xref: /dragonfly/sys/kern/uipc_usrreq.c (revision 81c11cd3)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
35  * $DragonFly: src/sys/kern/uipc_usrreq.c,v 1.44 2008/09/06 05:44:58 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/domain.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
44 #include <sys/proc.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/mbuf.h>
48 #include <sys/nlookup.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/resourcevar.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/sysctl.h>
56 #include <sys/un.h>
57 #include <sys/unpcb.h>
58 #include <sys/vnode.h>
59 
60 #include <sys/file2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/socketvar2.h>
63 #include <sys/msgport2.h>
64 
65 typedef struct unp_defdiscard {
66 	struct unp_defdiscard *next;
67 	struct file *fp;
68 } *unp_defdiscard_t;
69 
70 static	MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
71 static	unp_gen_t unp_gencnt;
72 static	u_int unp_count;
73 
74 static	struct unp_head unp_shead, unp_dhead;
75 
76 static struct lwkt_token unp_token = LWKT_TOKEN_MP_INITIALIZER(unp_token);
77 static int unp_defdiscard_nest;
78 static unp_defdiscard_t unp_defdiscard_base;
79 
80 /*
81  * Unix communications domain.
82  *
83  * TODO:
84  *	RDM
85  *	rethink name space problems
86  *	need a proper out-of-band
87  *	lock pushdown
88  */
89 static struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
90 static ino_t	unp_ino = 1;		/* prototype for fake inode numbers */
91 static struct spinlock unp_ino_spin = SPINLOCK_INITIALIZER(&unp_ino_spin);
92 
93 static int     unp_attach (struct socket *, struct pru_attach_info *);
94 static void    unp_detach (struct unpcb *);
95 static int     unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
96 static int     unp_connect (struct socket *,struct sockaddr *,
97 				struct thread *);
98 static void    unp_disconnect (struct unpcb *);
99 static void    unp_shutdown (struct unpcb *);
100 static void    unp_drop (struct unpcb *, int);
101 static void    unp_gc (void);
102 static int     unp_gc_clearmarks(struct file *, void *);
103 static int     unp_gc_checkmarks(struct file *, void *);
104 static int     unp_gc_checkrefs(struct file *, void *);
105 static int     unp_revoke_gc_check(struct file *, void *);
106 static void    unp_scan (struct mbuf *, void (*)(struct file *, void *),
107 				void *data);
108 static void    unp_mark (struct file *, void *data);
109 static void    unp_discard (struct file *, void *);
110 static int     unp_internalize (struct mbuf *, struct thread *);
111 static int     unp_listen (struct unpcb *, struct thread *);
112 static void    unp_fp_externalize(struct lwp *lp, struct file *fp, int fd);
113 
114 /*
115  * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
116  *	 will sofree() it when we return.
117  */
118 static void
119 uipc_abort(netmsg_t msg)
120 {
121 	struct unpcb *unp;
122 	int error;
123 
124 	lwkt_gettoken(&unp_token);
125 	unp = msg->base.nm_so->so_pcb;
126 	if (unp) {
127 		unp_drop(unp, ECONNABORTED);
128 		unp_detach(unp);
129 		error = 0;
130 	} else {
131 		error = EINVAL;
132 	}
133 	lwkt_reltoken(&unp_token);
134 
135 	lwkt_replymsg(&msg->lmsg, error);
136 }
137 
138 static void
139 uipc_accept(netmsg_t msg)
140 {
141 	struct unpcb *unp;
142 	int error;
143 
144 	lwkt_gettoken(&unp_token);
145 	unp = msg->base.nm_so->so_pcb;
146 	if (unp == NULL) {
147 		error = EINVAL;
148 	} else {
149 		/*
150 		 * Pass back name of connected socket,
151 		 * if it was bound and we are still connected
152 		 * (our peer may have closed already!).
153 		 */
154 		if (unp->unp_conn && unp->unp_conn->unp_addr) {
155 			*msg->accept.nm_nam = dup_sockaddr(
156 				(struct sockaddr *)unp->unp_conn->unp_addr);
157 		} else {
158 			*msg->accept.nm_nam = dup_sockaddr(
159 				(struct sockaddr *)&sun_noname);
160 		}
161 		error = 0;
162 	}
163 	lwkt_reltoken(&unp_token);
164 	lwkt_replymsg(&msg->lmsg, error);
165 }
166 
167 static void
168 uipc_attach(netmsg_t msg)
169 {
170 	struct unpcb *unp;
171 	int error;
172 
173 	lwkt_gettoken(&unp_token);
174 	unp = msg->base.nm_so->so_pcb;
175 	if (unp)
176 		error = EISCONN;
177 	else
178 		error = unp_attach(msg->base.nm_so, msg->attach.nm_ai);
179 	lwkt_reltoken(&unp_token);
180 	lwkt_replymsg(&msg->lmsg, error);
181 }
182 
183 static void
184 uipc_bind(netmsg_t msg)
185 {
186 	struct unpcb *unp;
187 	int error;
188 
189 	lwkt_gettoken(&unp_token);
190 	unp = msg->base.nm_so->so_pcb;
191 	if (unp)
192 		error = unp_bind(unp, msg->bind.nm_nam, msg->bind.nm_td);
193 	else
194 		error = EINVAL;
195 	lwkt_reltoken(&unp_token);
196 	lwkt_replymsg(&msg->lmsg, error);
197 }
198 
199 static void
200 uipc_connect(netmsg_t msg)
201 {
202 	struct unpcb *unp;
203 	int error;
204 
205 	lwkt_gettoken(&unp_token);
206 	unp = msg->base.nm_so->so_pcb;
207 	if (unp) {
208 		error = unp_connect(msg->base.nm_so,
209 				    msg->connect.nm_nam,
210 				    msg->connect.nm_td);
211 	} else {
212 		error = EINVAL;
213 	}
214 	lwkt_reltoken(&unp_token);
215 	lwkt_replymsg(&msg->lmsg, error);
216 }
217 
218 static void
219 uipc_connect2(netmsg_t msg)
220 {
221 	struct unpcb *unp;
222 	int error;
223 
224 	lwkt_gettoken(&unp_token);
225 	unp = msg->connect2.nm_so1->so_pcb;
226 	if (unp) {
227 		error = unp_connect2(msg->connect2.nm_so1,
228 				     msg->connect2.nm_so2);
229 	} else {
230 		error = EINVAL;
231 	}
232 	lwkt_reltoken(&unp_token);
233 	lwkt_replymsg(&msg->lmsg, error);
234 }
235 
236 /* control is EOPNOTSUPP */
237 
238 static void
239 uipc_detach(netmsg_t msg)
240 {
241 	struct unpcb *unp;
242 	int error;
243 
244 	lwkt_gettoken(&unp_token);
245 	unp = msg->base.nm_so->so_pcb;
246 	if (unp) {
247 		unp_detach(unp);
248 		error = 0;
249 	} else {
250 		error = EINVAL;
251 	}
252 	lwkt_reltoken(&unp_token);
253 	lwkt_replymsg(&msg->lmsg, error);
254 }
255 
256 static void
257 uipc_disconnect(netmsg_t msg)
258 {
259 	struct unpcb *unp;
260 	int error;
261 
262 	lwkt_gettoken(&unp_token);
263 	unp = msg->base.nm_so->so_pcb;
264 	if (unp) {
265 		unp_disconnect(unp);
266 		error = 0;
267 	} else {
268 		error = EINVAL;
269 	}
270 	lwkt_reltoken(&unp_token);
271 	lwkt_replymsg(&msg->lmsg, error);
272 }
273 
274 static void
275 uipc_listen(netmsg_t msg)
276 {
277 	struct unpcb *unp;
278 	int error;
279 
280 	lwkt_gettoken(&unp_token);
281 	unp = msg->base.nm_so->so_pcb;
282 	if (unp == NULL || unp->unp_vnode == NULL)
283 		error = EINVAL;
284 	else
285 		error = unp_listen(unp, msg->listen.nm_td);
286 	lwkt_reltoken(&unp_token);
287 	lwkt_replymsg(&msg->lmsg, error);
288 }
289 
290 static void
291 uipc_peeraddr(netmsg_t msg)
292 {
293 	struct unpcb *unp;
294 	int error;
295 
296 	lwkt_gettoken(&unp_token);
297 	unp = msg->base.nm_so->so_pcb;
298 	if (unp == NULL) {
299 		error = EINVAL;
300 	} else if (unp->unp_conn && unp->unp_conn->unp_addr) {
301 		*msg->peeraddr.nm_nam = dup_sockaddr(
302 				(struct sockaddr *)unp->unp_conn->unp_addr);
303 		error = 0;
304 	} else {
305 		/*
306 		 * XXX: It seems that this test always fails even when
307 		 * connection is established.  So, this else clause is
308 		 * added as workaround to return PF_LOCAL sockaddr.
