm->cmsg_type == SCM_CREDS) {
1442 		cmcred = (struct cmsgcred *)CMSG_DATA(cm);
1443 		cmcred->cmcred_pid = p->p_pid;
1444 		cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1445 		cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1446 		cmcred->cmcred_euid = p->p_ucred->cr_uid;
1447 		cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1448 							CMGROUP_MAX);
1449 		for (i = 0; i < cmcred->cmcred_ngroups; i++)
1450 			cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1451 		error = 0;
1452 		goto done;
1453 	}
1454 
1455 	/*
1456 	 * cmsghdr may not be aligned, do not allow calculation(s) to
1457 	 * go negative.
1458 	 */
1459 	if (cm->cmsg_len < CMSG_LEN(0)) {
1460 		error = EINVAL;
1461 		goto done;
1462 	}
1463 
1464 	oldfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof (int);
1465 
1466 	/*
1467 	 * check that all the FDs passed in refer to legal OPEN files
1468 	 * If not, reject the entire operation.
1469 	 */
1470 	fdp = (int *)CMSG_DATA(cm);
1471 	for (i = 0; i < oldfds; i++) {
1472 		fd = *fdp++;
1473 		if ((unsigned)fd >= fdescp->fd_nfiles ||
1474 		    fdescp->fd_files[fd].fp == NULL) {
1475 			error = EBADF;
1476 			goto done;
1477 		}
1478 		if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) {
1479 			error = EOPNOTSUPP;
1480 			goto done;
1481 		}
1482 	}
1483 	/*
1484 	 * Now replace the integer FDs with pointers to
1485 	 * the associated global file table entry..
1486 	 * Allocate a bigger buffer as necessary. But if an cluster is not
1487 	 * enough, return E2BIG.
1488 	 */
1489 	newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1490 	if (newlen > MCLBYTES) {
1491 		error = E2BIG;
1492 		goto done;
1493 	}
1494 	if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1495 		if (control->m_flags & M_EXT) {
1496 			error = E2BIG;
1497 			goto done;
1498 		}
1499 		MCLGET(control, MB_WAIT);
1500 		if (!(control->m_flags & M_EXT)) {
1501 			error = ENOBUFS;
1502 			goto done;
1503 		}
1504 
1505 		/* copy the data to the cluster */
1506 		memcpy(mtod(control, char *), cm, cm->cmsg_len);
1507 		cm = mtod(control, struct cmsghdr *);
1508 	}
1509 
1510 	/*
1511 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1512 	 * differs.
1513 	 */
1514 	cm->cmsg_len = newlen;
1515 	control->m_len = CMSG_ALIGN(newlen);
1516 
1517 	/*
1518 	 * Transform the file descriptors into struct file pointers.
1519 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1520 	 * then do it in reverse order so that the int won't get until
1521 	 * we're done.
1522 	 * If sizeof (struct file *) is smaller than sizeof int, then
1523 	 * do it in forward order.
1524 	 */
1525 	if (sizeof (struct file *) >= sizeof (int)) {
1526 		fdp = (int *)CMSG_DATA(cm) + oldfds - 1;
1527 		rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1528 		for (i = 0; i < oldfds; i++) {
1529 			fp = fdescp->fd_files[*fdp--].fp;
1530 			*rp-- = fp;
1531 			fhold(fp);
1532 			spin_lock(&unp_spin);
1533 			fp->f_msgcount++;
1534 			unp_rights++;
1535 			spin_unlock(&unp_spin);
1536 		}
1537 	} else {
1538 		fdp = (int *)CMSG_DATA(cm);
1539 		rp = (struct file **)CMSG_DATA(cm);
1540 		for (i = 0; i < oldfds; i++) {
1541 			fp = fdescp->fd_files[*fdp++].fp;
1542 			*rp++ = fp;
1543 			fhold(fp);
1544 			spin_lock(&unp_spin);
1545 			fp->f_msgcount++;
1546 			unp_rights++;
1547 			spin_unlock(&unp_spin);
1548 		}
1549 	}
1550 	error = 0;
1551 done:
1552 	lwkt_reltoken(&unp_token);
1553 	return error;
1554 }
1555 
1556 /*
1557  * Garbage collect in-transit file descriptors that get lost due to
1558  * loops (i.e. when a socket is sent to another process over itself,
1559  * and more complex situations).
