xref: /dragonfly/sys/kern/uipc_usrreq.c (revision cad2e385)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/domain.h>
37 #include <sys/fcntl.h>
38 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/filedesc.h>
42 #include <sys/mbuf.h>
43 #include <sys/nlookup.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/resourcevar.h>
48 #include <sys/stat.h>
49 #include <sys/mount.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <sys/unpcb.h>
53 #include <sys/vnode.h>
54 #include <sys/kern_syscall.h>
55 #include <sys/taskqueue.h>
56 
57 #include <sys/file2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/socketvar2.h>
60 #include <sys/msgport2.h>
61 
62 #define UNP_DETACHED		UNP_PRIVATE1
63 #define UNP_CONNECTING		UNP_PRIVATE2
64 #define UNP_DROPPED		UNP_PRIVATE3
65 #define UNP_MARKER		UNP_PRIVATE4
66 
67 #define UNP_ISATTACHED(unp)	\
68     ((unp) != NULL && ((unp)->unp_flags & UNP_DETACHED) == 0)
69 
70 #ifdef INVARIANTS
71 #define UNP_ASSERT_TOKEN_HELD(unp) \
72     ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup((unp)))
73 #else	/* !INVARIANTS */
74 #define UNP_ASSERT_TOKEN_HELD(unp)
75 #endif	/* INVARIANTS */
76 
77 struct unp_defdiscard {
78 	SLIST_ENTRY(unp_defdiscard) next;
79 	struct file *fp;
80 };
81 SLIST_HEAD(unp_defdiscard_list, unp_defdiscard);
82 
83 TAILQ_HEAD(unpcb_qhead, unpcb);
84 struct unp_global_head {
85 	struct unpcb_qhead	list;
86 	int			count;
87 };
88 
89 static	MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
90 static	unp_gen_t unp_gencnt;
91 
92 static struct unp_global_head unp_stream_head;
93 static struct unp_global_head unp_dgram_head;
94 static struct unp_global_head unp_seqpkt_head;
95 
96 static struct lwkt_token unp_token = LWKT_TOKEN_INITIALIZER(unp_token);
97 static struct taskqueue *unp_taskqueue;
98 
99 static struct unp_defdiscard_list unp_defdiscard_head;
100 static struct spinlock unp_defdiscard_spin;
101 static struct task unp_defdiscard_task;
102 
103 /*
104  * Unix communications domain.
105  *
106  * TODO:
107  *	RDM
108  *	rethink name space problems
109  *	need a proper out-of-band
110  *	lock pushdown
111  */
112 static struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
113 static ino_t	unp_ino = 1;		/* prototype for fake inode numbers */
114 
115 static int     unp_attach (struct socket *, struct pru_attach_info *);
116 static void    unp_detach (struct unpcb *);
117 static int     unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
118 static int     unp_connect (struct socket *,struct sockaddr *,
119 				struct thread *);
120 static void    unp_disconnect(struct unpcb *, int);
121 static void    unp_shutdown (struct unpcb *);
122 static void    unp_gc (void);
123 static int     unp_gc_clearmarks(struct file *, void *);
124 static int     unp_gc_checkmarks(struct file *, void *);
125 static int     unp_gc_checkrefs(struct file *, void *);
126 static void    unp_scan (struct mbuf *, void (*)(struct file *, void *),
127 				void *data);
128 static void    unp_mark (struct file *, void *data);
129 static void    unp_discard (struct file *, void *);
130 static int     unp_internalize (struct mbuf *, struct thread *);
131 static int     unp_listen (struct unpcb *, struct thread *);
132 static void    unp_fp_externalize(struct lwp *lp, struct file *fp, int fd,
133 		   int flags);
134 static int     unp_find_lockref(struct sockaddr *nam, struct thread *td,
135 		   short type, struct unpcb **unp_ret);
136 static int     unp_connect_pair(struct unpcb *unp, struct unpcb *unp2);
137 static void    unp_drop(struct unpcb *unp, int error);
138 static void    unp_defdiscard_taskfunc(void *, int);
139 
140 /*
141  * SMP Considerations:
142  *
143  *	Since unp_token will be automaticly released upon execution of
144  *	blocking code, we need to reference unp_conn before any possible
145  *	blocking code to prevent it from being ripped behind our back.
146  *
147  *	Any adjustment to unp->unp_conn requires both the global unp_token
148  *	AND the per-unp token (lwkt_token_pool_lookup(unp)) to be held.
149  *
150  *	Any access to so_pcb to obtain unp requires the pool token for
151  *	unp to be held.
152  */
153 
154 static __inline void
155 unp_reference(struct unpcb *unp)
156 {
157 	/* 0->1 transition will not work */
158 	KKASSERT(unp->unp_refcnt > 0);
159 	atomic_add_int(&unp->unp_refcnt, 1);
160 }
161 
162 static __inline void
163 unp_free(struct unpcb *unp)
164 {
165 	KKASSERT(unp->unp_refcnt > 0);
166 	if (atomic_fetchadd_int(&unp->unp_refcnt, -1) == 1)
167 		unp_detach(unp);
168 }
169 
170 static __inline struct unpcb *
171 unp_getsocktoken(struct socket *so)
172 {
173 	struct unpcb *unp;
174 
175 	/*
176 	 * The unp pointer is invalid until we verify that it is
177 	 * good by re-checking so_pcb AFTER obtaining the token.
178 	 */
179 	while ((unp = so->so_pcb) != NULL) {
180 		lwkt_getpooltoken(unp);
181 		if (unp == so->so_pcb)
182 			break;
183 		lwkt_relpooltoken(unp);
184 	}
185 	return unp;
186 }
187 
188 static __inline void
189 unp_reltoken(struct unpcb *unp)
190 {
191 	if (unp != NULL)
192 		lwkt_relpooltoken(unp);
193 }
194 
195 static __inline void
196 unp_setflags(struct unpcb *unp, int flags)
197 {
198 	atomic_set_int(&unp->unp_flags, flags);
199 }
200 
201 static __inline void
202 unp_clrflags(struct unpcb *unp, int flags)
203 {
204 	atomic_clear_int(&unp->unp_flags, flags);
205 }
206 
207 static __inline struct unp_global_head *
208 unp_globalhead(short type)
209 {
210 	switch (type) {
211 	case SOCK_STREAM:
212 		return &unp_stream_head;
213 	case SOCK_DGRAM:
214 		return &unp_dgram_head;
215 	case SOCK_SEQPACKET:
216 		return &unp_seqpkt_head;
217 	default:
218 		panic("unknown socket type %d", type);
219 	}
220 }
221 
222 /*
223  * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
224  *	 will sofree() it when we return.
225  */
226 static void
227 uipc_abort(netmsg_t msg)
228 {
229 	struct unpcb *unp;
230 	int error;
231 
232 	lwkt_gettoken(&unp_token);
233 	unp = unp_getsocktoken(msg->base.nm_so);
234 
235 	if (UNP_ISATTACHED(unp)) {
236 		unp_setflags(unp, UNP_DETACHED);
237 		unp_drop(unp, ECONNABORTED);
238 		unp_free(unp);
239 		error = 0;
240 	} else {
241 		error = EINVAL;
242 	}
243 
244 	unp_reltoken(unp);
245 	lwkt_reltoken(&unp_token);
246 
247 	lwkt_replymsg(&msg->lmsg, error);
248 }
249 
250 static void
251 uipc_accept(netmsg_t msg)
252 {
253 	struct unpcb *unp;
254 	int error;
255 
256 	lwkt_gettoken(&unp_token);
257 	unp = unp_getsocktoken(msg->base.nm_so);
258 
259 	if (!UNP_ISATTACHED(unp)) {
260 		error = EINVAL;
261 	} else {
262 		struct unpcb *unp2 = unp->unp_conn;
263 
264 		/*
265 		 * Pass back name of connected socket,
266 		 * if it was bound and we are still connected
267 		 * (our peer may have closed already!).