309 		 */
310 		*msg->peeraddr.nm_nam = dup_sockaddr(
311 				(struct sockaddr *)&sun_noname);
312 		error = 0;
313 	}
314 	lwkt_reltoken(&unp_token);
315 	lwkt_replymsg(&msg->lmsg, error);
316 }
317 
318 static void
319 uipc_rcvd(netmsg_t msg)
320 {
321 	struct unpcb *unp;
322 	struct socket *so;
323 	struct socket *so2;
324 	int error;
325 
326 	lwkt_gettoken(&unp_token);
327 	so = msg->base.nm_so;
328 	unp = so->so_pcb;
329 	if (unp == NULL) {
330 		error = EINVAL;
331 		goto done;
332 	}
333 
334 	switch (so->so_type) {
335 	case SOCK_DGRAM:
336 		panic("uipc_rcvd DGRAM?");
337 		/*NOTREACHED*/
338 	case SOCK_STREAM:
339 	case SOCK_SEQPACKET:
340 		if (unp->unp_conn == NULL)
341 			break;
342 		/*
343 		 * Because we are transfering mbufs directly to the
344 		 * peer socket we have to use SSB_STOP on the sender
345 		 * to prevent it from building up infinite mbufs.
346 		 */
347 		so2 = unp->unp_conn->unp_socket;
348 		if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
349 		    so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
350 		) {
351 			atomic_clear_int(&so2->so_snd.ssb_flags, SSB_STOP);
352 			sowwakeup(so2);
353 		}
354 		break;
355 	default:
356 		panic("uipc_rcvd unknown socktype");
357 		/*NOTREACHED*/
358 	}
359 	error = 0;
360 done:
361 	lwkt_reltoken(&unp_token);
362 	lwkt_replymsg(&msg->lmsg, error);
363 }
364 
365 /* pru_rcvoob is EOPNOTSUPP */
366 
367 static void
368 uipc_send(netmsg_t msg)
369 {
370 	struct unpcb *unp;
371 	struct socket *so;
372 	struct socket *so2;
373 	struct mbuf *control;
374 	struct mbuf *m;
375 	int error = 0;
376 
377 	lwkt_gettoken(&unp_token);
378 	so = msg->base.nm_so;
379 	control = msg->send.nm_control;
380 	m = msg->send.nm_m;
381 	unp = so->so_pcb;
382 
383 	if (unp == NULL) {
384 		error = EINVAL;
385 		goto release;
386 	}
387 	if (msg->send.nm_flags & PRUS_OOB) {
388 		error = EOPNOTSUPP;
389 		goto release;
390 	}
391 
392 	if (control && (error = unp_internalize(control, msg->send.nm_td)))
393 		goto release;
394 
395 	switch (so->so_type) {
396 	case SOCK_DGRAM:
397 	{
398 		struct sockaddr *from;
399 
400 		if (msg->send.nm_addr) {
401 			if (unp->unp_conn) {
402 				error = EISCONN;
403 				break;
404 			}
405 			error = unp_connect(so,
406 					    msg->send.nm_addr,
407 					    msg->send.nm_td);
408 			if (error)
409 				break;
410 		} else {
411 			if (unp->unp_conn == NULL) {
412 				error = ENOTCONN;
413 				break;
414 			}
415 		}
416 		so2 = unp->unp_conn->unp_socket;
417 		if (unp->unp_addr)
418 			from = (struct sockaddr *)unp->unp_addr;
419 		else
420 			from = &sun_noname;
421 
422 		lwkt_gettoken(&so2->so_rcv.ssb_token);
423 		if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
424 			sorwakeup(so2);
425 			m = NULL;
426 			control = NULL;
427 		} else {
428 			error = ENOBUFS;
429 		}
430 		if (msg->send.nm_addr)
431 			unp_disconnect(unp);
432 		lwkt_reltoken(&so2->so_rcv.ssb_token);
433 		break;
434 	}
435 
436 	case SOCK_STREAM:
437 	case SOCK_SEQPACKET:
438 		/* Connect if not connected yet. */
439 		/*
440 		 * Note: A better implementation would complain
441 		 * if not equal to the peer's address.
442 		 */
443 		if (!(so->so_state & SS_ISCONNECTED)) {
444 			if (msg->send.nm_addr) {
445 				error = unp_connect(so,
446 						    msg->send.nm_addr,
447 						    msg->send.nm_td);
448 				if (error)
449 					break;	/* XXX */
450 			} else {
451 				error = ENOTCONN;
452 				break;
453 			}
454 		}
455 
456 		if (so->so_state & SS_CANTSENDMORE) {
457 			error = EPIPE;
458 			break;
459 		}
460 		if (unp->unp_conn == NULL)
461 			panic("uipc_send connected but no connection?");
462 		so2 = unp->unp_conn->unp_socket;
463 		/*
464 		 * Send to paired receive port, and then reduce
465 		 * send buffer hiwater marks to maintain backpressure.
466 		 * Wake up readers.
467 		 */
468 		lwkt_gettoken(&so2->so_rcv.ssb_token);
469 		if (control) {
470 			if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
471 				control = NULL;
472 				m = NULL;
473 			}
474 		} else if (so->so_type == SOCK_SEQPACKET) {
475 			sbappendrecord(&so2->so_rcv.sb, m);
476 			m = NULL;
477 		} else {
478 			sbappend(&so2->so_rcv.sb, m);
479 			m = NULL;
480 		}
481 
482 		/*
483 		 * Because we are transfering mbufs directly to the
484 		 * peer socket we have to use SSB_STOP on the sender
485 		 * to prevent it from building up infinite mbufs.
