xref: /dragonfly/sys/kern/uipc_usrreq.c (revision def76f9f)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/domain.h>
37 #include <sys/fcntl.h>
38 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/filedesc.h>
42 #include <sys/mbuf.h>
43 #include <sys/nlookup.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/resourcevar.h>
48 #include <sys/stat.h>
49 #include <sys/mount.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <sys/unpcb.h>
53 #include <sys/vnode.h>
54 #include <sys/kern_syscall.h>
55 #include <sys/taskqueue.h>
56 
57 #include <sys/file2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/socketvar2.h>
60 #include <sys/msgport2.h>
61 
62 /*
63  * Unix communications domain.
64  *
65  * TODO:
66  *	RDM
67  *	rethink name space problems
68  *	need a proper out-of-band
69  *	lock pushdown
70  *
71  *
72  * Unix domain sockets GC.
73  *
74  * It was originally designed to address following three cases:
75  * 1) Receiving unix domain socket can not accept the rights, e.g.
76  *    when the so_rcv is full.
77  * 2) Caller of recvmsg(2) does not pass buffer to receive rights.
78  * 3) Unix domain sockets loop reference, e.g. s1 is on s2.so_rcv,
79  *    while s2 on s1.so_rcv.
80  *
81  * Code under UNP_GC_ALLFILES is intended to address all above three
82  * cases.  However, 1) was addressed a long time ago in uipc_send()
83  * (we inheritted the fix from FreeBSD when DragonFly forked).  2)
84  * was addressed in soreceive() by git-e62cfe62.  3) is the only
85  * case that needs GC.  The new code (!UNP_GC_ALLFILES) addresses
86  * case 3) in the following way:
87  * - Record the struct file in unpcb, if the Unix domain socket is
88  *   passed as one of the rights.
89  * - At GC time, only unpcbs are scanned, and only Unix domain sockets
90  *   that are still used as rights are potential GC targets.
91  */
92 
93 #define UNP_DETACHED		UNP_PRIVATE1
94 #define UNP_CONNECTING		UNP_PRIVATE2
95 #define UNP_DROPPED		UNP_PRIVATE3
96 #define UNP_MARKER		UNP_PRIVATE4
97 
98 #define UNPGC_REF		0x1	/* unpcb has external ref. */
99 #define UNPGC_DEAD		0x2	/* unpcb might be dead. */
100 #define UNPGC_SCANNED		0x4	/* Has been scanned. */
101 
102 #define UNP_GCFILE_MAX		256
103 
104 /* For unp_internalize() and unp_externalize() */
105 CTASSERT(sizeof(struct file *) >= sizeof(int));
106 
107 #define UNP_ISATTACHED(unp)	\
108     ((unp) != NULL && ((unp)->unp_flags & UNP_DETACHED) == 0)
109 
110 #ifdef INVARIANTS
111 #define UNP_ASSERT_TOKEN_HELD(unp) \
112     ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup((unp)))
113 #else	/* !INVARIANTS */
114 #define UNP_ASSERT_TOKEN_HELD(unp)
115 #endif	/* INVARIANTS */
116 
117 struct unp_defdiscard {
118 	SLIST_ENTRY(unp_defdiscard) next;
119 	struct file *fp;
120 };
121 SLIST_HEAD(unp_defdiscard_list, unp_defdiscard);
122 
123 TAILQ_HEAD(unpcb_qhead, unpcb);
124 struct unp_global_head {
125 	struct unpcb_qhead	list;
126 	int			count;
127 };
128 
129 static	MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
130 static	unp_gen_t unp_gencnt;
131 
132 static struct unp_global_head unp_stream_head;
133 static struct unp_global_head unp_dgram_head;
134 static struct unp_global_head unp_seqpkt_head;
135 
136 static struct unp_global_head * const unp_heads[] =
137     { &unp_stream_head, &unp_dgram_head, &unp_seqpkt_head, NULL };
138 