1560  *
1561  * NOT MPSAFE - TODO socket flush code and maybe closef.  Rest is MPSAFE.
1562  */
1563 
1564 struct unp_gc_info {
1565 	struct file **extra_ref;
1566 	struct file *locked_fp;
1567 	int defer;
1568 	int index;
1569 	int maxindex;
1570 };
1571 
1572 static void
1573 unp_gc(void)
1574 {
1575 	struct unp_gc_info info;
1576 	static boolean_t unp_gcing;
1577 	struct file **fpp;
1578 	int i;
1579 
1580 	/*
1581 	 * Only one gc can be in-progress at any given moment
1582 	 */
1583 	spin_lock(&unp_spin);
1584 	if (unp_gcing) {
1585 		spin_unlock(&unp_spin);
1586 		return;
1587 	}
1588 	unp_gcing = TRUE;
1589 	spin_unlock(&unp_spin);
1590 
1591 	lwkt_gettoken(&unp_token);
1592 
1593 	/*
1594 	 * Before going through all this, set all FDs to be NOT defered
1595 	 * and NOT externally accessible (not marked).  During the scan
1596 	 * a fd can be marked externally accessible but we may or may not
1597 	 * be able to immediately process it (controlled by FDEFER).
1598 	 *
1599 	 * If we loop sleep a bit.  The complexity of the topology can cause
1600 	 * multiple loops.  Also failure to acquire the socket's so_rcv
1601 	 * token can cause us to loop.
1602 	 */
1603 	allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1604 	do {
1605 		info.defer = 0;
1606 		allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1607 		if (info.defer)
1608 			tsleep(&info, 0, "gcagain", 1);
1609 	} while (info.defer);
1610 
1611 	/*
1612 	 * We grab an extra reference to each of the file table entries
1613 	 * that are not otherwise accessible and then free the rights
1614 	 * that are stored in messages on them.
1615 	 *
1616 	 * The bug in the orginal code is a little tricky, so I'll describe
1617 	 * what's wrong with it here.
1618 	 *
1619 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1620 	 * times -- consider the case of sockets A and B that contain
1621 	 * references to each other.  On a last close of some other socket,
1622 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1623 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1624 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1625 	 * results in the following chain.  Closef calls soo_close, which
1626 	 * calls soclose.   Soclose calls first (through the switch
1627 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1628 	 * returns because the previous instance had set unp_gcing, and
1629 	 * we return all the way back to soclose, which marks the socket
1630 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1631 	 * to free up the rights that are queued in messages on the socket A,
1632 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1633 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1634 	 * instance of unp_discard just calls closef on B.
1635 	 *
1636 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1637 	 * which results in another closef on A.  Unfortunately, A is already
1638 	 * being closed, and the descriptor has already been marked with
1639 	 * SS_NOFDREF, and soclose panics at this point.
1640 	 *
1641 	 * Here, we first take an extra reference to each inaccessible
1642 	 * descriptor.  Then, we call sorflush ourself, since we know
1643 	 * it is a Unix domain socket anyhow.  After we destroy all the
1644 	 * rights carried in messages, we do a last closef to get rid
1645 	 * of our extra reference.  This is the last close, and the
1646 	 * unp_detach etc will shut down the socket.