486 		 */
487 		if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
488 		    so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
489 		) {
490 			atomic_set_int(&so->so_snd.ssb_flags, SSB_STOP);
491 		}
492 		lwkt_reltoken(&so2->so_rcv.ssb_token);
493 		sorwakeup(so2);
494 		break;
495 
496 	default:
497 		panic("uipc_send unknown socktype");
498 	}
499 
500 	/*
501 	 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
502 	 */
503 	if (msg->send.nm_flags & PRUS_EOF) {
504 		socantsendmore(so);
505 		unp_shutdown(unp);
506 	}
507 
508 	if (control && error != 0)
509 		unp_dispose(control);
510 
511 release:
512 	lwkt_reltoken(&unp_token);
513 
514 	if (control)
515 		m_freem(control);
516 	if (m)
517 		m_freem(m);
518 	lwkt_replymsg(&msg->lmsg, error);
519 }
520 
521 /*
522  * MPSAFE
523  */
524 static void
525 uipc_sense(netmsg_t msg)
526 {
527 	struct unpcb *unp;
528 	struct socket *so;
529 	struct stat *sb;
530 	int error;
531 
532 	lwkt_gettoken(&unp_token);
533 	so = msg->base.nm_so;
534 	sb = msg->sense.nm_stat;
535 	unp = so->so_pcb;
536 	if (unp == NULL) {
537 		error = EINVAL;
538 		goto done;
539 	}
540 	sb->st_blksize = so->so_snd.ssb_hiwat;
541 	sb->st_dev = NOUDEV;
542 	if (unp->unp_ino == 0) {	/* make up a non-zero inode number */
543 		spin_lock(&unp_ino_spin);
544 		unp->unp_ino = unp_ino++;
545 		spin_unlock(&unp_ino_spin);
546 	}
547 	sb->st_ino = unp->unp_ino;
548 	error = 0;
549 done:
550 	lwkt_reltoken(&unp_token);
551 	lwkt_replymsg(&msg->lmsg, error);
552 }
553 
554 static void
555 uipc_shutdown(netmsg_t msg)
556 {
557 	struct socket *so;
558 	struct unpcb *unp;
559 	int error;
560 
561 	lwkt_gettoken(&unp_token);
562 	so = msg->base.nm_so;
563 	unp = so->so_pcb;
564 	if (unp) {
565 		socantsendmore(so);
566 		unp_shutdown(unp);
567 		error = 0;
568 	} else {
569 		error = EINVAL;
570 	}
571 	lwkt_reltoken(&unp_token);
572 	lwkt_replymsg(&msg->lmsg, error);
573 }
574 
575 static void
576 uipc_sockaddr(netmsg_t msg)
577 {
578 	struct unpcb *unp;
579 	int error;
580 
581 	lwkt_gettoken(&unp_token);
582 	unp = msg->base.nm_so->so_pcb;
583 	if (unp) {
584 		if (unp->unp_addr) {
585 			*msg->sockaddr.nm_nam =
586 				dup_sockaddr((struct sockaddr *)unp->unp_addr);
587 		}
588 		error = 0;
589 	} else {
590 		error = EINVAL;
591 	}
592 	lwkt_reltoken(&unp_token);
593 	lwkt_replymsg(&msg->lmsg, error);
594 }
595 
596 struct pr_usrreqs uipc_usrreqs = {
597 	.pru_abort = uipc_abort,
598 	.pru_accept = uipc_accept,
599 	.pru_attach = uipc_attach,
600 	.pru_bind = uipc_bind,
601 	.pru_connect = uipc_connect,
602 	.pru_connect2 = uipc_connect2,
603 	.pru_control = pr_generic_notsupp,
604 	.pru_detach = uipc_detach,
605 	.pru_disconnect = uipc_disconnect,
606 	.pru_listen = uipc_listen,
607 	.pru_peeraddr = uipc_peeraddr,
608 	.pru_rcvd = uipc_rcvd,
609 	.pru_rcvoob = pr_generic_notsupp,
610 	.pru_send = uipc_send,
611 	.pru_sense = uipc_sense,
612 	.pru_shutdown = uipc_shutdown,
613 	.pru_sockaddr = uipc_sockaddr,
614 	.pru_sosend = sosend,
615 	.pru_soreceive = soreceive
616 };
617 
618 void
619 uipc_ctloutput(netmsg_t msg)
620 {
621 	struct socket *so;
622 	struct sockopt *sopt;
623 	struct unpcb *unp;
624 	int error = 0;
625 
626 	lwkt_gettoken(&unp_token);
627 	so = msg->base.nm_so;
628 	sopt = msg->ctloutput.nm_sopt;
629 	unp = so->so_pcb;
630 
631 	switch (sopt->sopt_dir) {
632 	case SOPT_GET:
633 		switch (sopt->sopt_name) {
634 		case LOCAL_PEERCRED:
635 			if (unp->unp_flags & UNP_HAVEPC)
636 				soopt_from_kbuf(sopt, &unp->unp_peercred,
637 						sizeof(unp->unp_peercred));
638 			else {
639 				if (so->so_type == SOCK_STREAM)
640 					error = ENOTCONN;
641 				else if (so->so_type == SOCK_SEQPACKET)
642 					error = ENOTCONN;
643 				else
644 					error = EINVAL;
645 			}
646 			break;
647 		default:
648 			error = EOPNOTSUPP;
649 			break;
650 		}
651 		break;
652 	case SOPT_SET:
653 	default:
654 		error = EOPNOTSUPP;
655 		break;
656 	}
657 	lwkt_reltoken(&unp_token);
658 	lwkt_replymsg(&msg->lmsg, error);
659 }
660 
661 /*
662  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
663  * for stream sockets, although the total for sender and receiver is
664  * actually only PIPSIZ.
665  *
666  * Datagram sockets really use the sendspace as the maximum datagram size,
667  * and don't really want to reserve the sendspace.  Their recvspace should
668  * be large enough for at least one max-size datagram plus address.
669  *
670  * We want the local send/recv space to be significant larger then lo0's
671  * mtu of 16384.
672  */
673 #ifndef PIPSIZ
674 #define	PIPSIZ	57344
675 #endif
676 static u_long	unpst_sendspace = PIPSIZ;
677 static u_long	unpst_recvspace = PIPSIZ;
678 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
679 static u_long	unpdg_recvspace = 4*1024;
680 
681 static int	unp_rights;			/* file descriptors in flight */
682 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin);
683 
684 SYSCTL_DECL(_net_local_seqpacket);
685 SYSCTL_DECL(_net_local_stream);
686 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
687     &unpst_sendspace, 0, "Size of stream socket send buffer");
688 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
689     &unpst_recvspace, 0, "Size of stream socket receive buffer");
690 
691 SYSCTL_DECL(_net_local_dgram);
692 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
693     &unpdg_sendspace, 0, "Max datagram socket size");
694 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
695     &unpdg_recvspace, 0, "Size of datagram socket receive buffer");
696 
697 SYSCTL_DECL(_net_local);
698 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
699    "File descriptors in flight");
700 
701 static int
702 unp_attach(struct socket *so, struct pru_attach_info *ai)
703 {
704 	struct unpcb *unp;
705 	int error;
706 
707 	lwkt_gettoken(&unp_token);
708 
709 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
710 		switch (so->so_type) {
711 
712 		case SOCK_STREAM:
713 		case SOCK_SEQPACKET:
714 			error = soreserve(so, unpst_sendspace, unpst_recvspace,
715 					  ai->sb_rlimit);
716 			break;
717 
718 		case SOCK_DGRAM:
719 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
720 					  ai->sb_rlimit);
721 			break;
722 
723 		default:
724 			panic("unp_attach");
725 		}
726 		if (error)
727 			goto failed;
728 	}
729 	unp = kmalloc(sizeof(*unp), M_UNPCB, M_NOWAIT|M_ZERO);
730 	if (unp == NULL) {
731 		error = ENOBUFS;
732 		goto failed;
733 	}
734 	unp->unp_gencnt = ++unp_gencnt;
735 	unp_count++;
736 	LIST_INIT(&unp->unp_refs);
737 	unp->unp_socket = so;
738 	unp->unp_rvnode = ai->fd_rdir;		/* jail cruft XXX JH */
739 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
740 			 : &unp_shead, unp, unp_link);
741 	so->so_pcb = (caddr_t)unp;
742 	soreference(so);
743 	error = 0;
744 failed:
745 	lwkt_reltoken(&unp_token);
746 	return error;
747 }
748 
749 static void
750 unp_detach(struct unpcb *unp)
751 {
752 	struct socket *so;
753 
754 	lwkt_gettoken(&unp_token);
755 
756 	LIST_REMOVE(unp, unp_link);
757 	unp->unp_gencnt = ++unp_gencnt;
758 	--unp_count;
759 	if (unp->unp_vnode) {
760 		unp->unp_vnode->v_socket = NULL;
761 		vrele(unp->unp_vnode);
762 		unp->unp_vnode = NULL;
763 	}
764 	if (unp->unp_conn)
765 		unp_disconnect(unp);
766 	while (!LIST_EMPTY(&unp->unp_refs))
767 		unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
768 	soisdisconnected(unp->unp_socket);
769 	so = unp->unp_socket;
770 	soreference(so);	/* for delayed sorflush */
771 	so->so_pcb = NULL;
772 	unp->unp_socket = NULL;
773 	sofree(so);		/* remove pcb ref */
774 
775 	if (unp_rights) {
776 		/*
777 		 * Normally the receive buffer is flushed later,
778 		 * in sofree, but if our receive buffer holds references
779 		 * to descriptors that are now garbage, we will dispose
780 		 * of those descriptor references after the garbage collector
781 		 * gets them (resulting in a "panic: closef: count < 0").