139 static struct lwkt_token unp_token = LWKT_TOKEN_INITIALIZER(unp_token);
140 static struct taskqueue *unp_taskqueue;
141 
142 static struct unp_defdiscard_list unp_defdiscard_head;
143 static struct spinlock unp_defdiscard_spin;
144 static struct task unp_defdiscard_task;
145 
146 static struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
147 static ino_t	unp_ino = 1;		/* prototype for fake inode numbers */
148 
149 static int     unp_attach (struct socket *, struct pru_attach_info *);
150 static void    unp_detach (struct unpcb *);
151 static int     unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
152 static int     unp_connect (struct socket *,struct sockaddr *,
153 				struct thread *);
154 static void    unp_disconnect(struct unpcb *, int);
155 static void    unp_shutdown (struct unpcb *);
156 static void    unp_gc(void *, int);
157 #ifdef UNP_GC_ALLFILES
158 static int     unp_gc_clearmarks(struct file *, void *);
159 static int     unp_gc_checkmarks(struct file *, void *);
160 static int     unp_gc_checkrefs(struct file *, void *);
161 static void    unp_mark(struct file *, void *data);
162 #endif
163 static void    unp_scan (struct mbuf *, void (*)(struct file *, void *),
164 				void *data);
165 static void    unp_discard (struct file *, void *);
166 static int     unp_internalize (struct mbuf *, struct thread *);
167 static int     unp_listen (struct unpcb *, struct thread *);
168 static void    unp_fp_externalize(struct lwp *lp, struct file *fp, int fd,
169 		   int flags);
170 static int     unp_find_lockref(struct sockaddr *nam, struct thread *td,
171 		   short type, struct unpcb **unp_ret);
172 static int     unp_connect_pair(struct unpcb *unp, struct unpcb *unp2);
173 static void    unp_drop(struct unpcb *unp, int error);
174 static void    unp_defdiscard_taskfunc(void *, int);
175 
176 static int	unp_rights;			/* file descriptors in flight */
177 static struct lwkt_token unp_rights_token =
178     LWKT_TOKEN_INITIALIZER(unp_rights_token);
179 static struct task unp_gc_task;
180 static struct unpcb *unp_gc_marker;
181 
182 SYSCTL_DECL(_net_local);
183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184    "File descriptors in flight");
185 
186 /*
187  * SMP Considerations:
188  *
189  *	Since unp_token will be automaticly released upon execution of
190  *	blocking code, we need to reference unp_conn before any possible
191  *	blocking code to prevent it from being ripped behind our back.
192  *
193  *	Any adjustment to unp->unp_conn requires both the global unp_token
194  *	AND the per-unp token (lwkt_token_pool_lookup(unp)) to be held.
195  *
196  *	Any access to so_pcb to obtain unp requires the pool token for
197  *	unp to be held.
198  */
199 
200 static __inline void
201 unp_reference(struct unpcb *unp)
202 {
203 	/* 0->1 transition will not work */
204 	KKASSERT(unp->unp_refcnt > 0);
205 	atomic_add_int(&unp->unp_refcnt, 1);
206 }
207 
208 static __inline void
209 unp_free(struct unpcb *unp)
210 {
211 	KKASSERT(unp->unp_refcnt > 0);
212 	if (atomic_fetchadd_int(&unp->unp_refcnt, -1) == 1)
213 		unp_detach(unp);
214 }
215 
216 static __inline struct unpcb *
217 unp_getsocktoken(struct socket *so)
218 {
219 	struct unpcb *unp;
220 
221 	/*
222 	 * The unp pointer is invalid until we verify that it is
223 	 * good by re-checking so_pcb AFTER obtaining the token.