1647 	 *
1648 	 * 91/09/19, bsy@cs.cmu.edu
1649 	 */
1650 	info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1651 	info.maxindex = 256;
1652 
1653 	do {
1654 		/*
1655 		 * Look for matches
1656 		 */
1657 		info.index = 0;
1658 		allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1659 
1660 		/*
1661 		 * For each FD on our hit list, do the following two things
1662 		 */
1663 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1664 			struct file *tfp = *fpp;
1665 			if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1666 				sorflush((struct socket *)(tfp->f_data));
1667 		}
1668 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1669 			closef(*fpp, NULL);
1670 	} while (info.index == info.maxindex);
1671 
1672 	lwkt_reltoken(&unp_token);
1673 
1674 	kfree((caddr_t)info.extra_ref, M_FILE);
1675 	unp_gcing = FALSE;
1676 }
1677 
1678 /*
1679  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1680  */
1681 static int
1682 unp_gc_checkrefs(struct file *fp, void *data)
1683 {
1684 	struct unp_gc_info *info = data;
1685 
1686 	if (fp->f_count == 0)
1687 		return(0);
1688 	if (info->index == info->maxindex)
1689 		return(-1);
1690 
1691 	/*
1692 	 * If all refs are from msgs, and it's not marked accessible
1693 	 * then it must be referenced from some unreachable cycle
1694 	 * of (shut-down) FDs, so include it in our
1695 	 * list of FDs to remove
1696 	 */
1697 	if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1698 		info->extra_ref[info->index++] = fp;
1699 		fhold(fp);
1700 	}
1701 	return(0);
1702 }
1703 
1704 /*
1705  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1706  */
1707 static int
1708 unp_gc_clearmarks(struct file *fp, void *data __unused)
1709 {
1710 	atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1711 	return(0);
1712 }
1713 
1714 /*
1715  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1716  */
1717 static int
1718 unp_gc_checkmarks(struct file *fp, void *data)
1719 {
1720 	struct unp_gc_info *info = data;
1721 	struct socket *so;
1722 
1723 	/*
1724 	 * If the file is not open, skip it.  Make sure it isn't marked
1725 	 * defered or we could loop forever, in case we somehow race
1726 	 * something.
1727 	 */
1728 	if (fp->f_count == 0) {
1729 		if (fp->f_flag & FDEFER)
1730 			atomic_clear_int(&fp->f_flag, FDEFER);
1731 		return(0);
1732 	}
1733 	/*
1734 	 * If we already marked it as 'defer'  in a
1735 	 * previous pass, then try process it this time
1736 	 * and un-mark it
1737 	 */
1738 	if (fp->f_flag & FDEFER) {
1739 		atomic_clear_int(&fp->f_flag, FDEFER);
1740 	} else {
1741 		/*
1742 		 * if it's not defered, then check if it's
1743 		 * already marked.. if so skip it
1744 		 */
1745 		if (fp->f_flag & FMARK)
1746 			return(0);
1747 		/*
1748 		 * If all references are from messages
1749 		 * in transit, then skip it. it's not
1750 		 * externally accessible.
1751 		 */
1752 		if (fp->f_count == fp->f_msgcount)
1753 			return(0);
1754 		/*
1755 		 * If it got this far then it must be
1756 		 * externally accessible.
1757 		 */
1758 		atomic_set_int(&fp->f_flag, FMARK);
1759 	}
1760 
1761 	/*
1762 	 * either it was defered, or it is externally
1763 	 * accessible and not already marked so.
1764 	 * Now check if it is possibly one of OUR sockets.
1765 	 */
1766 	if (fp->f_type != DTYPE_SOCKET ||
1767 	    (so = (struct socket *)fp->f_data) == NULL) {
1768 		return(0);
1769 	}
1770 	if (so->so_proto->pr_domain != &localdomain ||
1771 	    !(so->so_proto->pr_flags & PR_RIGHTS)) {
1772 		return(0);
1773 	}
1774 
1775 	/*
1776 	 * So, Ok, it's one of our sockets and it IS externally accessible
1777 	 * (or was defered).  Now we look to see if we hold any file
1778 	 * descriptors in its message buffers.  Follow those links and mark
1779 	 * them as accessible too.
1780 	 *
1781 	 * We are holding multiple spinlocks here, if we cannot get the
1782 	 * token non-blocking defer until the next loop.
1783 	 */
1784 	info->locked_fp = fp;
1785 	if (lwkt_trytoken(&so->so_rcv.ssb_token)) {
1786 		unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1787 		lwkt_reltoken(&so->so_rcv.ssb_token);
1788 	} else {
1789 		atomic_set_int(&fp->f_flag, FDEFER);
1790 		++info->defer;
1791 	}
1792 	return (0);
1793 }
1794 
1795 /*
1796  * Scan all unix domain sockets and replace any revoked file pointers
1797  * found with the dummy file pointer fx.  We don't worry about races
1798  * against file pointers being read out as those are handled in the
1799  * externalize code.