782 		 */
783 		sorflush(so);
784 		unp_gc();
785 	}
786 	sofree(so);
787 	lwkt_reltoken(&unp_token);
788 
789 	if (unp->unp_addr)
790 		kfree(unp->unp_addr, M_SONAME);
791 	kfree(unp, M_UNPCB);
792 }
793 
794 static int
795 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
796 {
797 	struct proc *p = td->td_proc;
798 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
799 	struct vnode *vp;
800 	struct vattr vattr;
801 	int error, namelen;
802 	struct nlookupdata nd;
803 	char buf[SOCK_MAXADDRLEN];
804 
805 	lwkt_gettoken(&unp_token);
806 	if (unp->unp_vnode != NULL) {
807 		error = EINVAL;
808 		goto failed;
809 	}
810 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
811 	if (namelen <= 0) {
812 		error = EINVAL;
813 		goto failed;
814 	}
815 	strncpy(buf, soun->sun_path, namelen);
816 	buf[namelen] = 0;	/* null-terminate the string */
817 	error = nlookup_init(&nd, buf, UIO_SYSSPACE,
818 			     NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
819 	if (error == 0)
820 		error = nlookup(&nd);
821 	if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
822 		error = EADDRINUSE;
823 	if (error)
824 		goto done;
825 
826 	VATTR_NULL(&vattr);
827 	vattr.va_type = VSOCK;
828 	vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
829 	error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
830 	if (error == 0) {
831 		vp->v_socket = unp->unp_socket;
832 		unp->unp_vnode = vp;
833 		unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
834 		vn_unlock(vp);
835 	}
836 done:
837 	nlookup_done(&nd);
838 failed:
839 	lwkt_reltoken(&unp_token);
840 	return (error);
841 }
842 
843 static int
844 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
845 {
846 	struct proc *p = td->td_proc;
847 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
848 	struct vnode *vp;
849 	struct socket *so2, *so3;
850 	struct unpcb *unp, *unp2, *unp3;
851 	int error, len;
852 	struct nlookupdata nd;
853 	char buf[SOCK_MAXADDRLEN];
854 
855 	lwkt_gettoken(&unp_token);
856 
857 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
858 	if (len <= 0) {
859 		error = EINVAL;
860 		goto failed;
861 	}
862 	strncpy(buf, soun->sun_path, len);
863 	buf[len] = 0;
864 
865 	vp = NULL;
866 	error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
867 	if (error == 0)
868 		error = nlookup(&nd);
869 	if (error == 0)
870 		error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
871 	nlookup_done(&nd);
872 	if (error)
873 		goto failed;
874 
875 	if (vp->v_type != VSOCK) {
876 		error = ENOTSOCK;
877 		goto bad;
878 	}
879 	error = VOP_EACCESS(vp, VWRITE, p->p_ucred);
880 	if (error)
881 		goto bad;
882 	so2 = vp->v_socket;
883 	if (so2 == NULL) {
884 		error = ECONNREFUSED;
885 		goto bad;
886 	}
887 	if (so->so_type != so2->so_type) {
888 		error = EPROTOTYPE;
889 		goto bad;
890 	}
891 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
892 		if (!(so2->so_options & SO_ACCEPTCONN) ||
893 		    (so3 = sonewconn(so2, 0)) == NULL) {
894 			error = ECONNREFUSED;
895 			goto bad;
896 		}
897 		unp = so->so_pcb;
898 		unp2 = so2->so_pcb;
899 		unp3 = so3->so_pcb;
900 		if (unp2->unp_addr)
901 			unp3->unp_addr = (struct sockaddr_un *)
902 				dup_sockaddr((struct sockaddr *)unp2->unp_addr);
903 
904 		/*
905 		 * unp_peercred management:
906 		 *
907 		 * The connecter's (client's) credentials are copied
908 		 * from its process structure at the time of connect()
909 		 * (which is now).
910 		 */
911 		cru2x(p->p_ucred, &unp3->unp_peercred);
912 		unp3->unp_flags |= UNP_HAVEPC;
913 		/*
914 		 * The receiver's (server's) credentials are copied
915 		 * from the unp_peercred member of socket on which the
916 		 * former called listen(); unp_listen() cached that
917 		 * process's credentials at that time so we can use
918 		 * them now.
919 		 */
920 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
921 		    ("unp_connect: listener without cached peercred"));
922 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
923 		    sizeof(unp->unp_peercred));
924 		unp->unp_flags |= UNP_HAVEPC;
925 
926 		so2 = so3;
927 	}
928 	error = unp_connect2(so, so2);
929 bad:
930 	vput(vp);
931 failed:
932 	lwkt_reltoken(&unp_token);
933 	return (error);
934 }
935 
936 int
937 unp_connect2(struct socket *so, struct socket *so2)
938 {
939 	struct unpcb *unp;
940 	struct unpcb *unp2;
941 
942 	lwkt_gettoken(&unp_token);
943 	unp = so->so_pcb;
944 	if (so2->so_type != so->so_type) {
945 		lwkt_reltoken(&unp_token);
946 		return (EPROTOTYPE);
947 	}
948 	unp2 = so2->so_pcb;
949 	unp->unp_conn = unp2;
950 
951 	switch (so->so_type) {
952 	case SOCK_DGRAM:
953 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
954 		soisconnected(so);
955 		break;
956 
957 	case SOCK_STREAM:
958 	case SOCK_SEQPACKET:
959 		unp2->unp_conn = unp;
960 		soisconnected(so);
961 		soisconnected(so2);
962 		break;
963 
964 	default:
965 		panic("unp_connect2");
966 	}
967 	lwkt_reltoken(&unp_token);
968 	return (0);
969 }
970 
971 static void
972 unp_disconnect(struct unpcb *unp)
973 {
974 	struct unpcb *unp2;
975 
976 	lwkt_gettoken(&unp_token);
977 
978 	unp2 = unp->unp_conn;
979 	if (unp2 == NULL) {
980 		lwkt_reltoken(&unp_token);
981 		return;
982 	}
983 
984 	unp->unp_conn = NULL;
985 
986 	switch (unp->unp_socket->so_type) {
987 	case SOCK_DGRAM:
988 		LIST_REMOVE(unp, unp_reflink);
989 		soclrstate(unp->unp_socket, SS_ISCONNECTED);
990 		break;
991 	case SOCK_STREAM:
992 	case SOCK_SEQPACKET:
993 		soisdisconnected(unp->unp_socket);
994 		unp2->unp_conn = NULL;
995 		soisdisconnected(unp2->unp_socket);
996 		break;
997 	}
998 	lwkt_reltoken(&unp_token);
999 }
1000 
1001 #ifdef notdef
1002 void
1003 unp_abort(struct unpcb *unp)
1004 {
1005 	lwkt_gettoken(&unp_token);
1006 	unp_detach(unp);
1007 	lwkt_reltoken(&unp_token);
1008 }
1009 #endif
1010 
1011 static int
1012 prison_unpcb(struct thread *td, struct unpcb *unp)
1013 {
1014 	struct proc *p;
1015 
1016 	if (td == NULL)
1017 		return (0);
1018 	if ((p = td->td_proc) == NULL)
1019 		return (0);
1020 	if (!p->p_ucred->cr_prison)
1021 		return (0);
1022 	if (p->p_fd->fd_rdir == unp->unp_rvnode)
1023 		return (0);
1024 	return (1);
1025 }
1026 
1027 static int
1028 unp_pcblist(SYSCTL_HANDLER_ARGS)
1029 {
1030 	int error, i, n;
1031 	struct unpcb *unp, **unp_list;
1032 	unp_gen_t gencnt;
1033 	struct unp_head *head;
1034 
1035 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1036 
1037 	KKASSERT(curproc != NULL);
1038 
1039 	/*
1040 	 * The process of preparing the PCB list is too time-consuming and
1041 	 * resource-intensive to repeat twice on every request.