224 	 */
225 	while ((unp = so->so_pcb) != NULL) {
226 		lwkt_getpooltoken(unp);
227 		if (unp == so->so_pcb)
228 			break;
229 		lwkt_relpooltoken(unp);
230 	}
231 	return unp;
232 }
233 
234 static __inline void
235 unp_reltoken(struct unpcb *unp)
236 {
237 	if (unp != NULL)
238 		lwkt_relpooltoken(unp);
239 }
240 
241 static __inline void
242 unp_setflags(struct unpcb *unp, int flags)
243 {
244 	atomic_set_int(&unp->unp_flags, flags);
245 }
246 
247 static __inline void
248 unp_clrflags(struct unpcb *unp, int flags)
249 {
250 	atomic_clear_int(&unp->unp_flags, flags);
251 }
252 
253 static __inline struct unp_global_head *
254 unp_globalhead(short type)
255 {
256 	switch (type) {
257 	case SOCK_STREAM:
258 		return &unp_stream_head;
259 	case SOCK_DGRAM:
260 		return &unp_dgram_head;
261 	case SOCK_SEQPACKET:
262 		return &unp_seqpkt_head;
263 	default:
264 		panic("unknown socket type %d", type);
265 	}
266 }
267 
268 static __inline struct unpcb *
269 unp_fp2unpcb(struct file *fp)
270 {
271 	struct socket *so;
272 
273 	if (fp->f_type != DTYPE_SOCKET)
274 		return NULL;
275 
276 	so = fp->f_data;
277 	if (so == NULL)
278 		return NULL;
279 
280 	if (so->so_proto->pr_domain != &localdomain)
281 		return NULL;
282 
283 	return so->so_pcb;
284 }
285 
286 static __inline void
287 unp_add_right(struct file *fp)
288 {
289 	struct unpcb *unp;
290 
291 	ASSERT_LWKT_TOKEN_HELD(&unp_rights_token);
292 	KASSERT(fp->f_count > 0, ("invalid f_count %d", fp->f_count));
293 
294 	unp = unp_fp2unpcb(fp);
295 	if (unp != NULL) {
296 		unp->unp_fp = fp;
297 		unp->unp_msgcount++;
298 	}
299 	fp->f_msgcount++;
300 	unp_rights++;
301 }
302 
303 static __inline void
304 unp_del_right(struct file *fp)
305 {
306 	struct unpcb *unp;
307 
308 	ASSERT_LWKT_TOKEN_HELD(&unp_rights_token);
309 	KASSERT(fp->f_count > 0, ("invalid f_count %d", fp->f_count));
310 
311 	unp = unp_fp2unpcb(fp);
312 	if (unp != NULL) {
313 		KASSERT(unp->unp_msgcount > 0,
314 		    ("invalid unp msgcount %d", unp->unp_msgcount));
315 		unp->unp_msgcount--;
316 		if (unp->unp_msgcount == 0)
317 			unp->unp_fp = NULL;
318 	}
319 	fp->f_msgcount--;
320 	unp_rights--;
321 }
322 
323 /*
324  * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
325  *	 will sofree() it when we return.
326  */
327 static void
328 uipc_abort(netmsg_t msg)
329 {
330 	struct unpcb *unp;
331 	int error;
332 
333 	lwkt_gettoken(&unp_token);
334 	unp = unp_getsocktoken(msg->base.nm_so);
335 
336 	if (UNP_ISATTACHED(unp)) {
337 		unp_drop(unp, ECONNABORTED);
338 		error = 0;
339 	} else {
340 		error = EINVAL;
341 	}
342 
343 	unp_reltoken(unp);
344 	lwkt_reltoken(&unp_token);
345 
346 	lwkt_replymsg(&msg->lmsg, error);
347 }
348 
349 static void
350 uipc_accept(netmsg_t msg)
351 {
352 	struct unpcb *unp;
353 	int error;
354 
355 	lwkt_gettoken(&unp_token);
356 	unp = unp_getsocktoken(msg->base.nm_so);
357 
358 	if (!UNP_ISATTACHED(unp)) {
359 		error = EINVAL;
360 	} else {
361 		struct unpcb *unp2 = unp->unp_conn;
362 
363 		/*
364 		 * Pass back name of connected socket,
365 		 * if it was bound and we are still connected
366 		 * (our peer may have closed already!).
367 		 */
368 		if (unp2 && unp2->unp_addr) {
369 			unp_reference(unp2);
370 			*msg->accept.nm_nam = dup_sockaddr(
371 				(struct sockaddr *)unp2->unp_addr);
372 			unp_free(unp2);
373 		} else {
374 			*msg->accept.nm_nam = dup_sockaddr(&sun_noname);
375 		}
376 		error = 0;
377 	}
378 
379 	unp_reltoken(unp);
380 	lwkt_reltoken(&unp_token);
381 
382 	lwkt_replymsg(&msg->lmsg, error);
383 }
384 
385 static void
386 uipc_attach(netmsg_t msg)