268 		 */
269 		if (unp2 && unp2->unp_addr) {
270 			unp_reference(unp2);
271 			*msg->accept.nm_nam = dup_sockaddr(
272 				(struct sockaddr *)unp2->unp_addr);
273 			unp_free(unp2);
274 		} else {
275 			*msg->accept.nm_nam = dup_sockaddr(&sun_noname);
276 		}
277 		error = 0;
278 	}
279 
280 	unp_reltoken(unp);
281 	lwkt_reltoken(&unp_token);
282 
283 	lwkt_replymsg(&msg->lmsg, error);
284 }
285 
286 static void
287 uipc_attach(netmsg_t msg)
288 {
289 	int error;
290 
291 	lwkt_gettoken(&unp_token);
292 
293 	KASSERT(msg->base.nm_so->so_pcb == NULL, ("double unp attach"));
294 	error = unp_attach(msg->base.nm_so, msg->attach.nm_ai);
295 
296 	lwkt_reltoken(&unp_token);
297 	lwkt_replymsg(&msg->lmsg, error);
298 }
299 
300 static void
301 uipc_bind(netmsg_t msg)
302 {
303 	struct unpcb *unp;
304 	int error;
305 
306 	lwkt_gettoken(&unp_token);
307 	unp = unp_getsocktoken(msg->base.nm_so);
308 
309 	if (UNP_ISATTACHED(unp))
310 		error = unp_bind(unp, msg->bind.nm_nam, msg->bind.nm_td);
311 	else
312 		error = EINVAL;
313 
314 	unp_reltoken(unp);
315 	lwkt_reltoken(&unp_token);
316 
317 	lwkt_replymsg(&msg->lmsg, error);
318 }
319 
320 static void
321 uipc_connect(netmsg_t msg)
322 {
323 	int error;
324 
325 	error = unp_connect(msg->base.nm_so, msg->connect.nm_nam,
326 	    msg->connect.nm_td);
327 	lwkt_replymsg(&msg->lmsg, error);
328 }
329 
330 static void
331 uipc_connect2(netmsg_t msg)
332 {
333 	int error;
334 
335 	error = unp_connect2(msg->connect2.nm_so1, msg->connect2.nm_so2);
336 	lwkt_replymsg(&msg->lmsg, error);
337 }
338 
339 /* control is EOPNOTSUPP */
340 
341 static void
342 uipc_detach(netmsg_t msg)
343 {
344 	struct unpcb *unp;
345 	int error;
346 
347 	lwkt_gettoken(&unp_token);
348 	unp = unp_getsocktoken(msg->base.nm_so);
349 
350 	if (UNP_ISATTACHED(unp)) {
351 		unp_setflags(unp, UNP_DETACHED);
352 		unp_drop(unp, 0);
353 		unp_free(unp);
354 		error = 0;
355 	} else {
356 		error = EINVAL;
357 	}
358 
359 	unp_reltoken(unp);
360 	lwkt_reltoken(&unp_token);
361 
362 	lwkt_replymsg(&msg->lmsg, error);
363 }
364 
365 static void
366 uipc_disconnect(netmsg_t msg)
367 {
368 	struct unpcb *unp;
369 	int error;
370 
371 	lwkt_gettoken(&unp_token);
372 	unp = unp_getsocktoken(msg->base.nm_so);
373 
374 	if (UNP_ISATTACHED(unp)) {
375 		unp_disconnect(unp, 0);
376 		error = 0;
377 	} else {
378 		error = EINVAL;
379 	}
380 
381 	unp_reltoken(unp);
382 	lwkt_reltoken(&unp_token);
383 
384 	lwkt_replymsg(&msg->lmsg, error);
385 }
386 
387 static void
388 uipc_listen(netmsg_t msg)
389 {
390 	struct unpcb *unp;
391 	int error;
392 
393 	lwkt_gettoken(&unp_token);
394 	unp = unp_getsocktoken(msg->base.nm_so);
395 
396 	if (!UNP_ISATTACHED(unp) || unp->unp_vnode == NULL)
397 		error = EINVAL;
398 	else
399 		error = unp_listen(unp, msg->listen.nm_td);
400 
401 	unp_reltoken(unp);
402 	lwkt_reltoken(&unp_token);
403 
404 	lwkt_replymsg(&msg->lmsg, error);
405 }
406 
407 static void
408 uipc_peeraddr(netmsg_t msg)
409 {
410 	struct unpcb *unp;
411 	int error;
412 
413 	lwkt_gettoken(&unp_token);
414 	unp = unp_getsocktoken(msg->base.nm_so);
415 
416 	if (!UNP_ISATTACHED(unp)) {
417 		error = EINVAL;
418 	} else if (unp->unp_conn && unp->unp_conn->unp_addr) {
419 		struct unpcb *unp2 = unp->unp_conn;
420 
421 		unp_reference(unp2);
422 		*msg->peeraddr.nm_nam = dup_sockaddr(
423 				(struct sockaddr *)unp2->unp_addr);
424 		unp_free(unp2);
425 		error = 0;
426 	} else {
427 		/*
428 		 * XXX: It seems that this test always fails even when
429 		 * connection is established.  So, this else clause is
430 		 * added as workaround to return PF_LOCAL sockaddr.
431 		 */
432 		*msg->peeraddr.nm_nam = dup_sockaddr(&sun_noname);
433 		error = 0;
434 	}
435 
436 	unp_reltoken(unp);
437 	lwkt_reltoken(&unp_token);
438 
439 	lwkt_replymsg(&msg->lmsg, error);
440 }
441 
442 static void
443 uipc_rcvd(netmsg_t msg)
444 {
445 	struct unpcb *unp, *unp2;
446 	struct socket *so;
447 	struct socket *so2;
448 	int error;
449 
450 	/*
451 	 * so_pcb is only modified with both the global and the unp
452 	 * pool token held.
453 	 */
454 	so = msg->base.nm_so;
455 	unp = unp_getsocktoken(so);
456 
457 	if (!UNP_ISATTACHED(unp)) {
458 		error = EINVAL;
459 		goto done;
460 	}
461 
462 	switch (so->so_type) {
463 	case SOCK_DGRAM:
464 		panic("uipc_rcvd DGRAM?");
465 		/*NOTREACHED*/
466 	case SOCK_STREAM:
467 	case SOCK_SEQPACKET:
468 		if (unp->unp_conn == NULL)
469 			break;
470 		unp2 = unp->unp_conn;	/* protected by pool token */
471 
472 		/*
473 		 * Because we are transfering mbufs directly to the
474 		 * peer socket we have to use SSB_STOP on the sender
475 		 * to prevent it from building up infinite mbufs.
476 		 *
477 		 * As in several places in this module w ehave to ref unp2
478 		 * to ensure that it does not get ripped out from under us
479 		 * if we block on the so2 token or in sowwakeup().
480 		 */
481 		so2 = unp2->unp_socket;
482 		unp_reference(unp2);
483 		lwkt_gettoken(&so2->so_rcv.ssb_token);
484 		if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
485 		    so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
486 		) {
487 			atomic_clear_int(&so2->so_snd.ssb_flags, SSB_STOP);
488 
489 			sowwakeup(so2);
490 		}
491 		lwkt_reltoken(&so2->so_rcv.ssb_token);
492 		unp_free(unp2);
493 		break;
494 	default:
495 		panic("uipc_rcvd unknown socktype");
496 		/*NOTREACHED*/
497 	}
498 	error = 0;
499 done:
500 	unp_reltoken(unp);
501 	lwkt_replymsg(&msg->lmsg, error);
502 }
503 
504 /* pru_rcvoob is EOPNOTSUPP */
505 
506 static void
507 uipc_send(netmsg_t msg)
508 {
509 	struct unpcb *unp, *unp2;
510 	struct socket *so;
511 	struct socket *so2;
512 	struct mbuf *control;
513 	struct mbuf *m;
514 	int error = 0;
515 
516 	so = msg->base.nm_so;
517 	control = msg->send.nm_control;
518 	m = msg->send.nm_m;
519 
520 	/*
521 	 * so_pcb is only modified with both the global and the unp
522 	 * pool token held.
523 	 */
524 	so = msg->base.nm_so;
525 	unp = unp_getsocktoken(so);
526 
527 	if (!UNP_ISATTACHED(unp)) {
528 		error = EINVAL;
529 		goto release;
530 	}
531 
532 	if (msg->send.nm_flags & PRUS_OOB) {
533 		error = EOPNOTSUPP;
534 		goto release;
535 	}
536 
537 	wakeup_start_delayed();
538 
539 	if (control && (error = unp_internalize(control, msg->send.nm_td)))
540 		goto release;
541 
542 	switch (so->so_type) {
543 	case SOCK_DGRAM:
544 	{
545 		struct sockaddr *from;
546 
547 		if (msg->send.nm_addr) {
548 			if (unp->unp_conn) {
549 				error = EISCONN;
550 				break;
551 			}
552 			lwkt_gettoken(&unp_token);
553 			error = unp_find_lockref(msg->send.nm_addr,
554 			    msg->send.nm_td, so->so_type, &unp2);
555 			lwkt_reltoken(&unp_token);
556 			if (error)
557 				break;
558 			/*
559 			 * NOTE:
560 			 * unp2 is locked and referenced.
561 			 *
562 			 * We could unlock unp2 now, since it was checked
563 			 * and referenced.
564 			 */
565 			unp_reltoken(unp2);
566 		} else {
567 			if (unp->unp_conn == NULL) {
568 				error = ENOTCONN;
569 				break;
570 			}
571 			unp2 = unp->unp_conn;
572 			unp_reference(unp2);
573 		}
574 		/* NOTE: unp2 is referenced. */
575 		so2 = unp2->unp_socket;
576 
577 		if (unp->unp_addr)
578 			from = (struct sockaddr *)unp->unp_addr;
579 		else
580 			from = &sun_noname;
581 
582 		lwkt_gettoken(&so2->so_rcv.ssb_token);
583 		if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
584 			sorwakeup(so2);
585 			m = NULL;
586 			control = NULL;
587 		} else {
588 			error = ENOBUFS;
589 		}
590 		lwkt_reltoken(&so2->so_rcv.ssb_token);
591 
592 		unp_free(unp2);
593 		break;
594 	}
595 
596 	case SOCK_STREAM:
597 	case SOCK_SEQPACKET:
598 		/* Connect if not connected yet. */
599 		/*
600 		 * Note: A better implementation would complain
601 		 * if not equal to the peer's address.