1042 	 */
1043 	if (req->oldptr == NULL) {
1044 		n = unp_count;
1045 		req->oldidx = (n + n/8) * sizeof(struct xunpcb);
1046 		return 0;
1047 	}
1048 
1049 	if (req->newptr != NULL)
1050 		return EPERM;
1051 
1052 	lwkt_gettoken(&unp_token);
1053 
1054 	/*
1055 	 * OK, now we're committed to doing something.
1056 	 */
1057 	gencnt = unp_gencnt;
1058 	n = unp_count;
1059 
1060 	unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1061 
1062 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1063 	     unp = LIST_NEXT(unp, unp_link)) {
1064 		if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
1065 			unp_list[i++] = unp;
1066 	}
1067 	n = i;			/* in case we lost some during malloc */
1068 
1069 	error = 0;
1070 	for (i = 0; i < n; i++) {
1071 		unp = unp_list[i];
1072 		if (unp->unp_gencnt <= gencnt) {
1073 			struct xunpcb xu;
1074 			xu.xu_len = sizeof xu;
1075 			xu.xu_unpp = unp;
1076 			/*
1077 			 * XXX - need more locking here to protect against
1078 			 * connect/disconnect races for SMP.
1079 			 */
1080 			if (unp->unp_addr)
1081 				bcopy(unp->unp_addr, &xu.xu_addr,
1082 				      unp->unp_addr->sun_len);
1083 			if (unp->unp_conn && unp->unp_conn->unp_addr)
1084 				bcopy(unp->unp_conn->unp_addr,
1085 				      &xu.xu_caddr,
1086 				      unp->unp_conn->unp_addr->sun_len);
1087 			bcopy(unp, &xu.xu_unp, sizeof *unp);
1088 			sotoxsocket(unp->unp_socket, &xu.xu_socket);
1089 			error = SYSCTL_OUT(req, &xu, sizeof xu);
1090 		}
1091 	}
1092 	lwkt_reltoken(&unp_token);
1093 	kfree(unp_list, M_TEMP);
1094 
1095 	return error;
1096 }
1097 
1098 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1099 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1100 	    "List of active local datagram sockets");
1101 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1102 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1103 	    "List of active local stream sockets");
1104 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1105 	    (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1106 	    "List of active local seqpacket stream sockets");
1107 
1108 static void
1109 unp_shutdown(struct unpcb *unp)
1110 {
1111 	struct socket *so;
1112 
1113 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1114 	     unp->unp_socket->so_type == SOCK_SEQPACKET) &&
1115 	    unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
1116 		socantrcvmore(so);
1117 	}
1118 }
1119 
1120 static void
1121 unp_drop(struct unpcb *unp, int err)
1122 {
1123 	struct socket *so = unp->unp_socket;
1124 
1125 	so->so_error = err;
1126 	unp_disconnect(unp);
1127 }
1128 
1129 #ifdef notdef
1130 void
1131 unp_drain(void)
1132 {
1133 	lwkt_gettoken(&unp_token);
1134 	lwkt_reltoken(&unp_token);
1135 }
1136 #endif
1137 
1138 int
1139 unp_externalize(struct mbuf *rights)
1140 {
1141 	struct thread *td = curthread;
1142 	struct proc *p = td->td_proc;		/* XXX */
1143 	struct lwp *lp = td->td_lwp;
1144 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1145 	int *fdp;
1146 	int i;
1147 	struct file **rp;
1148 	struct file *fp;
1149 	int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
1150 		/ sizeof (struct file *);
1151 	int f;
1152 
1153 	lwkt_gettoken(&unp_token);
1154 
1155 	/*
1156 	 * if the new FD's will not fit, then we free them all
1157 	 */
1158 	if (!fdavail(p, newfds)) {
1159 		rp = (struct file **)CMSG_DATA(cm);
1160 		for (i = 0; i < newfds; i++) {
1161 			fp = *rp;
1162 			/*
1163 			 * zero the pointer before calling unp_discard,
1164 			 * since it may end up in unp_gc()..
1165 			 */
1166 			*rp++ = 0;
1167 			unp_discard(fp, NULL);
1168 		}
1169 		lwkt_reltoken(&unp_token);
1170 		return (EMSGSIZE);
1171 	}
1172 
1173 	/*
1174 	 * now change each pointer to an fd in the global table to
1175 	 * an integer that is the index to the local fd table entry
1176 	 * that we set up to point to the global one we are transferring.
1177 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1178 	 * then do it in forward order. In that case, an integer will
1179 	 * always come in the same place or before its corresponding
1180 	 * struct file pointer.
1181 	 * If sizeof (struct file *) is smaller than sizeof int, then
1182 	 * do it in reverse order.
1183 	 */
1184 	if (sizeof (struct file *) >= sizeof (int)) {
1185 		fdp = (int *)CMSG_DATA(cm);
1186 		rp = (struct file **)CMSG_DATA(cm);
1187 		for (i = 0; i < newfds; i++) {
1188 			if (fdalloc(p, 0, &f))
1189 				panic("unp_externalize");
1190 			fp = *rp++;
1191 			unp_fp_externalize(lp, fp, f);
1192 			*fdp++ = f;
1193 		}
1194 	} else {
1195 		fdp = (int *)CMSG_DATA(cm) + newfds - 1;
1196 		rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
1197 		for (i = 0; i < newfds; i++) {
1198 			if (fdalloc(p, 0, &f))
1199 				panic("unp_externalize");
1200 			fp = *rp--;
1201 			unp_fp_externalize(lp, fp, f);
1202 			*fdp-- = f;
1203 		}
1204 	}
1205 
1206 	/*
1207 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1208 	 * differs.