387 {
388 	int error;
389 
390 	lwkt_gettoken(&unp_token);
391 
392 	KASSERT(msg->base.nm_so->so_pcb == NULL, ("double unp attach"));
393 	error = unp_attach(msg->base.nm_so, msg->attach.nm_ai);
394 
395 	lwkt_reltoken(&unp_token);
396 	lwkt_replymsg(&msg->lmsg, error);
397 }
398 
399 static void
400 uipc_bind(netmsg_t msg)
401 {
402 	struct unpcb *unp;
403 	int error;
404 
405 	lwkt_gettoken(&unp_token);
406 	unp = unp_getsocktoken(msg->base.nm_so);
407 
408 	if (UNP_ISATTACHED(unp))
409 		error = unp_bind(unp, msg->bind.nm_nam, msg->bind.nm_td);
410 	else
411 		error = EINVAL;
412 
413 	unp_reltoken(unp);
414 	lwkt_reltoken(&unp_token);
415 
416 	lwkt_replymsg(&msg->lmsg, error);
417 }
418 
419 static void
420 uipc_connect(netmsg_t msg)
421 {
422 	int error;
423 
424 	error = unp_connect(msg->base.nm_so, msg->connect.nm_nam,
425 	    msg->connect.nm_td);
426 	lwkt_replymsg(&msg->lmsg, error);
427 }
428 
429 static void
430 uipc_connect2(netmsg_t msg)
431 {
432 	int error;
433 
434 	error = unp_connect2(msg->connect2.nm_so1, msg->connect2.nm_so2);
435 	lwkt_replymsg(&msg->lmsg, error);
436 }
437 
438 /* control is EOPNOTSUPP */
439 
440 static void
441 uipc_detach(netmsg_t msg)
442 {
443 	struct unpcb *unp;
444 	int error;
445 
446 	lwkt_gettoken(&unp_token);
447 	unp = unp_getsocktoken(msg->base.nm_so);
448 
449 	if (UNP_ISATTACHED(unp)) {
450 		unp_drop(unp, 0);
451 		error = 0;
452 	} else {
453 		error = EINVAL;
454 	}
455 
456 	unp_reltoken(unp);
457 	lwkt_reltoken(&unp_token);
458 
459 	lwkt_replymsg(&msg->lmsg, error);
460 }
461 
462 static void
463 uipc_disconnect(netmsg_t msg)
464 {
465 	struct unpcb *unp;
466 	int error;
467 
468 	lwkt_gettoken(&unp_token);
469 	unp = unp_getsocktoken(msg->base.nm_so);
470 
471 	if (UNP_ISATTACHED(unp)) {
472 		unp_disconnect(unp, 0);
473 		error = 0;
474 	} else {
475 		error = EINVAL;
476 	}
477 
478 	unp_reltoken(unp);
479 	lwkt_reltoken(&unp_token);
480 
481 	lwkt_replymsg(&msg->lmsg, error);
482 }
483 
484 static void
485 uipc_listen(netmsg_t msg)
486 {
487 	struct unpcb *unp;
488 	int error;
489 
490 	lwkt_gettoken(&unp_token);
491 	unp = unp_getsocktoken(msg->base.nm_so);
492 
493 	if (!UNP_ISATTACHED(unp) || unp->unp_vnode == NULL)
494 		error = EINVAL;
495 	else
496 		error = unp_listen(unp, msg->listen.nm_td);
497 
498 	unp_reltoken(unp);
499 	lwkt_reltoken(&unp_token);
500 
501 	lwkt_replymsg(&msg->lmsg, error);
502 }
503 
504 static void
505 uipc_peeraddr(netmsg_t msg)
506 {
507 	struct unpcb *unp;
508 	int error;
509 
510 	lwkt_gettoken(&unp_token);
511 	unp = unp_getsocktoken(msg->base.nm_so);
512 
513 	if (!UNP_ISATTACHED(unp)) {
514 		error = EINVAL;
515 	} else if (unp->unp_conn && unp->unp_conn->unp_addr) {
516 		struct unpcb *unp2 = unp->unp_conn;
517 
518 		unp_reference(unp2);
519 		*msg->peeraddr.nm_nam = dup_sockaddr(
520 				(struct sockaddr *)unp2->unp_addr);
521 		unp_free(unp2);
522 		error = 0;
523 	} else {
524 		/*
525 		 * XXX: It seems that this test always fails even when
526 		 * connection is established.  So, this else clause is
527 		 * added as workaround to return PF_LOCAL sockaddr.
528 		 */
529 		*msg->peeraddr.nm_nam = dup_sockaddr(&sun_noname);
530 		error = 0;
531 	}
532 
533 	unp_reltoken(unp);
534 	lwkt_reltoken(&unp_token);
535 
536 	lwkt_replymsg(&msg->lmsg, error);
537 }
538 
539 static void
540 uipc_rcvd(netmsg_t msg)
541 {
542 	struct unpcb *unp, *unp2;
543 	struct socket *so;
544 	struct socket *so2;
545 	int error;
546 
547 	/*
548 	 * so_pcb is only modified with both the global and the unp
549 	 * pool token held.