602 		 */
603 		if (unp->unp_conn == NULL) {
604 			if (msg->send.nm_addr) {
605 				error = unp_connect(so,
606 						    msg->send.nm_addr,
607 						    msg->send.nm_td);
608 				if (error)
609 					break;	/* XXX */
610 			}
611 			/*
612 			 * NOTE:
613 			 * unp_conn still could be NULL, even if the
614 			 * above unp_connect() succeeds; since the
615 			 * current unp's token could be released due
616 			 * to blocking operations after unp_conn is
617 			 * assigned.
618 			 */
619 			if (unp->unp_conn == NULL) {
620 				error = ENOTCONN;
621 				break;
622 			}
623 		}
624 		if (so->so_state & SS_CANTSENDMORE) {
625 			error = EPIPE;
626 			break;
627 		}
628 
629 		unp2 = unp->unp_conn;
630 		KASSERT(unp2 != NULL, ("unp is not connected"));
631 		so2 = unp2->unp_socket;
632 
633 		unp_reference(unp2);
634 
635 		/*
636 		 * Send to paired receive port, and then reduce
637 		 * send buffer hiwater marks to maintain backpressure.
638 		 * Wake up readers.
639 		 */
640 		lwkt_gettoken(&so2->so_rcv.ssb_token);
641 		if (control) {
642 			if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
643 				control = NULL;
644 				m = NULL;
645 			}
646 		} else if (so->so_type == SOCK_SEQPACKET) {
647 			sbappendrecord(&so2->so_rcv.sb, m);
648 			m = NULL;
649 		} else {
650 			sbappend(&so2->so_rcv.sb, m);
651 			m = NULL;
652 		}
653 
654 		/*
655 		 * Because we are transfering mbufs directly to the
656 		 * peer socket we have to use SSB_STOP on the sender
657 		 * to prevent it from building up infinite mbufs.
658 		 */
659 		if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
660 		    so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
661 		) {
662 			atomic_set_int(&so->so_snd.ssb_flags, SSB_STOP);
663 		}
664 		lwkt_reltoken(&so2->so_rcv.ssb_token);
665 		sorwakeup(so2);
666 
667 		unp_free(unp2);
668 		break;
669 
670 	default:
671 		panic("uipc_send unknown socktype");
672 	}
673 
674 	/*
675 	 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
676 	 */
677 	if (msg->send.nm_flags & PRUS_EOF) {
678 		socantsendmore(so);
679 		unp_shutdown(unp);
680 	}
681 
682 	if (control && error != 0)
683 		unp_dispose(control);
684 release:
685 	unp_reltoken(unp);
686 	wakeup_end_delayed();
687 
688 	if (control)
689 		m_freem(control);
690 	if (m)
691 		m_freem(m);
692 	lwkt_replymsg(&msg->lmsg, error);
693 }
694 
695 /*
696  * MPSAFE
697  */
698 static void
699 uipc_sense(netmsg_t msg)
700 {
701 	struct unpcb *unp;
702 	struct socket *so;
703 	struct stat *sb;
704 	int error;
705 
706 	so = msg->base.nm_so;
707 	sb = msg->sense.nm_stat;
708 
709 	/*
710 	 * so_pcb is only modified with both the global and the unp
711 	 * pool token held.
712 	 */
713 	unp = unp_getsocktoken(so);
714 
715 	if (!UNP_ISATTACHED(unp)) {
716 		error = EINVAL;
717 		goto done;
718 	}
719 
720 	sb->st_blksize = so->so_snd.ssb_hiwat;
721 	sb->st_dev = NOUDEV;
722 	if (unp->unp_ino == 0) {	/* make up a non-zero inode number */
723 		unp->unp_ino = atomic_fetchadd_long(&unp_ino, 1);
724 		if (__predict_false(unp->unp_ino == 0))
725 			unp->unp_ino = atomic_fetchadd_long(&unp_ino, 1);
726 	}
727 	sb->st_ino = unp->unp_ino;
728 	error = 0;
729 done:
730 	unp_reltoken(unp);
731 	lwkt_replymsg(&msg->lmsg, error);
732 }
733 
734 static void
735 uipc_shutdown(netmsg_t msg)
736 {
737 	struct socket *so;
738 	struct unpcb *unp;
739 	int error;
740 
741 	/*
742 	 * so_pcb is only modified with both the global and the unp
743 	 * pool token held.
744 	 */
745 	so = msg->base.nm_so;
746 	unp = unp_getsocktoken(so);
747 
748 	if (UNP_ISATTACHED(unp)) {
749 		socantsendmore(so);
750 		unp_shutdown(unp);
751 		error = 0;
752 	} else {
753 		error = EINVAL;
754 	}
755 
756 	unp_reltoken(unp);
757 	lwkt_replymsg(&msg->lmsg, error);
758 }
759 
760 static void
761 uipc_sockaddr(netmsg_t msg)
762 {
763 	struct unpcb *unp;
764 	int error;
765 
766 	/*
767 	 * so_pcb is only modified with both the global and the unp
768 	 * pool token held.
769 	 */
770 	unp = unp_getsocktoken(msg->base.nm_so);
771 
772 	if (UNP_ISATTACHED(unp)) {
773 		if (unp->unp_addr) {
774 			*msg->sockaddr.nm_nam =
775 				dup_sockaddr((struct sockaddr *)unp->unp_addr);
776 		}
777 		error = 0;
778 	} else {
779 		error = EINVAL;
780 	}
781 
782 	unp_reltoken(unp);
783 	lwkt_replymsg(&msg->lmsg, error);
784 }
785 
786 struct pr_usrreqs uipc_usrreqs = {
787 	.pru_abort = uipc_abort,
788 	.pru_accept = uipc_accept,
789 	.pru_attach = uipc_attach,
790 	.pru_bind = uipc_bind,
791 	.pru_connect = uipc_connect,
792 	.pru_connect2 = uipc_connect2,
793 	.pru_control = pr_generic_notsupp,
794 	.pru_detach = uipc_detach,
795 	.pru_disconnect = uipc_disconnect,
796 	.pru_listen = uipc_listen,
797 	.pru_peeraddr = uipc_peeraddr,
798 	.pru_rcvd = uipc_rcvd,
799 	.pru_rcvoob = pr_generic_notsupp,
800 	.pru_send = uipc_send,
801 	.pru_sense = uipc_sense,
802 	.pru_shutdown = uipc_shutdown,
803 	.pru_sockaddr = uipc_sockaddr,
804 	.pru_sosend = sosend,
805 	.pru_soreceive = soreceive
806 };
807 
808 void
809 uipc_ctloutput(netmsg_t msg)
810 {
811 	struct socket *so;
812 	struct sockopt *sopt;
813 	struct unpcb *unp;
814 	int error = 0;
815 
816 	so = msg->base.nm_so;
817 	sopt = msg->ctloutput.nm_sopt;
818 
819 	lwkt_gettoken(&unp_token);
820 	unp = unp_getsocktoken(so);
821 
822 	if (!UNP_ISATTACHED(unp)) {
823 		error = EINVAL;
824 		goto done;
825 	}
826 
827 	switch (sopt->sopt_dir) {
828 	case SOPT_GET:
829 		switch (sopt->sopt_name) {
830 		case LOCAL_PEERCRED:
831 			if (unp->unp_flags & UNP_HAVEPC)
832 				soopt_from_kbuf(sopt, &unp->unp_peercred,
833 						sizeof(unp->unp_peercred));
834 			else {
835 				if (so->so_type == SOCK_STREAM)
836 					error = ENOTCONN;
837 				else if (so->so_type == SOCK_SEQPACKET)
838 					error = ENOTCONN;
839 				else
840 					error = EINVAL;
841 			}
842 			break;
843 		default:
844 			error = EOPNOTSUPP;
845 			break;
846 		}
847 		break;
848 	case SOPT_SET:
849 	default:
850 		error = EOPNOTSUPP;
851 		break;
852 	}
853 
854 done:
855 	unp_reltoken(unp);
856 	lwkt_reltoken(&unp_token);
857 
858 	lwkt_replymsg(&msg->lmsg, error);
859 }
860 
861 /*
862  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
863  * for stream sockets, although the total for sender and receiver is
864  * actually only PIPSIZ.
865  *
866  * Datagram sockets really use the sendspace as the maximum datagram size,
867  * and don't really want to reserve the sendspace.  Their recvspace should
868  * be large enough for at least one max-size datagram plus address.
869  *
870  * We want the local send/recv space to be significant larger then lo0's
871  * mtu of 16384.