1800  */
1801 
1802 #define REVOKE_GC_MAXFILES	32
1803 
1804 struct unp_revoke_gc_info {
1805 	struct file	*fx;
1806 	struct file	*fary[REVOKE_GC_MAXFILES];
1807 	int		fcount;
1808 };
1809 
1810 void
1811 unp_revoke_gc(struct file *fx)
1812 {
1813 	struct unp_revoke_gc_info info;
1814 	int i;
1815 
1816 	lwkt_gettoken(&unp_token);
1817 	info.fx = fx;
1818 	do {
1819 		info.fcount = 0;
1820 		allfiles_scan_exclusive(unp_revoke_gc_check, &info);
1821 		for (i = 0; i < info.fcount; ++i)
1822 			unp_fp_externalize(NULL, info.fary[i], -1);
1823 	} while (info.fcount == REVOKE_GC_MAXFILES);
1824 	lwkt_reltoken(&unp_token);
1825 }
1826 
1827 /*
1828  * Check for and replace revoked descriptors.
1829  *
1830  * WARNING:  This routine is not allowed to block.
1831  */
1832 static int
1833 unp_revoke_gc_check(struct file *fps, void *vinfo)
1834 {
1835 	struct unp_revoke_gc_info *info = vinfo;
1836 	struct file *fp;
1837 	struct socket *so;
1838 	struct mbuf *m0;
1839 	struct mbuf *m;
1840 	struct file **rp;
1841 	struct cmsghdr *cm;
1842 	int i;
1843 	int qfds;
1844 
1845 	/*
1846 	 * Is this a unix domain socket with rights-passing abilities?
1847 	 */
1848 	if (fps->f_type != DTYPE_SOCKET)
1849 		return (0);
1850 	if ((so = (struct socket *)fps->f_data) == NULL)
1851 		return(0);
1852 	if (so->so_proto->pr_domain != &localdomain)
1853 		return(0);
1854 	if ((so->so_proto->pr_flags & PR_RIGHTS) == 0)
1855 		return(0);
1856 
1857 	/*
1858 	 * Scan the mbufs for control messages and replace any revoked
1859 	 * descriptors we find.
1860 	 */
1861 	lwkt_gettoken(&so->so_rcv.ssb_token);
1862 	m0 = so->so_rcv.ssb_mb;
1863 	while (m0) {
1864 		for (m = m0; m; m = m->m_next) {
1865 			if (m->m_type != MT_CONTROL)
1866 				continue;
1867 			if (m->m_len < sizeof(*cm))
1868 				continue;
1869 			cm = mtod(m, struct cmsghdr *);
1870 			if (cm->cmsg_level != SOL_SOCKET ||
1871 			    cm->cmsg_type != SCM_RIGHTS) {
1872 				continue;
1873 			}
1874 			qfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof(void *);
1875 			rp = (struct file **)CMSG_DATA(cm);
1876 			for (i = 0; i < qfds; i++) {
1877 				fp = rp[i];
1878 				if (fp->f_flag & FREVOKED) {
1879 					kprintf("Warning: Removing revoked fp from unix domain socket queue\n");
1880 					fhold(info->fx);
1881 					info->fx->f_msgcount++;
1882 					unp_rights++;
1883 					rp[i] = info->fx;
1884 					info->fary[info->fcount++] = fp;
1885 				}
1886 				if (info->fcount == REVOKE_GC_MAXFILES)
1887 					break;
1888 			}
1889 			if (info->fcount == REVOKE_GC_MAXFILES)
1890 				break;
1891 		}
1892 		m0 = m0->m_nextpkt;
1893 		if (info->fcount == REVOKE_GC_MAXFILES)
1894 			break;
1895 	}
1896 	lwkt_reltoken(&so->so_rcv.ssb_token);
1897 
1898 	/*
1899 	 * Stop the scan if we filled up our array.
1900 	 */
1901 	if (info->fcount == REVOKE_GC_MAXFILES)
1902 		return(-1);
1903 	return(0);
1904 }
1905 
1906 /*
1907  * Dispose of the fp's stored in a mbuf.