1209 	 */
1210 	cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1211 	rights->m_len = cm->cmsg_len;
1212 
1213 	lwkt_reltoken(&unp_token);
1214 	return (0);
1215 }
1216 
1217 static void
1218 unp_fp_externalize(struct lwp *lp, struct file *fp, int fd)
1219 {
1220 	struct file *fx;
1221 	int error;
1222 
1223 	lwkt_gettoken(&unp_token);
1224 
1225 	if (lp) {
1226 		KKASSERT(fd >= 0);
1227 		if (fp->f_flag & FREVOKED) {
1228 			kprintf("Warning: revoked fp exiting unix socket\n");
1229 			fx = NULL;
1230 			error = falloc(lp, &fx, NULL);
1231 			if (error == 0)
1232 				fsetfd(lp->lwp_proc->p_fd, fx, fd);
1233 			else
1234 				fsetfd(lp->lwp_proc->p_fd, NULL, fd);
1235 			fdrop(fx);
1236 		} else {
1237 			fsetfd(lp->lwp_proc->p_fd, fp, fd);
1238 		}
1239 	}
1240 	spin_lock(&unp_spin);
1241 	fp->f_msgcount--;
1242 	unp_rights--;
1243 	spin_unlock(&unp_spin);
1244 	fdrop(fp);
1245 
1246 	lwkt_reltoken(&unp_token);
1247 }
1248 
1249 
1250 void
1251 unp_init(void)
1252 {
1253 	LIST_INIT(&unp_dhead);
1254 	LIST_INIT(&unp_shead);
1255 	spin_init(&unp_spin);
1256 }
1257 
1258 static int
1259 unp_internalize(struct mbuf *control, struct thread *td)
1260 {
1261 	struct proc *p = td->td_proc;
1262 	struct filedesc *fdescp;
1263 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1264 	struct file **rp;
1265 	struct file *fp;
1266 	int i, fd, *fdp;
1267 	struct cmsgcred *cmcred;
1268 	int oldfds;
1269 	u_int newlen;
1270 	int error;
1271 
1272 	KKASSERT(p);
1273 	lwkt_gettoken(&unp_token);
1274 
1275 	fdescp = p->p_fd;
1276 	if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1277 	    cm->cmsg_level != SOL_SOCKET ||
1278 	    CMSG_ALIGN(cm->cmsg_len) != control->m_len) {
1279 		error = EINVAL;
1280 		goto done;
1281 	}
1282 
1283 	/*
1284 	 * Fill in credential information.
1285 	 */
1286 	if (cm->cmsg_type == SCM_CREDS) {
1287 		cmcred = (struct cmsgcred *)CMSG_DATA(cm);
1288 		cmcred->cmcred_pid = p->p_pid;
1289 		cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1290 		cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1291 		cmcred->cmcred_euid = p->p_ucred->cr_uid;
1292 		cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1293 							CMGROUP_MAX);
1294 		for (i = 0; i < cmcred->cmcred_ngroups; i++)
1295 			cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1296 		error = 0;
1297 		goto done;
1298 	}
1299 
1300 	/*
1301 	 * cmsghdr may not be aligned, do not allow calculation(s) to
1302 	 * go negative.
1303 	 */
1304 	if (cm->cmsg_len < CMSG_LEN(0)) {
1305 		error = EINVAL;
1306 		goto done;
1307 	}
1308 
1309 	oldfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof (int);
1310 
1311 	/*
1312 	 * check that all the FDs passed in refer to legal OPEN files
1313 	 * If not, reject the entire operation.
1314 	 */
1315 	fdp = (int *)CMSG_DATA(cm);
1316 	for (i = 0; i < oldfds; i++) {
1317 		fd = *fdp++;
1318 		if ((unsigned)fd >= fdescp->fd_nfiles ||
1319 		    fdescp->fd_files[fd].fp == NULL) {
1320 			error = EBADF;
1321 			goto done;
1322 		}
1323 		if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) {
1324 			error = EOPNOTSUPP;
1325 			goto done;
1326 		}
1327 	}
1328 	/*
1329 	 * Now replace the integer FDs with pointers to
1330 	 * the associated global file table entry..
1331 	 * Allocate a bigger buffer as necessary. But if an cluster is not
1332 	 * enough, return E2BIG.
1333 	 */
1334 	newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1335 	if (newlen > MCLBYTES) {
1336 		error = E2BIG;
1337 		goto done;
1338 	}
1339 	if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1340 		if (control->m_flags & M_EXT) {
1341 			error = E2BIG;
1342 			goto done;
1343 		}
1344 		MCLGET(control, MB_WAIT);
1345 		if (!(control->m_flags & M_EXT)) {
1346 			error = ENOBUFS;
1347 			goto done;
1348 		}
1349 
1350 		/* copy the data to the cluster */
1351 		memcpy(mtod(control, char *), cm, cm->cmsg_len);
1352 		cm = mtod(control, struct cmsghdr *);
1353 	}
1354 
1355 	/*
1356 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1357 	 * differs.
1358 	 */
1359 	cm->cmsg_len = newlen;
1360 	control->m_len = CMSG_ALIGN(newlen);
1361 
1362 	/*
1363 	 * Transform the file descriptors into struct file pointers.
1364 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1365 	 * then do it in reverse order so that the int won't get until
1366 	 * we're done.
1367 	 * If sizeof (struct file *) is smaller than sizeof int, then
1368 	 * do it in forward order.
1369 	 */
1370 	if (sizeof (struct file *) >= sizeof (int)) {
1371 		fdp = (int *)CMSG_DATA(cm) + oldfds - 1;
1372 		rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1373 		for (i = 0; i < oldfds; i++) {
1374 			fp = fdescp->fd_files[*fdp--].fp;
1375 			*rp-- = fp;
1376 			fhold(fp);
1377 			spin_lock(&unp_spin);
1378 			fp->f_msgcount++;
1379 			unp_rights++;
1380 			spin_unlock(&unp_spin);
1381 		}
1382 	} else {
1383 		fdp = (int *)CMSG_DATA(cm);
1384 		rp = (struct file **)CMSG_DATA(cm);
1385 		for (i = 0; i < oldfds; i++) {
1386 			fp = fdescp->fd_files[*fdp++].fp;
1387 			*rp++ = fp;
1388 			fhold(fp);
1389 			spin_lock(&unp_spin);
1390 			fp->f_msgcount++;
1391 			unp_rights++;
1392 			spin_unlock(&unp_spin);
1393 		}
1394 	}
1395 	error = 0;
1396 done:
1397 	lwkt_reltoken(&unp_token);
1398 	return error;
1399 }
1400 
1401 /*
1402  * Garbage collect in-transit file descriptors that get lost due to
1403  * loops (i.e. when a socket is sent to another process over itself,
1404  * and more complex situations).
1405  *
1406  * NOT MPSAFE - TODO socket flush code and maybe closef.  Rest is MPSAFE.
1407  */
1408 
1409 struct unp_gc_info {
1410 	struct file **extra_ref;
1411 	struct file *locked_fp;
1412 	int defer;
1413 	int index;
1414 	int maxindex;
1415 };
1416 
1417 static void
1418 unp_gc(void)
1419 {
1420 	struct unp_gc_info info;
1421 	static boolean_t unp_gcing;
1422 	struct file **fpp;
1423 	int i;
1424 
1425 	/*
1426 	 * Only one gc can be in-progress at any given moment
1427 	 */
1428 	spin_lock(&unp_spin);
1429 	if (unp_gcing) {
1430 		spin_unlock(&unp_spin);
1431 		return;
1432 	}
1433 	unp_gcing = TRUE;
1434 	spin_unlock(&unp_spin);
1435 
1436 	lwkt_gettoken(&unp_token);
1437 
1438 	/*
1439 	 * Before going through all this, set all FDs to be NOT defered
1440 	 * and NOT externally accessible (not marked).  During the scan
1441 	 * a fd can be marked externally accessible but we may or may not
1442 	 * be able to immediately process it (controlled by FDEFER).