550 	 */
551 	so = msg->base.nm_so;
552 	unp = unp_getsocktoken(so);
553 
554 	if (!UNP_ISATTACHED(unp)) {
555 		error = EINVAL;
556 		goto done;
557 	}
558 
559 	switch (so->so_type) {
560 	case SOCK_DGRAM:
561 		panic("uipc_rcvd DGRAM?");
562 		/*NOTREACHED*/
563 	case SOCK_STREAM:
564 	case SOCK_SEQPACKET:
565 		if (unp->unp_conn == NULL)
566 			break;
567 		unp2 = unp->unp_conn;	/* protected by pool token */
568 
569 		/*
570 		 * Because we are transfering mbufs directly to the
571 		 * peer socket we have to use SSB_STOP on the sender
572 		 * to prevent it from building up infinite mbufs.
573 		 *
574 		 * As in several places in this module w ehave to ref unp2
575 		 * to ensure that it does not get ripped out from under us
576 		 * if we block on the so2 token or in sowwakeup().
577 		 */
578 		so2 = unp2->unp_socket;
579 		unp_reference(unp2);
580 		lwkt_gettoken(&so2->so_rcv.ssb_token);
581 		if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
582 		    so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
583 		) {
584 			atomic_clear_int(&so2->so_snd.ssb_flags, SSB_STOP);
585 
586 			sowwakeup(so2);
587 		}
588 		lwkt_reltoken(&so2->so_rcv.ssb_token);
589 		unp_free(unp2);
590 		break;
591 	default:
592 		panic("uipc_rcvd unknown socktype");
593 		/*NOTREACHED*/
594 	}
595 	error = 0;
596 done:
597 	unp_reltoken(unp);
598 	lwkt_replymsg(&msg->lmsg, error);
599 }
600 
601 /* pru_rcvoob is EOPNOTSUPP */
602 
603 static void
604 uipc_send(netmsg_t msg)
605 {
606 	struct unpcb *unp, *unp2;
607 	struct socket *so;
608 	struct socket *so2;
609 	struct mbuf *control;
610 	struct mbuf *m;
611 	int error = 0;
612 
613 	so = msg->base.nm_so;
614 	control = msg->send.nm_control;
615 	m = msg->send.nm_m;
616 
617 	/*
618 	 * so_pcb is only modified with both the global and the unp
619 	 * pool token held.
620 	 */
621 	so = msg->base.nm_so;
622 	unp = unp_getsocktoken(so);
623 
624 	if (!UNP_ISATTACHED(unp)) {
625 		error = EINVAL;
626 		goto release;
627 	}
628 
629 	if (msg->send.nm_flags & PRUS_OOB) {
630 		error = EOPNOTSUPP;
631 		goto release;
632 	}
633 
634 	wakeup_start_delayed();
635 
636 	if (control && (error = unp_internalize(control, msg->send.nm_td)))
637 		goto release;
638 
639 	switch (so->so_type) {
640 	case SOCK_DGRAM:
641 	{
642 		struct sockaddr *from;
643 
644 		if (msg->send.nm_addr) {
645 			if (unp->unp_conn) {
646 				error = EISCONN;
647 				break;
648 			}
649 			lwkt_gettoken(&unp_token);
650 			error = unp_find_lockref(msg->send.nm_addr,
651 			    msg->send.nm_td, so->so_type, &unp2);
652 			if (error) {
653 				lwkt_reltoken(&unp_token);
654 				break;
655 			}
656 			/*
657 			 * NOTE:
658 			 * unp2 is locked and referenced.
659 			 *
660 			 * We could unlock unp2 now, since it was checked
661 			 * and referenced.
662 			 */
663 			unp_reltoken(unp2);
664 			lwkt_reltoken(&unp_token);
665 		} else {
666 			if (unp->unp_conn == NULL) {
667 				error = ENOTCONN;
668 				break;
669 			}
670 			unp2 = unp->unp_conn;
671 			unp_reference(unp2);
672 		}
673 		/* NOTE: unp2 is referenced. */
674 		so2 = unp2->unp_socket;
675 
676 		if (unp->unp_addr)
677 			from = (struct sockaddr *)unp->unp_addr;
678 		else
679 			from = &sun_noname;
680 
681 		lwkt_gettoken(&so2->so_rcv.ssb_token);
682 		if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
683 			sorwakeup(so2);
684 			m = NULL;
685 			control = NULL;
686 		} else {
687 			error = ENOBUFS;
688 		}
689 		lwkt_reltoken(&so2->so_rcv.ssb_token);
690 
691 		unp_free(unp2);
692 		break;
693 	}
694 
695 	case SOCK_STREAM:
696 	case SOCK_SEQPACKET:
697 		/* Connect if not connected yet. */
698 		/*
699 		 * Note: A better implementation would complain
700 		 * if not equal to the peer's address.