872  */
873 #ifndef PIPSIZ
874 #define	PIPSIZ	57344
875 #endif
876 static u_long	unpst_sendspace = PIPSIZ;
877 static u_long	unpst_recvspace = PIPSIZ;
878 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
879 static u_long	unpdg_recvspace = 4*1024;
880 
881 static int	unp_rights;			/* file descriptors in flight */
882 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin, "unp_spin");
883 
884 SYSCTL_DECL(_net_local_seqpacket);
885 SYSCTL_DECL(_net_local_stream);
886 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
887     &unpst_sendspace, 0, "Size of stream socket send buffer");
888 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
889     &unpst_recvspace, 0, "Size of stream socket receive buffer");
890 
891 SYSCTL_DECL(_net_local_dgram);
892 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
893     &unpdg_sendspace, 0, "Max datagram socket size");
894 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
895     &unpdg_recvspace, 0, "Size of datagram socket receive buffer");
896 
897 SYSCTL_DECL(_net_local);
898 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
899    "File descriptors in flight");
900 
901 static int
902 unp_attach(struct socket *so, struct pru_attach_info *ai)
903 {
904 	struct unp_global_head *head;
905 	struct unpcb *unp;
906 	int error;
907 
908 	lwkt_gettoken(&unp_token);
909 
910 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
911 		switch (so->so_type) {
912 		case SOCK_STREAM:
913 		case SOCK_SEQPACKET:
914 			error = soreserve(so, unpst_sendspace, unpst_recvspace,
915 					  ai->sb_rlimit);
916 			break;
917 
918 		case SOCK_DGRAM:
919 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
920 					  ai->sb_rlimit);
921 			break;
922 
923 		default:
924 			panic("unp_attach");
925 		}
926 		if (error)
927 			goto failed;
928 	}
929 
930 	/*
931 	 * In order to support sendfile we have to set either SSB_STOPSUPP
932 	 * or SSB_PREALLOC.  Unix domain sockets use the SSB_STOP flow
933 	 * control mechanism.
934 	 */
935 	if (so->so_type == SOCK_STREAM) {
936 		atomic_set_int(&so->so_rcv.ssb_flags, SSB_STOPSUPP);
937 		atomic_set_int(&so->so_snd.ssb_flags, SSB_STOPSUPP);
938 	}
939 
940 	unp = kmalloc(sizeof(*unp), M_UNPCB, M_WAITOK | M_ZERO | M_NULLOK);
941 	if (unp == NULL) {
942 		error = ENOBUFS;
943 		goto failed;
944 	}
945 	unp->unp_refcnt = 1;
946 	unp->unp_gencnt = ++unp_gencnt;
947 	LIST_INIT(&unp->unp_refs);
948 	unp->unp_socket = so;
949 	unp->unp_rvnode = ai->fd_rdir;		/* jail cruft XXX JH */
950 	so->so_pcb = (caddr_t)unp;
951 	soreference(so);
952 
953 	head = unp_globalhead(so->so_type);
954 	TAILQ_INSERT_TAIL(&head->list, unp, unp_link);
955 	head->count++;
956 	error = 0;
957 failed:
958 	lwkt_reltoken(&unp_token);
959 	return error;
960 }
961 
962 static void
963 unp_detach(struct unpcb *unp)
964 {
965 	struct unp_global_head *head;
966 	struct socket *so;
967 
968 	lwkt_gettoken(&unp_token);
969 	lwkt_getpooltoken(unp);
970 
971 	so = unp->unp_socket;
972 
973 	head = unp_globalhead(so->so_type);
974 	KASSERT(head->count > 0, ("invalid unp count"));
975 	TAILQ_REMOVE(&head->list, unp, unp_link);
976 	head->count--;
977 
978 	unp->unp_gencnt = ++unp_gencnt;
979 	if (unp->unp_vnode) {
980 		unp->unp_vnode->v_socket = NULL;
981 		vrele(unp->unp_vnode);
982 		unp->unp_vnode = NULL;
983 	}
984 	soisdisconnected(so);
985 	KKASSERT(so->so_pcb == unp);
986 	so->so_pcb = NULL;		/* both tokens required */
987 	unp->unp_socket = NULL;
988 
989 	lwkt_relpooltoken(unp);
990 	lwkt_reltoken(&unp_token);
991 
992 	if (unp_rights) {
993 		/*
994 		 * Normally the receive buffer is flushed later,
995 		 * in sofree, but if our receive buffer holds references
996 		 * to descriptors that are now garbage, we will dispose
997 		 * of those descriptor references after the garbage collector
998 		 * gets them (resulting in a "panic: closef: count < 0").
999 		 */
1000 		sorflush(so);
1001 		unp_gc();
1002 	}
1003 	sofree(so);
1004 
1005 	KASSERT(unp->unp_conn == NULL, ("unp is still connected"));
1006 	KASSERT(LIST_EMPTY(&unp->unp_refs), ("unp still has references"));
1007 
1008 	if (unp->unp_addr)
1009 		kfree(unp->unp_addr, M_SONAME);
1010 	kfree(unp, M_UNPCB);
1011 }
1012 
1013 static int
1014 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
1015 {
1016 	struct proc *p = td->td_proc;
1017 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1018 	struct vnode *vp;
1019 	struct vattr vattr;
1020 	int error, namelen;
1021 	struct nlookupdata nd;
1022 	char buf[SOCK_MAXADDRLEN];
1023 
1024 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
1025 	UNP_ASSERT_TOKEN_HELD(unp);
1026 
1027 	if (unp->unp_vnode != NULL)
1028 		return EINVAL;
1029 
1030 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
1031 	if (namelen <= 0)
1032 		return EINVAL;
1033 	strncpy(buf, soun->sun_path, namelen);
1034 	buf[namelen] = 0;	/* null-terminate the string */
1035 	error = nlookup_init(&nd, buf, UIO_SYSSPACE,
1036 			     NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
1037 	if (error == 0)
1038 		error = nlookup(&nd);
1039 	if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
1040 		error = EADDRINUSE;
1041 	if (error)
1042 		goto done;
1043 
1044 	VATTR_NULL(&vattr);
1045 	vattr.va_type = VSOCK;
1046 	vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
1047 	error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
1048 	if (error == 0) {
1049 		if (unp->unp_vnode == NULL) {
1050 			vp->v_socket = unp->unp_socket;
1051 			unp->unp_vnode = vp;
1052 			unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
1053 			vn_unlock(vp);
1054 		} else {
1055 			vput(vp);		/* late race */
1056 			error = EINVAL;
1057 		}
1058 	}
1059 done:
1060 	nlookup_done(&nd);
1061 	return (error);
1062 }
1063 
1064 static int
1065 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1066 {
1067 	struct unpcb *unp, *unp2;
1068 	int error, flags = 0;
1069 
1070 	lwkt_gettoken(&unp_token);
1071 
1072 	unp = unp_getsocktoken(so);
1073 	if (!UNP_ISATTACHED(unp)) {
1074 		error = EINVAL;
1075 		goto failed;
1076 	}
1077 
1078 	if ((unp->unp_flags & UNP_CONNECTING) || unp->unp_conn != NULL) {
1079 		error = EISCONN;
1080 		goto failed;
1081 	}
1082 
1083 	flags = UNP_CONNECTING;
1084 	unp_setflags(unp, flags);
1085 
1086 	error = unp_find_lockref(nam, td, so->so_type, &unp2);
1087 	if (error)
1088 		goto failed;
1089 	/*
1090 	 * NOTE:
1091 	 * unp2 is locked and referenced.
1092 	 */
1093 
1094 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1095 		struct socket *so2, *so3;
1096 		struct unpcb *unp3;
1097 
1098 		so2 = unp2->unp_socket;
1099 		if (!(so2->so_options & SO_ACCEPTCONN) ||
1100 		    (so3 = sonewconn_faddr(so2, 0, NULL,
1101 		     TRUE /* keep ref */)) == NULL) {
1102 			error = ECONNREFUSED;
1103 			goto done;
1104 		}
1105 		/* so3 has a socket reference. */
1106 
1107 		unp3 = unp_getsocktoken(so3);
1108 		if (!UNP_ISATTACHED(unp3)) {
1109 			unp_reltoken(unp3);
1110 			/*
1111 			 * Already aborted; we only need to drop the
1112 			 * socket reference held by sonewconn_faddr().
1113 			 */
1114 			sofree(so3);
1115 			error = ECONNREFUSED;
1116 			goto done;
1117 		}
1118 		unp_reference(unp3);
1119 		/*
1120 		 * NOTE:
1121 		 * unp3 is locked and referenced.
1122 		 */
1123 
1124 		/*
1125 		 * Release so3 socket reference held by sonewconn_faddr().
1126 		 * Since we have referenced unp3, neither unp3 nor so3 will
1127 		 * be destroyed here.
1128 		 */
1129 		sofree(so3);
1130 
1131 		if (unp2->unp_addr != NULL) {
1132 			unp3->unp_addr = (struct sockaddr_un *)
1133 			    dup_sockaddr((struct sockaddr *)unp2->unp_addr);
1134 		}
1135 
1136 		/*
1137 		 * unp_peercred management:
1138 		 *
1139 		 * The connecter's (client's) credentials are copied
1140 		 * from its process structure at the time of connect()
1141 		 * (which is now).
1142 		 */
1143 		cru2x(td->td_proc->p_ucred, &unp3->unp_peercred);
1144 		unp_setflags(unp3, UNP_HAVEPC);
1145 		/*
1146 		 * The receiver's (server's) credentials are copied
1147 		 * from the unp_peercred member of socket on which the
1148 		 * former called listen(); unp_listen() cached that
1149 		 * process's credentials at that time so we can use
1150 		 * them now.