1443 	 *
1444 	 * If we loop sleep a bit.  The complexity of the topology can cause
1445 	 * multiple loops.  Also failure to acquire the socket's so_rcv
1446 	 * token can cause us to loop.
1447 	 */
1448 	allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1449 	do {
1450 		info.defer = 0;
1451 		allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1452 		if (info.defer)
1453 			tsleep(&info, 0, "gcagain", 1);
1454 	} while (info.defer);
1455 
1456 	/*
1457 	 * We grab an extra reference to each of the file table entries
1458 	 * that are not otherwise accessible and then free the rights
1459 	 * that are stored in messages on them.
1460 	 *
1461 	 * The bug in the orginal code is a little tricky, so I'll describe
1462 	 * what's wrong with it here.
1463 	 *
1464 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1465 	 * times -- consider the case of sockets A and B that contain
1466 	 * references to each other.  On a last close of some other socket,
1467 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1468 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1469 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1470 	 * results in the following chain.  Closef calls soo_close, which
1471 	 * calls soclose.   Soclose calls first (through the switch
1472 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1473 	 * returns because the previous instance had set unp_gcing, and
1474 	 * we return all the way back to soclose, which marks the socket
1475 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1476 	 * to free up the rights that are queued in messages on the socket A,
1477 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1478 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1479 	 * instance of unp_discard just calls closef on B.
1480 	 *
1481 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1482 	 * which results in another closef on A.  Unfortunately, A is already
1483 	 * being closed, and the descriptor has already been marked with
1484 	 * SS_NOFDREF, and soclose panics at this point.
1485 	 *
1486 	 * Here, we first take an extra reference to each inaccessible
1487 	 * descriptor.  Then, we call sorflush ourself, since we know
1488 	 * it is a Unix domain socket anyhow.  After we destroy all the
1489 	 * rights carried in messages, we do a last closef to get rid
1490 	 * of our extra reference.  This is the last close, and the
1491 	 * unp_detach etc will shut down the socket.
1492 	 *
1493 	 * 91/09/19, bsy@cs.cmu.edu
1494 	 */
1495 	info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1496 	info.maxindex = 256;
1497 
1498 	do {
1499 		/*
1500 		 * Look for matches
1501 		 */
1502 		info.index = 0;
1503 		allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1504 
1505 		/*
1506 		 * For each FD on our hit list, do the following two things
1507 		 */
1508 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1509 			struct file *tfp = *fpp;
1510 			if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1511 				sorflush((struct socket *)(tfp->f_data));
1512 		}
1513 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1514 			closef(*fpp, NULL);
1515 	} while (info.index == info.maxindex);
1516 
1517 	lwkt_reltoken(&unp_token);
1518 
1519 	kfree((caddr_t)info.extra_ref, M_FILE);
1520 	unp_gcing = FALSE;
1521 }
1522 
1523 /*
1524  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1525  */
1526 static int
1527 unp_gc_checkrefs(struct file *fp, void *data)
1528 {
1529 	struct unp_gc_info *info = data;
1530 
1531 	if (fp->f_count == 0)
1532 		return(0);
1533 	if (info->index == info->maxindex)
1534 		return(-1);
1535 
1536 	/*
1537 	 * If all refs are from msgs, and it's not marked accessible
1538 	 * then it must be referenced from some unreachable cycle
1539 	 * of (shut-down) FDs, so include it in our
1540 	 * list of FDs to remove
1541 	 */
1542 	if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1543 		info->extra_ref[info->index++] = fp;
1544 		fhold(fp);
1545 	}
1546 	return(0);
1547 }
1548 
1549 /*
1550  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1551  */
1552 static int
1553 unp_gc_clearmarks(struct file *fp, void *data __unused)
1554 {
1555 	atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1556 	return(0);
1557 }
1558 
1559 /*
1560  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1561  */
1562 static int
1563 unp_gc_checkmarks(struct file *fp, void *data)
1564 {
1565 	struct unp_gc_info *info = data;
1566 	struct socket *so;
1567 
1568 	/*
1569 	 * If the file is not open, skip it.  Make sure it isn't marked
1570 	 * defered or we could loop forever, in case we somehow race
1571 	 * something.
1572 	 */
1573 	if (fp->f_count == 0) {
1574 		if (fp->f_flag & FDEFER)
1575 			atomic_clear_int(&fp->f_flag, FDEFER);
1576 		return(0);
1577 	}
1578 	/*
1579 	 * If we already marked it as 'defer'  in a
1580 	 * previous pass, then try process it this time
1581 	 * and un-mark it
1582 	 */
1583 	if (fp->f_flag & FDEFER) {
1584 		atomic_clear_int(&fp->f_flag, FDEFER);
1585 	} else {
1586 		/*
1587 		 * if it's not defered, then check if it's
1588 		 * already marked.. if so skip it
1589 		 */
1590 		if (fp->f_flag & FMARK)
1591 			return(0);
1592 		/*
1593 		 * If all references are from messages
1594 		 * in transit, then skip it. it's not
1595 		 * externally accessible.
1596 		 */
1597 		if (fp->f_count == fp->f_msgcount)
1598 			return(0);
1599 		/*
1600 		 * If it got this far then it must be
1601 		 * externally accessible.
1602 		 */
1603 		atomic_set_int(&fp->f_flag, FMARK);
1604 	}
1605 
1606 	/*
1607 	 * either it was defered, or it is externally
1608 	 * accessible and not already marked so.
1609 	 * Now check if it is possibly one of OUR sockets.
1610 	 */
1611 	if (fp->f_type != DTYPE_SOCKET ||
1612 	    (so = (struct socket *)fp->f_data) == NULL) {
1613 		return(0);
1614 	}
1615 	if (so->so_proto->pr_domain != &localdomain ||
1616 	    !(so->so_proto->pr_flags & PR_RIGHTS)) {
1617 		return(0);
1618 	}
1619 
1620 	/*
1621 	 * So, Ok, it's one of our sockets and it IS externally accessible
1622 	 * (or was defered).  Now we look to see if we hold any file
1623 	 * descriptors in its message buffers.  Follow those links and mark
1624 	 * them as accessible too.
1625 	 *
1626 	 * We are holding multiple spinlocks here, if we cannot get the
1627 	 * token non-blocking defer until the next loop.
1628 	 */
1629 	info->locked_fp = fp;
1630 	if (lwkt_trytoken(&so->so_rcv.ssb_token)) {
1631 		unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1632 		lwkt_reltoken(&so->so_rcv.ssb_token);
1633 	} else {
1634 		atomic_set_int(&fp->f_flag, FDEFER);
1635 		++info->defer;
1636 	}
1637 	return (0);
1638 }
1639 
1640 /*
1641  * Scan all unix domain sockets and replace any revoked file pointers
1642  * found with the dummy file pointer fx.  We don't worry about races
1643  * against file pointers being read out as those are handled in the
1644  * externalize code.