701 		 */
702 		if (unp->unp_conn == NULL) {
703 			if (msg->send.nm_addr) {
704 				error = unp_connect(so,
705 						    msg->send.nm_addr,
706 						    msg->send.nm_td);
707 				if (error)
708 					break;	/* XXX */
709 			}
710 			/*
711 			 * NOTE:
712 			 * unp_conn still could be NULL, even if the
713 			 * above unp_connect() succeeds; since the
714 			 * current unp's token could be released due
715 			 * to blocking operations after unp_conn is
716 			 * assigned.
717 			 */
718 			if (unp->unp_conn == NULL) {
719 				error = ENOTCONN;
720 				break;
721 			}
722 		}
723 		if (so->so_state & SS_CANTSENDMORE) {
724 			error = EPIPE;
725 			break;
726 		}
727 
728 		unp2 = unp->unp_conn;
729 		KASSERT(unp2 != NULL, ("unp is not connected"));
730 		so2 = unp2->unp_socket;
731 
732 		unp_reference(unp2);
733 
734 		/*
735 		 * Send to paired receive port, and then reduce
736 		 * send buffer hiwater marks to maintain backpressure.
737 		 * Wake up readers.
738 		 */
739 		lwkt_gettoken(&so2->so_rcv.ssb_token);
740 		if (control) {
741 			if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
742 				control = NULL;
743 				m = NULL;
744 			}
745 		} else if (so->so_type == SOCK_SEQPACKET) {
746 			sbappendrecord(&so2->so_rcv.sb, m);
747 			m = NULL;
748 		} else {
749 			sbappend(&so2->so_rcv.sb, m);
750 			m = NULL;
751 		}
752 
753 		/*
754 		 * Because we are transfering mbufs directly to the
755 		 * peer socket we have to use SSB_STOP on the sender
756 		 * to prevent it from building up infinite mbufs.
757 		 */
758 		if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
759 		    so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
760 		) {
761 			atomic_set_int(&so->so_snd.ssb_flags, SSB_STOP);
762 		}
763 		lwkt_reltoken(&so2->so_rcv.ssb_token);
764 		sorwakeup(so2);
765 
766 		unp_free(unp2);
767 		break;
768 
769 	default:
770 		panic("uipc_send unknown socktype");
771 	}
772 
773 	/*
774 	 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
775 	 */
776 	if (msg->send.nm_flags & PRUS_EOF) {
777 		socantsendmore(so);
778 		unp_shutdown(unp);
779 	}
780 
781 	if (control && error != 0)
782 		unp_dispose(control);
783 release:
784 	unp_reltoken(unp);
785 	wakeup_end_delayed();
786 
787 	if (control)
788 		m_freem(control);
789 	if (m)
790 		m_freem(m);
791 	lwkt_replymsg(&msg->lmsg, error);
792 }
793 
794 /*
795  * MPSAFE
796  */
797 static void
798 uipc_sense(netmsg_t msg)
799 {
800 	struct unpcb *unp;
801 	struct socket *so;
802 	struct stat *sb;
803 	int error;
804 
805 	so = msg->base.nm_so;
806 	sb = msg->sense.nm_stat;
807 
808 	/*
809 	 * so_pcb is only modified with both the global and the unp
810 	 * pool token held.
811 	 */
812 	unp = unp_getsocktoken(so);
813 
814 	if (!UNP_ISATTACHED(unp)) {
815 		error = EINVAL;
816 		goto done;
817 	}
818 
819 	sb->st_blksize = so->so_snd.ssb_hiwat;
820 	sb->st_dev = NOUDEV;
821 	if (unp->unp_ino == 0) {	/* make up a non-zero inode number */
822 		unp->unp_ino = atomic_fetchadd_long(&unp_ino, 1);
823 		if (__predict_false(unp->unp_ino == 0))
824 			unp->unp_ino = atomic_fetchadd_long(&unp_ino, 1);
825 	}
826 	sb->st_ino = unp->unp_ino;
827 	error = 0;
828 done:
829 	unp_reltoken(unp);
830 	lwkt_replymsg(&msg->lmsg, error);
831 }
832 
833 static void
834 uipc_shutdown(netmsg_t msg)
835 {
836 	struct socket *so;
837 	struct unpcb *unp;
838 	int error;
839 
840 	/*
841 	 * so_pcb is only modified with both the global and the unp
842 	 * pool token held.