1151 		 */
1152 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1153 		    ("unp_connect: listener without cached peercred"));
1154 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1155 		    sizeof(unp->unp_peercred));
1156 		unp_setflags(unp, UNP_HAVEPC);
1157 
1158 		error = unp_connect_pair(unp, unp3);
1159 		if (error)
1160 			soabort_direct(so3);
1161 
1162 		/* Done with unp3 */
1163 		unp_free(unp3);
1164 		unp_reltoken(unp3);
1165 	} else {
1166 		error = unp_connect_pair(unp, unp2);
1167 	}
1168 done:
1169 	unp_free(unp2);
1170 	unp_reltoken(unp2);
1171 failed:
1172 	if (flags)
1173 		unp_clrflags(unp, flags);
1174 	unp_reltoken(unp);
1175 
1176 	lwkt_reltoken(&unp_token);
1177 	return (error);
1178 }
1179 
1180 /*
1181  * Connect two unix domain sockets together.
1182  *
1183  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1184  *	 pool token also be held.
1185  */
1186 int
1187 unp_connect2(struct socket *so, struct socket *so2)
1188 {
1189 	struct unpcb *unp, *unp2;
1190 	int error;
1191 
1192 	lwkt_gettoken(&unp_token);
1193 	if (so2->so_type != so->so_type) {
1194 		lwkt_reltoken(&unp_token);
1195 		return (EPROTOTYPE);
1196 	}
1197 	unp = unp_getsocktoken(so);
1198 	unp2 = unp_getsocktoken(so2);
1199 
1200 	if (!UNP_ISATTACHED(unp)) {
1201 		error = EINVAL;
1202 		goto done;
1203 	}
1204 	if (!UNP_ISATTACHED(unp2)) {
1205 		error = ECONNREFUSED;
1206 		goto done;
1207 	}
1208 
1209 	if (unp->unp_conn != NULL) {
1210 		error = EISCONN;
1211 		goto done;
1212 	}
1213 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1214 	    unp2->unp_conn != NULL) {
1215 		error = EISCONN;
1216 		goto done;
1217 	}
1218 
1219 	error = unp_connect_pair(unp, unp2);
1220 done:
1221 	unp_reltoken(unp2);
1222 	unp_reltoken(unp);
1223 	lwkt_reltoken(&unp_token);
1224 	return (error);
1225 }
1226 
1227 /*
1228  * Disconnect a unix domain socket pair.
1229  *
1230  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1231  *	 pool token also be held.
1232  */
1233 static void
1234 unp_disconnect(struct unpcb *unp, int error)
1235 {
1236 	struct socket *so = unp->unp_socket;
1237 	struct unpcb *unp2;
1238 
1239 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
1240 	UNP_ASSERT_TOKEN_HELD(unp);
1241 
1242 	if (error)
1243 		so->so_error = error;
1244 
1245 	while ((unp2 = unp->unp_conn) != NULL) {
1246 		lwkt_getpooltoken(unp2);
1247 		if (unp2 == unp->unp_conn)
1248 			break;
1249 		lwkt_relpooltoken(unp2);
1250 	}
1251 	if (unp2 == NULL)
1252 		return;
1253 	/* unp2 is locked. */
1254 
1255 	KASSERT((unp2->unp_flags & UNP_DROPPED) == 0, ("unp2 was dropped"));
1256 
1257 	unp->unp_conn = NULL;
1258 
1259 	switch (so->so_type) {
1260 	case SOCK_DGRAM:
1261 		LIST_REMOVE(unp, unp_reflink);
1262 		soclrstate(so, SS_ISCONNECTED);
1263 		break;
1264 
1265 	case SOCK_STREAM:
1266 	case SOCK_SEQPACKET:
1267 		/*
1268 		 * Keep a reference before clearing the unp_conn
1269 		 * to avoid racing uipc_detach()/uipc_abort() in
1270 		 * other thread.
1271 		 */
1272 		unp_reference(unp2);
1273 		KASSERT(unp2->unp_conn == unp, ("unp_conn mismatch"));
1274 		unp2->unp_conn = NULL;
1275 
1276 		soisdisconnected(so);
1277 		soisdisconnected(unp2->unp_socket);
1278 
1279 		unp_free(unp2);
1280 		break;
1281 	}
1282 
1283 	lwkt_relpooltoken(unp2);
1284 }
1285 
1286 #ifdef notdef
1287 void
1288 unp_abort(struct unpcb *unp)
1289 {
1290 	lwkt_gettoken(&unp_token);
1291 	unp_free(unp);
1292 	lwkt_reltoken(&unp_token);
1293 }
1294 #endif
1295 
1296 static int
1297 prison_unpcb(struct thread *td, struct unpcb *unp)
1298 {
1299 	struct proc *p;
1300 
1301 	if (td == NULL)
1302 		return (0);
1303 	if ((p = td->td_proc) == NULL)
1304 		return (0);
1305 	if (!p->p_ucred->cr_prison)
1306 		return (0);
1307 	if (p->p_fd->fd_rdir == unp->unp_rvnode)
1308 		return (0);
1309 	return (1);
1310 }
1311 
1312 static int
1313 unp_pcblist(SYSCTL_HANDLER_ARGS)
1314 {
1315 	struct unp_global_head *head = arg1;
1316 	int error, i, n;
1317 	struct unpcb *unp, *marker;
1318 
1319 	KKASSERT(curproc != NULL);
1320 
1321 	/*
1322 	 * The process of preparing the PCB list is too time-consuming and
1323 	 * resource-intensive to repeat twice on every request.
1324 	 */
1325 	if (req->oldptr == NULL) {
1326 		n = head->count;
1327 		req->oldidx = (n + n/8) * sizeof(struct xunpcb);
1328 		return 0;
1329 	}
1330 
1331 	if (req->newptr != NULL)
1332 		return EPERM;
1333 
1334 	marker = kmalloc(sizeof(*marker), M_UNPCB, M_WAITOK | M_ZERO);
1335 	marker->unp_flags |= UNP_MARKER;
1336 
1337 	lwkt_gettoken(&unp_token);
1338 
1339 	n = head->count;
1340 	i = 0;
1341 	error = 0;
1342 
1343 	TAILQ_INSERT_HEAD(&head->list, marker, unp_link);
1344 	while ((unp = TAILQ_NEXT(marker, unp_link)) != NULL && i < n) {
1345 		struct xunpcb xu;
1346 
1347 		TAILQ_REMOVE(&head->list, marker, unp_link);
1348 		TAILQ_INSERT_AFTER(&head->list, unp, marker, unp_link);
1349 
1350 		if (unp->unp_flags & UNP_MARKER)
1351 			continue;
1352 		if (prison_unpcb(req->td, unp))
1353 			continue;
1354 
1355 		xu.xu_len = sizeof(xu);
1356 		xu.xu_unpp = unp;
1357 
1358 		/*
1359 		 * NOTE:
1360 		 * unp->unp_addr and unp->unp_conn are protected by
1361 		 * unp_token.  So if we want to get rid of unp_token
1362 		 * or reduce the coverage of unp_token, care must be
1363 		 * taken.
1364 		 */
1365 		if (unp->unp_addr) {
1366 			bcopy(unp->unp_addr, &xu.xu_addr,
1367 			      unp->unp_addr->sun_len);
1368 		}
1369 		if (unp->unp_conn && unp->unp_conn->unp_addr) {
1370 			bcopy(unp->unp_conn->unp_addr,
1371 			      &xu.xu_caddr,
1372 			      unp->unp_conn->unp_addr->sun_len);
1373 		}
1374 		bcopy(unp, &xu.xu_unp, sizeof(*unp));
1375 		sotoxsocket(unp->unp_socket, &xu.xu_socket);
1376 
1377 		/* NOTE: This could block and temporarily release unp_token */
1378 		error = SYSCTL_OUT(req, &xu, sizeof(xu));
1379 		if (error)
1380 			break;
1381 		++i;
1382 	}
1383 	TAILQ_REMOVE(&head->list, marker, unp_link);
1384 
1385 	lwkt_reltoken(&unp_token);
1386 
1387 	kfree(marker, M_UNPCB);
1388 	return error;
1389 }
1390 
1391 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1392 	    &unp_dgram_head, 0, unp_pcblist, "S,xunpcb",
1393 	    "List of active local datagram sockets");
1394 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1395 	    &unp_stream_head, 0, unp_pcblist, "S,xunpcb",
1396 	    "List of active local stream sockets");
1397 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1398 	    &unp_seqpkt_head, 0, unp_pcblist, "S,xunpcb",
1399 	    "List of active local seqpacket sockets");
1400 
1401 static void
1402 unp_shutdown(struct unpcb *unp)
1403 {
1404 	struct socket *so;
1405 
1406 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1407 	     unp->unp_socket->so_type == SOCK_SEQPACKET) &&
1408 	    unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
1409 		socantrcvmore(so);
1410 	}
1411 }
1412 
1413 #ifdef notdef
1414 void
1415 unp_drain(void)
1416 {
1417 	lwkt_gettoken(&unp_token);
1418 	lwkt_reltoken(&unp_token);
1419 }
1420 #endif
1421 
1422 int
1423 unp_externalize(struct mbuf *rights, int flags)
1424 {
1425 	struct thread *td = curthread;
1426 	struct proc *p = td->td_proc;		/* XXX */
1427 	struct lwp *lp = td->td_lwp;
1428 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1429 	int *fdp;
1430 	int i;
1431 	struct file **rp;
1432 	struct file *fp;
1433 	int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
1434 		/ sizeof(struct file *);
1435 	int f;
1436 
1437 	/*
1438 	 * if the new FD's will not fit, then we free them all
1439 	 */
1440 	if (!fdavail(p, newfds)) {
1441 		rp = (struct file **)CMSG_DATA(cm);
1442 		for (i = 0; i < newfds; i++) {
1443 			fp = *rp;
1444 			/*
1445 			 * zero the pointer before calling unp_discard,
1446 			 * since it may end up in unp_gc()..