1908  *
1909  * The dds loop can cause additional fps to be entered onto the
1910  * list while it is running, flattening out the operation and avoiding
1911  * a deep kernel stack recursion.
1912  */
1913 void
1914 unp_dispose(struct mbuf *m)
1915 {
1916 	unp_defdiscard_t dds;
1917 
1918 	lwkt_gettoken(&unp_token);
1919 	++unp_defdiscard_nest;
1920 	if (m) {
1921 		unp_scan(m, unp_discard, NULL);
1922 	}
1923 	if (unp_defdiscard_nest == 1) {
1924 		while ((dds = unp_defdiscard_base) != NULL) {
1925 			unp_defdiscard_base = dds->next;
1926 			closef(dds->fp, NULL);
1927 			kfree(dds, M_UNPCB);
1928 		}
1929 	}
1930 	--unp_defdiscard_nest;
1931 	lwkt_reltoken(&unp_token);
1932 }
1933 
1934 static int
1935 unp_listen(struct unpcb *unp, struct thread *td)
1936 {
1937 	struct proc *p = td->td_proc;
1938 
1939 	KKASSERT(p);
1940 	lwkt_gettoken(&unp_token);
1941 	cru2x(p->p_ucred, &unp->unp_peercred);
1942 	unp->unp_flags |= UNP_HAVEPCCACHED;
1943 	lwkt_reltoken(&unp_token);
1944 	return (0);
1945 }
1946 
1947 static void
1948 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1949 {
1950 	struct mbuf *m;
1951 	struct file **rp;
1952 	struct cmsghdr *cm;
1953 	int i;
1954 	int qfds;
1955 
1956 	while (m0) {
1957 		for (m = m0; m; m = m->m_next) {
1958 			if (m->m_type == MT_CONTROL &&
1959 			    m->m_len >= sizeof(*cm)) {
1960 				cm = mtod(m, struct cmsghdr *);
1961 				if (cm->cmsg_level != SOL_SOCKET ||
1962 				    cm->cmsg_type != SCM_RIGHTS)
1963 					continue;
1964 				qfds = (cm->cmsg_len - CMSG_LEN(0)) /
1965 					sizeof(void *);
1966 				rp = (struct file **)CMSG_DATA(cm);
1967 				for (i = 0; i < qfds; i++)
1968 					(*op)(*rp++, data);
1969 				break;		/* XXX, but saves time */
1970 			}
1971 		}
1972 		m0 = m0->m_nextpkt;
1973 	}
1974 }
1975 
1976 /*
1977  * Mark visibility.  info->defer is recalculated on every pass.
1978  */
1979 static void
1980 unp_mark(struct file *fp, void *data)
1981 {
1982 	struct unp_gc_info *info = data;
1983 
1984 	if ((fp->f_flag & FMARK) == 0) {
1985 		++info->defer;
1986 		atomic_set_int(&fp->f_flag, FMARK | FDEFER);
1987 	} else if (fp->f_flag & FDEFER) {
1988 		++info->defer;
1989 	}
1990 }
1991 
1992 /*
1993  * Discard a fp previously held in a unix domain socket mbuf.  To
1994  * avoid blowing out the kernel stack due to contrived chain-reactions
1995  * we may have to defer the operation to a higher procedural level.
1996  *
1997  * Caller holds unp_token
1998  */
1999 static void
2000 unp_discard(struct file *fp, void *data __unused)
2001 {
2002 	unp_defdiscard_t dds;
2003 
2004 	spin_lock(&unp_spin);
2005 	fp->f_msgcount--;
2006 	unp_rights--;
2007 	spin_unlock(&unp_spin);
2008 
2009 	if (unp_defdiscard_nest) {
2010 		dds = kmalloc(sizeof(*dds), M_UNPCB, M_WAITOK|M_ZERO);
2011 		dds->fp = fp;
2012 		dds->next = unp_defdiscard_base;
2013 		unp_defdiscard_base = dds;
2014 	} else {
2015 		closef(fp, NULL);
2016 	}
2017 }
2018 
2019