843 	 */
844 	so = msg->base.nm_so;
845 	unp = unp_getsocktoken(so);
846 
847 	if (UNP_ISATTACHED(unp)) {
848 		socantsendmore(so);
849 		unp_shutdown(unp);
850 		error = 0;
851 	} else {
852 		error = EINVAL;
853 	}
854 
855 	unp_reltoken(unp);
856 	lwkt_replymsg(&msg->lmsg, error);
857 }
858 
859 static void
860 uipc_sockaddr(netmsg_t msg)
861 {
862 	struct unpcb *unp;
863 	int error;
864 
865 	/*
866 	 * so_pcb is only modified with both the global and the unp
867 	 * pool token held.
868 	 */
869 	unp = unp_getsocktoken(msg->base.nm_so);
870 
871 	if (UNP_ISATTACHED(unp)) {
872 		if (unp->unp_addr) {
873 			*msg->sockaddr.nm_nam =
874 				dup_sockaddr((struct sockaddr *)unp->unp_addr);
875 		}
876 		error = 0;
877 	} else {
878 		error = EINVAL;
879 	}
880 
881 	unp_reltoken(unp);
882 	lwkt_replymsg(&msg->lmsg, error);
883 }
884 
885 struct pr_usrreqs uipc_usrreqs = {
886 	.pru_abort = uipc_abort,
887 	.pru_accept = uipc_accept,
888 	.pru_attach = uipc_attach,
889 	.pru_bind = uipc_bind,
890 	.pru_connect = uipc_connect,
891 	.pru_connect2 = uipc_connect2,
892 	.pru_control = pr_generic_notsupp,
893 	.pru_detach = uipc_detach,
894 	.pru_disconnect = uipc_disconnect,
895 	.pru_listen = uipc_listen,
896 	.pru_peeraddr = uipc_peeraddr,
897 	.pru_rcvd = uipc_rcvd,
898 	.pru_rcvoob = pr_generic_notsupp,
899 	.pru_send = uipc_send,
900 	.pru_sense = uipc_sense,
901 	.pru_shutdown = uipc_shutdown,
902 	.pru_sockaddr = uipc_sockaddr,
903 	.pru_sosend = sosend,
904 	.pru_soreceive = soreceive
905 };
906 
907 void
908 uipc_ctloutput(netmsg_t msg)
909 {
910 	struct socket *so;
911 	struct sockopt *sopt;
912 	struct unpcb *unp;
913 	int error = 0;
914 
915 	so = msg->base.nm_so;
916 	sopt = msg->ctloutput.nm_sopt;
917 
918 	lwkt_gettoken(&unp_token);
919 	unp = unp_getsocktoken(so);
920 
921 	if (!UNP_ISATTACHED(unp)) {
922 		error = EINVAL;
923 		goto done;
924 	}
925 
926 	switch (sopt->sopt_dir) {
927 	case SOPT_GET:
928 		switch (sopt->sopt_name) {
929 		case LOCAL_PEERCRED:
930 			if (unp->unp_flags & UNP_HAVEPC)
931 				soopt_from_kbuf(sopt, &unp->unp_peercred,
932 						sizeof(unp->unp_peercred));
933 			else {
934 				if (so->so_type == SOCK_STREAM)
935 					error = ENOTCONN;
936 				else if (so->so_type == SOCK_SEQPACKET)
937 					error = ENOTCONN;
938 				else
939 					error = EINVAL;
940 			}
941 			break;
942 		default:
943 			error = EOPNOTSUPP;
944 			break;
945 		}
946 		break;
947 	case SOPT_SET:
948 	default:
949 		error = EOPNOTSUPP;
950 		break;
951 	}
952 
953 done:
954 	unp_reltoken(unp);
955 	lwkt_reltoken(&unp_token);
956 
957 	lwkt_replymsg(&msg->lmsg, error);
958 }
959 
960 /*
961  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
962  * for stream sockets, although the total for sender and receiver is
963  * actually only PIPSIZ.
964  *
965  * Datagram sockets really use the sendspace as the maximum datagram size,
966  * and don't really want to reserve the sendspace.  Their recvspace should
967  * be large enough for at least one max-size datagram plus address.