1447 			 */
1448 			*rp++ = NULL;
1449 			unp_discard(fp, NULL);
1450 		}
1451 		return (EMSGSIZE);
1452 	}
1453 
1454 	/*
1455 	 * now change each pointer to an fd in the global table to
1456 	 * an integer that is the index to the local fd table entry
1457 	 * that we set up to point to the global one we are transferring.
1458 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1459 	 * then do it in forward order. In that case, an integer will
1460 	 * always come in the same place or before its corresponding
1461 	 * struct file pointer.
1462 	 * If sizeof (struct file *) is smaller than sizeof int, then
1463 	 * do it in reverse order.
1464 	 *
1465 	 * Hold revoke_token in 'shared' mode, so that we won't miss
1466 	 * the FREVOKED update on fps being externalized (fsetfd).
1467 	 */
1468 	lwkt_gettoken_shared(&revoke_token);
1469 	if (sizeof(struct file *) >= sizeof(int)) {
1470 		fdp = (int *)CMSG_DATA(cm);
1471 		rp = (struct file **)CMSG_DATA(cm);
1472 		for (i = 0; i < newfds; i++) {
1473 			if (fdalloc(p, 0, &f)) {
1474 				int j;
1475 
1476 				/*
1477 				 * Previous fdavail() can't garantee
1478 				 * fdalloc() success due to SMP race.
1479 				 * Just clean up and return the same
1480 				 * error value as if fdavail() failed.
1481 				 */
1482 
1483 				/* Close externalized files */
1484 				for (j = 0; j < i; j++)
1485 					kern_close(fdp[j]);
1486 				/* Discard the rest of internal files */
1487 				for (; i < newfds; i++)
1488 					unp_discard(rp[i], NULL);
1489 				/* Wipe out the control message */
1490 				for (i = 0; i < newfds; i++)
1491 					rp[i] = NULL;
1492 
1493 				lwkt_reltoken(&revoke_token);
1494 				return (EMSGSIZE);
1495 			}
1496 			fp = rp[i];
1497 			unp_fp_externalize(lp, fp, f, flags);
1498 			fdp[i] = f;
1499 		}
1500 	} else {
1501 		/*
1502 		 * XXX
1503 		 * Will this ever happen?  I don't think compiler will
1504 		 * generate code for this code segment -- sephe
1505 		 */
1506 		fdp = (int *)CMSG_DATA(cm) + newfds - 1;
1507 		rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
1508 		for (i = 0; i < newfds; i++) {
1509 			if (fdalloc(p, 0, &f))
1510 				panic("unp_externalize");
1511 			fp = *rp--;
1512 			unp_fp_externalize(lp, fp, f, flags);
1513 			*fdp-- = f;
1514 		}
1515 	}
1516 	lwkt_reltoken(&revoke_token);
1517 
1518 	/*
1519 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1520 	 * differs.
1521 	 */
1522 	cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1523 	rights->m_len = cm->cmsg_len;
1524 
1525 	return (0);
1526 }
1527 
1528 static void
1529 unp_fp_externalize(struct lwp *lp, struct file *fp, int fd, int flags)
1530 {
1531 	if (lp) {
1532 		struct filedesc *fdp = lp->lwp_proc->p_fd;
1533 
1534 		KKASSERT(fd >= 0);
1535 		if (fp->f_flag & FREVOKED) {
1536 			struct file *fx;
1537 			int error;
1538 
1539 			kprintf("Warning: revoked fp exiting unix socket\n");
1540 			error = falloc(lp, &fx, NULL);
1541 			if (error == 0) {
1542 				if (flags & MSG_CMSG_CLOEXEC)
1543 					fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
1544 				fsetfd(fdp, fx, fd);
1545 				fdrop(fx);
1546 			} else {
1547 				fsetfd(fdp, NULL, fd);
1548 			}
1549 		} else {
1550 			if (flags & MSG_CMSG_CLOEXEC)
1551 				fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
1552 			fsetfd(fdp, fp, fd);
1553 		}
1554 	}
1555 	spin_lock(&unp_spin);
1556 	fp->f_msgcount--;
1557 	unp_rights--;
1558 	spin_unlock(&unp_spin);
1559 	fdrop(fp);
1560 }
1561 
1562 void
1563 unp_init(void)
1564 {
1565 	TAILQ_INIT(&unp_stream_head.list);
1566 	TAILQ_INIT(&unp_dgram_head.list);
1567 	TAILQ_INIT(&unp_seqpkt_head.list);
1568 
1569 	spin_init(&unp_spin, "unpinit");
1570 
1571 	SLIST_INIT(&unp_defdiscard_head);
1572 	spin_init(&unp_defdiscard_spin, "unpdisc");
1573 	TASK_INIT(&unp_defdiscard_task, 0, unp_defdiscard_taskfunc, NULL);
1574 
1575 	/*
1576 	 * Create taskqueue for defered discard, and stick it to
1577 	 * the last CPU.
1578 	 */
1579 	unp_taskqueue = taskqueue_create("unp_taskq", M_WAITOK,
1580 	    taskqueue_thread_enqueue, &unp_taskqueue);
1581 	taskqueue_start_threads(&unp_taskqueue, 1, TDPRI_KERN_DAEMON,
1582 	    ncpus - 1, "unp taskq");
1583 }
1584 
1585 static int
1586 unp_internalize(struct mbuf *control, struct thread *td)
1587 {
1588 	struct proc *p = td->td_proc;
1589 	struct filedesc *fdescp;
1590 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1591 	struct file **rp;
1592 	struct file *fp;
1593 	int i, fd, *fdp;
1594 	struct cmsgcred *cmcred;
1595 	int oldfds;
1596 	u_int newlen;
1597 	int error;
1598 
1599 	KKASSERT(p);
1600 
1601 	if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1602 	    cm->cmsg_level != SOL_SOCKET ||
1603 	    CMSG_ALIGN(cm->cmsg_len) != control->m_len)
1604 		return EINVAL;
1605 
1606 	/*
1607 	 * Fill in credential information.
1608 	 */
1609 	if (cm->cmsg_type == SCM_CREDS) {
1610 		cmcred = (struct cmsgcred *)CMSG_DATA(cm);
1611 		cmcred->cmcred_pid = p->p_pid;
1612 		cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1613 		cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1614 		cmcred->cmcred_euid = p->p_ucred->cr_uid;
1615 		cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1616 							CMGROUP_MAX);
1617 		for (i = 0; i < cmcred->cmcred_ngroups; i++)
1618 			cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1619 		return 0;
1620 	}
1621 
1622 	/*
1623 	 * cmsghdr may not be aligned, do not allow calculation(s) to
1624 	 * go negative.
1625 	 */
1626 	if (cm->cmsg_len < CMSG_LEN(0))
1627 		return EINVAL;
1628 
1629 	oldfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof(int);
1630 
1631 	/*
1632 	 * Now replace the integer FDs with pointers to
1633 	 * the associated global file table entry..
1634 	 * Allocate a bigger buffer as necessary. But if an cluster is not
1635 	 * enough, return E2BIG.
1636 	 */
1637 	newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1638 	if (newlen > MCLBYTES)
1639 		return E2BIG;
1640 	if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1641 		if (control->m_flags & M_EXT)
1642 			return E2BIG;
1643 		MCLGET(control, M_WAITOK);
1644 		if (!(control->m_flags & M_EXT))
1645 			return ENOBUFS;
1646 
1647 		/* copy the data to the cluster */
1648 		memcpy(mtod(control, char *), cm, cm->cmsg_len);
1649 		cm = mtod(control, struct cmsghdr *);
1650 	}
1651 
1652 	fdescp = p->p_fd;
1653 	spin_lock_shared(&fdescp->fd_spin);
1654 
1655 	/*
1656 	 * check that all the FDs passed in refer to legal OPEN files
1657 	 * If not, reject the entire operation.
1658 	 */
1659 	fdp = (int *)CMSG_DATA(cm);
1660 	for (i = 0; i < oldfds; i++) {
1661 		fd = *fdp++;
1662 		if ((unsigned)fd >= fdescp->fd_nfiles ||
1663 		    fdescp->fd_files[fd].fp == NULL) {
1664 			error = EBADF;
1665 			goto done;
1666 		}
1667 		if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) {
1668 			error = EOPNOTSUPP;
1669 			goto done;
1670 		}
1671 	}
1672 
1673 	/*
1674 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1675 	 * differs.
1676 	 */
1677 	cm->cmsg_len = newlen;
1678 	control->m_len = CMSG_ALIGN(newlen);
1679 
1680 	/*
1681 	 * Transform the file descriptors into struct file pointers.
1682 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1683 	 * then do it in reverse order so that the int won't get until
1684 	 * we're done.
1685 	 * If sizeof (struct file *) is smaller than sizeof int, then
1686 	 * do it in forward order.