1645  */
1646 
1647 #define REVOKE_GC_MAXFILES	32
1648 
1649 struct unp_revoke_gc_info {
1650 	struct file	*fx;
1651 	struct file	*fary[REVOKE_GC_MAXFILES];
1652 	int		fcount;
1653 };
1654 
1655 void
1656 unp_revoke_gc(struct file *fx)
1657 {
1658 	struct unp_revoke_gc_info info;
1659 	int i;
1660 
1661 	lwkt_gettoken(&unp_token);
1662 	info.fx = fx;
1663 	do {
1664 		info.fcount = 0;
1665 		allfiles_scan_exclusive(unp_revoke_gc_check, &info);
1666 		for (i = 0; i < info.fcount; ++i)
1667 			unp_fp_externalize(NULL, info.fary[i], -1);
1668 	} while (info.fcount == REVOKE_GC_MAXFILES);
1669 	lwkt_reltoken(&unp_token);
1670 }
1671 
1672 /*
1673  * Check for and replace revoked descriptors.
1674  *
1675  * WARNING:  This routine is not allowed to block.
1676  */
1677 static int
1678 unp_revoke_gc_check(struct file *fps, void *vinfo)
1679 {
1680 	struct unp_revoke_gc_info *info = vinfo;
1681 	struct file *fp;
1682 	struct socket *so;
1683 	struct mbuf *m0;
1684 	struct mbuf *m;
1685 	struct file **rp;
1686 	struct cmsghdr *cm;
1687 	int i;
1688 	int qfds;
1689 
1690 	/*
1691 	 * Is this a unix domain socket with rights-passing abilities?
1692 	 */
1693 	if (fps->f_type != DTYPE_SOCKET)
1694 		return (0);
1695 	if ((so = (struct socket *)fps->f_data) == NULL)
1696 		return(0);
1697 	if (so->so_proto->pr_domain != &localdomain)
1698 		return(0);
1699 	if ((so->so_proto->pr_flags & PR_RIGHTS) == 0)
1700 		return(0);
1701 
1702 	/*
1703 	 * Scan the mbufs for control messages and replace any revoked
1704 	 * descriptors we find.
1705 	 */
1706 	lwkt_gettoken(&so->so_rcv.ssb_token);
1707 	m0 = so->so_rcv.ssb_mb;
1708 	while (m0) {
1709 		for (m = m0; m; m = m->m_next) {
1710 			if (m->m_type != MT_CONTROL)
1711 				continue;
1712 			if (m->m_len < sizeof(*cm))
1713 				continue;
1714 			cm = mtod(m, struct cmsghdr *);
1715 			if (cm->cmsg_level != SOL_SOCKET ||
1716 			    cm->cmsg_type != SCM_RIGHTS) {
1717 				continue;
1718 			}
1719 			qfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof(void *);
1720 			rp = (struct file **)CMSG_DATA(cm);
1721 			for (i = 0; i < qfds; i++) {
1722 				fp = rp[i];
1723 				if (fp->f_flag & FREVOKED) {
1724 					kprintf("Warning: Removing revoked fp from unix domain socket queue\n");
1725 					fhold(info->fx);
1726 					info->fx->f_msgcount++;
1727 					unp_rights++;
1728 					rp[i] = info->fx;
1729 					info->fary[info->fcount++] = fp;
1730 				}
1731 				if (info->fcount == REVOKE_GC_MAXFILES)
1732 					break;
1733 			}
1734 			if (info->fcount == REVOKE_GC_MAXFILES)
1735 				break;
1736 		}
1737 		m0 = m0->m_nextpkt;
1738 		if (info->fcount == REVOKE_GC_MAXFILES)
1739 			break;
1740 	}
1741 	lwkt_reltoken(&so->so_rcv.ssb_token);
1742 
1743 	/*
1744 	 * Stop the scan if we filled up our array.
1745 	 */
1746 	if (info->fcount == REVOKE_GC_MAXFILES)
1747 		return(-1);
1748 	return(0);
1749 }
1750 
1751 /*
1752  * Dispose of the fp's stored in a mbuf.
1753  *
1754  * The dds loop can cause additional fps to be entered onto the
1755  * list while it is running, flattening out the operation and avoiding
1756  * a deep kernel stack recursion.
1757  */
1758 void
1759 unp_dispose(struct mbuf *m)
1760 {
1761 	unp_defdiscard_t dds;
1762 
1763 	lwkt_gettoken(&unp_token);
1764 	++unp_defdiscard_nest;
1765 	if (m) {
1766 		unp_scan(m, unp_discard, NULL);
1767 	}
1768 	if (unp_defdiscard_nest == 1) {
1769 		while ((dds = unp_defdiscard_base) != NULL) {
1770 			unp_defdiscard_base = dds->next;
1771 			closef(dds->fp, NULL);
1772 			kfree(dds, M_UNPCB);
1773 		}
1774 	}
1775 	--unp_defdiscard_nest;
1776 	lwkt_reltoken(&unp_token);
1777 }
1778 
1779 static int
1780 unp_listen(struct unpcb *unp, struct thread *td)
1781 {
1782 	struct proc *p = td->td_proc;
1783 
1784 	KKASSERT(p);
1785 	lwkt_gettoken(&unp_token);
1786 	cru2x(p->p_ucred, &unp->unp_peercred);
1787 	unp->unp_flags |= UNP_HAVEPCCACHED;
1788 	lwkt_reltoken(&unp_token);
1789 	return (0);
1790 }
1791 
1792 static void
1793 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1794 {
1795 	struct mbuf *m;
1796 	struct file **rp;
1797 	struct cmsghdr *cm;
1798 	int i;
1799 	int qfds;
1800 
1801 	while (m0) {
1802 		for (m = m0; m; m = m->m_next) {
1803 			if (m->m_type == MT_CONTROL &&
1804 			    m->m_len >= sizeof(*cm)) {
1805 				cm = mtod(m, struct cmsghdr *);
1806 				if (cm->cmsg_level != SOL_SOCKET ||
1807 				    cm->cmsg_type != SCM_RIGHTS)
1808 					continue;
1809 				qfds = (cm->cmsg_len - CMSG_LEN(0)) /
1810 					sizeof(void *);
1811 				rp = (struct file **)CMSG_DATA(cm);
1812 				for (i = 0; i < qfds; i++)
1813 					(*op)(*rp++, data);
1814 				break;		/* XXX, but saves time */
1815 			}
1816 		}
1817 		m0 = m0->m_nextpkt;
1818 	}
1819 }
1820 
1821 /*
1822  * Mark visibility.  info->defer is recalculated on every pass.
1823  */
1824 static void
1825 unp_mark(struct file *fp, void *data)
1826 {
1827 	struct unp_gc_info *info = data;
1828 
1829 	if ((fp->f_flag & FMARK) == 0) {
1830 		++info->defer;
1831 		atomic_set_int(&fp->f_flag, FMARK | FDEFER);
1832 	} else if (fp->f_flag & FDEFER) {
1833 		++info->defer;
1834 	}
1835 }
1836 
1837 /*
1838  * Discard a fp previously held in a unix domain socket mbuf.  To
1839  * avoid blowing out the kernel stack due to contrived chain-reactions
1840  * we may have to defer the operation to a higher procedural level.
1841  *
1842  * Caller holds unp_token
1843  */
1844 static void
1845 unp_discard(struct file *fp, void *data __unused)
1846 {
1847 	unp_defdiscard_t dds;
1848 
1849 	spin_lock(&unp_spin);
1850 	fp->f_msgcount--;
1851 	unp_rights--;
1852 	spin_unlock(&unp_spin);
1853 
1854 	if (unp_defdiscard_nest) {
1855 		dds = kmalloc(sizeof(*dds), M_UNPCB, M_WAITOK|M_ZERO);
1856 		dds->fp = fp;
1857 		dds->next = unp_defdiscard_base;
1858 		unp_defdiscard_base = dds;
1859 	} else {
1860 		closef(fp, NULL);
1861 	}
1862 }
1863 
1864