1687 	 */
1688 	if (sizeof(struct file *) >= sizeof(int)) {
1689 		fdp = (int *)CMSG_DATA(cm) + oldfds - 1;
1690 		rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1691 		for (i = 0; i < oldfds; i++) {
1692 			fp = fdescp->fd_files[*fdp--].fp;
1693 			*rp-- = fp;
1694 			fhold(fp);
1695 			spin_lock(&unp_spin);
1696 			fp->f_msgcount++;
1697 			unp_rights++;
1698 			spin_unlock(&unp_spin);
1699 		}
1700 	} else {
1701 		/*
1702 		 * XXX
1703 		 * Will this ever happen?  I don't think compiler will
1704 		 * generate code for this code segment -- sephe
1705 		 */
1706 		fdp = (int *)CMSG_DATA(cm);
1707 		rp = (struct file **)CMSG_DATA(cm);
1708 		for (i = 0; i < oldfds; i++) {
1709 			fp = fdescp->fd_files[*fdp++].fp;
1710 			*rp++ = fp;
1711 			fhold(fp);
1712 			spin_lock(&unp_spin);
1713 			fp->f_msgcount++;
1714 			unp_rights++;
1715 			spin_unlock(&unp_spin);
1716 		}
1717 	}
1718 	error = 0;
1719 done:
1720 	spin_unlock_shared(&fdescp->fd_spin);
1721 	return error;
1722 }
1723 
1724 /*
1725  * Garbage collect in-transit file descriptors that get lost due to
1726  * loops (i.e. when a socket is sent to another process over itself,
1727  * and more complex situations).
1728  *
1729  * NOT MPSAFE - TODO socket flush code and maybe closef.  Rest is MPSAFE.
1730  */
1731 
1732 struct unp_gc_info {
1733 	struct file **extra_ref;
1734 	struct file *locked_fp;
1735 	int defer;
1736 	int index;
1737 	int maxindex;
1738 };
1739 
1740 static void
1741 unp_gc(void)
1742 {
1743 	struct unp_gc_info info;
1744 	static boolean_t unp_gcing;
1745 	struct file **fpp;
1746 	int i;
1747 
1748 	/*
1749 	 * Only one gc can be in-progress at any given moment
1750 	 */
1751 	spin_lock(&unp_spin);
1752 	if (unp_gcing) {
1753 		spin_unlock(&unp_spin);
1754 		return;
1755 	}
1756 	unp_gcing = TRUE;
1757 	spin_unlock(&unp_spin);
1758 
1759 	lwkt_gettoken(&unp_token);
1760 
1761 	/*
1762 	 * Before going through all this, set all FDs to be NOT defered
1763 	 * and NOT externally accessible (not marked).  During the scan
1764 	 * a fd can be marked externally accessible but we may or may not
1765 	 * be able to immediately process it (controlled by FDEFER).
1766 	 *
1767 	 * If we loop sleep a bit.  The complexity of the topology can cause
1768 	 * multiple loops.  Also failure to acquire the socket's so_rcv
1769 	 * token can cause us to loop.
1770 	 */
1771 	allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1772 	do {
1773 		info.defer = 0;
1774 		allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1775 		if (info.defer)
1776 			tsleep(&info, 0, "gcagain", 1);
1777 	} while (info.defer);
1778 
1779 	/*
1780 	 * We grab an extra reference to each of the file table entries
1781 	 * that are not otherwise accessible and then free the rights
1782 	 * that are stored in messages on them.
1783 	 *
1784 	 * The bug in the orginal code is a little tricky, so I'll describe
1785 	 * what's wrong with it here.
1786 	 *
1787 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1788 	 * times -- consider the case of sockets A and B that contain
1789 	 * references to each other.  On a last close of some other socket,
1790 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1791 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1792 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1793 	 * results in the following chain.  Closef calls soo_close, which
1794 	 * calls soclose.   Soclose calls first (through the switch
1795 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1796 	 * returns because the previous instance had set unp_gcing, and
1797 	 * we return all the way back to soclose, which marks the socket
1798 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1799 	 * to free up the rights that are queued in messages on the socket A,
1800 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1801 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1802 	 * instance of unp_discard just calls closef on B.
1803 	 *
1804 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1805 	 * which results in another closef on A.  Unfortunately, A is already
1806 	 * being closed, and the descriptor has already been marked with
1807 	 * SS_NOFDREF, and soclose panics at this point.
1808 	 *
1809 	 * Here, we first take an extra reference to each inaccessible
1810 	 * descriptor.  Then, we call sorflush ourself, since we know
1811 	 * it is a Unix domain socket anyhow.  After we destroy all the
1812 	 * rights carried in messages, we do a last closef to get rid
1813 	 * of our extra reference.  This is the last close, and the
1814 	 * unp_detach etc will shut down the socket.
1815 	 *
1816 	 * 91/09/19, bsy@cs.cmu.edu
1817 	 */
1818 	info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1819 	info.maxindex = 256;
1820 
1821 	do {
1822 		/*
1823 		 * Look for matches
1824 		 */
1825 		info.index = 0;
1826 		allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1827 
1828 		/*
1829 		 * For each FD on our hit list, do the following two things
1830 		 */
1831 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1832 			struct file *tfp = *fpp;
1833 			if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1834 				sorflush((struct socket *)(tfp->f_data));
1835 		}
1836 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1837 			closef(*fpp, NULL);
1838 	} while (info.index == info.maxindex);
1839 
1840 	lwkt_reltoken(&unp_token);
1841 
1842 	kfree((caddr_t)info.extra_ref, M_FILE);
1843 	unp_gcing = FALSE;
1844 }
1845 
1846 /*
1847  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1848  */
1849 static int
1850 unp_gc_checkrefs(struct file *fp, void *data)
1851 {
1852 	struct unp_gc_info *info = data;
1853 
1854 	if (fp->f_count == 0)
1855 		return(0);
1856 	if (info->index == info->maxindex)
1857 		return(-1);
1858 
1859 	/*
1860 	 * If all refs are from msgs, and it's not marked accessible
1861 	 * then it must be referenced from some unreachable cycle
1862 	 * of (shut-down) FDs, so include it in our
1863 	 * list of FDs to remove
1864 	 */
1865 	if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1866 		info->extra_ref[info->index++] = fp;
1867 		fhold(fp);
1868 	}
1869 	return(0);
1870 }
1871 
1872 /*
1873  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1874  */
1875 static int
1876 unp_gc_clearmarks(struct file *fp, void *data __unused)
1877 {
1878 	atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1879 	return(0);
1880 }
1881 
1882 /*
1883  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1884  */
1885 static int
1886 unp_gc_checkmarks(struct file *fp, void *data)
1887 {
1888 	struct unp_gc_info *info = data;
1889 	struct socket *so;
1890 
1891 	/*
1892 	 * If the file is not open, skip it.  Make sure it isn't marked
1893 	 * defered or we could loop forever, in case we somehow race
1894 	 * something.
1895 	 */
1896 	if (fp->f_count == 0) {
1897 		if (fp->f_flag & FDEFER)
1898 			atomic_clear_int(&fp->f_flag, FDEFER);
1899 		return(0);
1900 	}
1901 	/*
1902 	 * If we already marked it as 'defer'  in a
1903 	 * previous pass, then try process it this time
1904 	 * and un-mark it
1905 	 */
1906 	if (fp->f_flag & FDEFER) {
1907 		atomic_clear_int(&fp->f_flag, FDEFER);
1908 	} else {
1909 		/*
1910 		 * if it's not defered, then check if it's
1911 		 * already marked.. if so skip it
1912 		 */
1913 		if (fp->f_flag & FMARK)
1914 			return(0);
1915 		/*
1916 		 * If all references are from messages
1917 		 * in transit, then skip it. it's not
1918 		 * externally accessible.
1919 		 */
1920 		if (fp->f_count == fp->f_msgcount)
1921 			return(0);
1922 		/*
1923 		 * If it got this far then it must be
1924 		 * externally accessible.
1925 		 */
1926 		atomic_set_int(&fp->f_flag, FMARK);
1927 	}
1928 
1929 	/*
1930 	 * either it was defered, or it is externally
1931 	 * accessible and not already marked so.
1932 	 * Now check if it is possibly one of OUR sockets.
1933 	 */
1934 	if (fp->f_type != DTYPE_SOCKET ||
1935 	    (so = (struct socket *)fp->f_data) == NULL) {
1936 		return(0);
1937 	}
1938 	if (so->so_proto->pr_domain != &localdomain ||
1939 	    !(so->so_proto->pr_flags & PR_RIGHTS)) {
1940 		return(0);
1941 	}
1942 
1943 	/*
1944 	 * So, Ok, it's one of our sockets and it IS externally accessible
1945 	 * (or was defered).  Now we look to see if we hold any file
1946 	 * descriptors in its message buffers.  Follow those links and mark
1947 	 * them as accessible too.
1948 	 *
1949 	 * We are holding multiple spinlocks here, if we cannot get the
1950 	 * token non-blocking defer until the next loop.
1951 	 */
1952 	info->locked_fp = fp;
1953 	if (lwkt_trytoken(&so->so_rcv.ssb_token)) {
1954 		unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1955 		lwkt_reltoken(&so->so_rcv.ssb_token);
1956 	} else {
1957 		atomic_set_int(&fp->f_flag, FDEFER);
1958 		++info->defer;
1959 	}
1960 	return (0);
1961 }
1962 
1963 /*
1964  * Dispose of the fp's stored in a mbuf.
1965  *
1966  * The dds loop can cause additional fps to be entered onto the
1967  * list while it is running, flattening out the operation and avoiding
1968  * a deep kernel stack recursion.
1969  */
1970 void
1971 unp_dispose(struct mbuf *m)
1972 {
1973 	lwkt_gettoken(&unp_token);
1974 	if (m)
1975 		unp_scan(m, unp_discard, NULL);
1976 	lwkt_reltoken(&unp_token);
1977 }
1978 
1979 static int
1980 unp_listen(struct unpcb *unp, struct thread *td)
1981 {
1982 	struct proc *p = td->td_proc;
1983 
1984 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
1985 	UNP_ASSERT_TOKEN_HELD(unp);
1986 
1987 	KKASSERT(p);
1988 	cru2x(p->p_ucred, &unp->unp_peercred);
1989 	unp_setflags(unp, UNP_HAVEPCCACHED);
1990 	return (0);
1991 }
1992 
1993 static void
1994 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1995 {
1996 	struct mbuf *m;
1997 	struct file **rp;
1998 	struct cmsghdr *cm;
1999 	int i;
2000 	int qfds;
2001 
2002 	while (m0) {
2003 		for (m = m0; m; m = m->m_next) {
2004 			if (m->m_type == MT_CONTROL &&
2005 			    m->m_len >= sizeof(*cm)) {
2006 				cm = mtod(m, struct cmsghdr *);
2007 				if (cm->cmsg_level != SOL_SOCKET ||
2008 				    cm->cmsg_type != SCM_RIGHTS)
2009 					continue;
2010 				qfds = (cm->cmsg_len - CMSG_LEN(0)) /
2011 					sizeof(void *);
2012 				rp = (struct file **)CMSG_DATA(cm);
2013 				for (i = 0; i < qfds; i++)
2014 					(*op)(*rp++, data);
2015 				break;		/* XXX, but saves time */
2016 			}
2017 		}
2018 		m0 = m0->m_nextpkt;
2019 	}
2020 }
2021 
2022 /*
2023  * Mark visibility.  info->defer is recalculated on every pass.
2024  */
2025 static void
2026 unp_mark(struct file *fp, void *data)
2027 {
2028 	struct unp_gc_info *info = data;
2029 
2030 	if ((fp->f_flag & FMARK) == 0) {
2031 		++info->defer;
2032 		atomic_set_int(&fp->f_flag, FMARK | FDEFER);
2033 	} else if (fp->f_flag & FDEFER) {
2034 		++info->defer;
2035 	}
2036 }
2037 
2038 /*
2039  * Discard a fp previously held in a unix domain socket mbuf.  To
2040  * avoid blowing out the kernel stack due to contrived chain-reactions
2041  * we may have to defer the operation to a higher procedural level.
2042  *
2043  * Caller holds unp_token
2044  */
2045 static void
2046 unp_discard(struct file *fp, void *data __unused)
2047 {
2048 	struct unp_defdiscard *d;
2049 
2050 	spin_lock(&unp_spin);
2051 	fp->f_msgcount--;
2052 	unp_rights--;
2053 	spin_unlock(&unp_spin);
2054 
2055 	d = kmalloc(sizeof(*d), M_UNPCB, M_WAITOK);
2056 	d->fp = fp;
2057 
2058 	spin_lock(&unp_defdiscard_spin);
2059 	SLIST_INSERT_HEAD(&unp_defdiscard_head, d, next);
2060 	spin_unlock(&unp_defdiscard_spin);
2061 
2062 	taskqueue_enqueue(unp_taskqueue, &unp_defdiscard_task);
2063 }
2064 
2065 /*
2066  * NOTE:
2067  * unp_token must be held before calling this function to avoid name
2068  * resolution and v_socket accessing races, especially racing against
2069  * the unp_detach().
2070  *
2071  * NOTE:
2072  * For anyone caring about unconnected unix socket sending performance,
2073  * other approach could be taken...
2074  */
2075 static int
2076 unp_find_lockref(struct sockaddr *nam, struct thread *td, short type,
2077     struct unpcb **unp_ret)
2078 {
2079 	struct proc *p = td->td_proc;
2080 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
2081 	struct vnode *vp = NULL;
2082 	struct socket *so;
2083 	struct unpcb *unp;
2084 	int error, len;
2085 	struct nlookupdata nd;
2086 	char buf[SOCK_MAXADDRLEN];
2087 
2088 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
2089 
2090 	*unp_ret = NULL;
2091 
2092 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2093 	if (len <= 0) {
2094 		error = EINVAL;
2095 		goto failed;
2096 	}
2097 	strncpy(buf, soun->sun_path, len);
2098 	buf[len] = 0;
2099 
2100 	error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
2101 	if (error == 0)
2102 		error = nlookup(&nd);
2103 	if (error == 0)
2104 		error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
2105 	nlookup_done(&nd);
2106 	if (error) {
2107 		vp = NULL;
2108 		goto failed;
2109 	}
2110 
2111 	if (vp->v_type != VSOCK) {
2112 		error = ENOTSOCK;
2113 		goto failed;
2114 	}
2115 	error = VOP_EACCESS(vp, VWRITE, p->p_ucred);
2116 	if (error)
2117 		goto failed;
2118 	so = vp->v_socket;
2119 	if (so == NULL) {
2120 		error = ECONNREFUSED;
2121 		goto failed;
2122 	}
2123 	if (so->so_type != type) {
2124 		error = EPROTOTYPE;
2125 		goto failed;
2126 	}
2127 
2128 	/* Lock this unp. */
2129 	unp = unp_getsocktoken(so);
2130 	if (!UNP_ISATTACHED(unp)) {
2131 		unp_reltoken(unp);
2132 		error = ECONNREFUSED;
2133 		goto failed;
2134 	}
2135 	/* And keep this unp referenced. */
2136 	unp_reference(unp);
2137 
2138 	/* Done! */
2139 	*unp_ret = unp;
2140 	error = 0;
2141 failed:
2142 	if (vp != NULL)
2143 		vput(vp);
2144 	return error;
2145 }
2146 
2147 static int
2148 unp_connect_pair(struct unpcb *unp, struct unpcb *unp2)
2149 {
2150 	struct socket *so = unp->unp_socket;
2151 	struct socket *so2 = unp2->unp_socket;
2152 
2153 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
2154 	UNP_ASSERT_TOKEN_HELD(unp);
2155 	UNP_ASSERT_TOKEN_HELD(unp2);
2156 
2157 	KASSERT(so->so_type == so2->so_type,
2158 	    ("socket type mismatch, so %d, so2 %d", so->so_type, so2->so_type));
2159 
2160 	if (!UNP_ISATTACHED(unp))
2161 		return EINVAL;
2162 	if (!UNP_ISATTACHED(unp2))
2163 		return ECONNREFUSED;
2164 
2165 	KASSERT(unp->unp_conn == NULL, ("unp is already connected"));
2166 	unp->unp_conn = unp2;
2167 
2168 	switch (so->so_type) {
2169 	case SOCK_DGRAM:
2170 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2171 		soisconnected(so);
2172 		break;
2173 
2174 	case SOCK_STREAM:
2175 	case SOCK_SEQPACKET:
2176 		KASSERT(unp2->unp_conn == NULL, ("unp2 is already connected"));
2177 		unp2->unp_conn = unp;
2178 		soisconnected(so);
2179 		soisconnected(so2);
2180 		break;
2181 
2182 	default:
2183 		panic("unp_connect_pair: unknown socket type %d", so->so_type);
2184 	}
2185 	return 0;
2186 }
2187 
2188 static void
2189 unp_drop(struct unpcb *unp, int error)
2190 {
2191 	struct unpcb *unp2;
2192 
2193 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
2194 	UNP_ASSERT_TOKEN_HELD(unp);
2195 	KASSERT(unp->unp_flags & UNP_DETACHED, ("unp is not detached"));
2196 
2197 	unp_disconnect(unp, error);
2198 
2199 	while ((unp2 = LIST_FIRST(&unp->unp_refs)) != NULL) {
2200 		lwkt_getpooltoken(unp2);
2201 		unp_disconnect(unp2, ECONNRESET);
2202 		lwkt_relpooltoken(unp2);
2203 	}
2204 	unp_setflags(unp, UNP_DROPPED);
2205 }
2206 
2207 static void
2208 unp_defdiscard_taskfunc(void *arg __unused, int pending __unused)
2209 {
2210 	struct unp_defdiscard *d;
2211 
2212 	spin_lock(&unp_defdiscard_spin);
2213 	while ((d = SLIST_FIRST(&unp_defdiscard_head)) != NULL) {
2214 		SLIST_REMOVE_HEAD(&unp_defdiscard_head, next);
2215 		spin_unlock(&unp_defdiscard_spin);
2216 
2217 		closef(d->fp, NULL);
2218 		kfree(d, M_UNPCB);
2219 
2220 		spin_lock(&unp_defdiscard_spin);
2221 	}
2222 	spin_unlock(&unp_defdiscard_spin);
2223 }
2224