968  *
969  * We want the local send/recv space to be significant larger then lo0's
970  * mtu of 16384.
971  *
972  * We no longer need to worry about avoiding the windows scaling option.
973  * Programs which use unix domain sockets expect larger defaults these days.
974  */
975 #ifndef PIPSIZ
976 #define	PIPSIZ	65536
977 #endif
978 static u_long	unpst_sendspace = PIPSIZ;
979 static u_long	unpst_recvspace = PIPSIZ;
980 static u_long	unpdg_sendspace = PIPSIZ;	/* really max datagram size */
981 static u_long	unpdg_recvspace = PIPSIZ;
982 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
983 static u_long	unpsp_recvspace = PIPSIZ;
984 
985 SYSCTL_DECL(_net_local_stream);
986 SYSCTL_DECL(_net_local_dgram);
987 SYSCTL_DECL(_net_local_seqpacket);
988 
989 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
990     &unpst_sendspace, 0, "Size of stream socket send buffer");
991 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
992     &unpst_recvspace, 0, "Size of stream socket receive buffer");
993 
994 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
995     &unpdg_sendspace, 0, "Max datagram socket size");
996 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
997     &unpdg_recvspace, 0, "Size of datagram socket receive buffer");
998 
999 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
1000     &unpsp_sendspace, 0, "Default seqpacket send space.");
1001 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
1002     &unpsp_recvspace, 0, "Default seqpacket receive space.");
1003 
1004 
1005 static int
1006 unp_attach(struct socket *so, struct pru_attach_info *ai)
1007 {
1008 	struct unp_global_head *head;
1009 	struct unpcb *unp;
1010 	int error;
1011 
1012 	lwkt_gettoken(&unp_token);
1013 
1014 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
1015 		switch (so->so_type) {
1016 		case SOCK_STREAM:
1017 			error = soreserve(so, unpst_sendspace, unpst_recvspace,
1018 					  ai->sb_rlimit);
1019 			break;
1020 		case SOCK_DGRAM:
1021 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
1022 					  ai->sb_rlimit);
1023 			break;
1024 		case SOCK_SEQPACKET:
1025 			error = soreserve(so, unpsp_sendspace, unpsp_recvspace,
1026 					  ai->sb_rlimit);
1027 			break;
1028 		default:
1029 			panic("unp_attach");
1030 		}
1031 		if (error)
1032 			goto failed;
1033 	}
1034 
1035 	/*
1036 	 * In order to support sendfile we have to set either SSB_STOPSUPP
1037 	 * or SSB_PREALLOC.  Unix domain sockets use the SSB_STOP flow
1038 	 * control mechanism.
1039 	 */
1040 	if (so->so_type == SOCK_STREAM) {
1041 		atomic_set_int(&so->so_rcv.ssb_flags, SSB_STOPSUPP);
1042 		atomic_set_int(&so->so_snd.ssb_flags, SSB_STOPSUPP);
1043 	}
1044 
1045 	unp = kmalloc(sizeof(*unp), M_UNPCB, M_WAITOK | M_ZERO | M_NULLOK);
1046 	if (unp == NULL) {
1047 		error = ENOBUFS;
1048 		goto failed;
1049 	}
1050 	unp->unp_refcnt = 1;
1051 	unp->unp_gencnt = ++unp_gencnt;
1052 	LIST_INIT(&unp->unp_refs);
1053 	unp->unp_socket = so;
1054 	unp->unp_rvnode = ai->fd_rdir;		/* jail cruft XXX JH */
1055 	so->so_pcb = (caddr_t)unp;
1056 	soreference(so);
1057 
1058 	head = unp_globalhead(so->so_type);
1059 	TAILQ_INSERT_TAIL(&head->list, unp, unp_link);
1060 	head->count++;
1061 	error = 0;
1062 failed:
1063 	lwkt_reltoken(&unp_token);
1064 	return error;
1065 }
1066 
1067 static void
1068 unp_detach(struct unpcb *unp)
1069 {
1070 	struct socket *so;
1071 
1072 	lwkt_gettoken(&unp_token);
1073 	lwkt_getpooltoken(unp);
1074 
1075 	so = unp->unp_socket;
1076 
1077 	unp->unp_gencnt = ++unp_gencnt;
1078 	if (unp->unp_vnode) {
1079 		unp->unp_vnode->v_socket = NULL;
1080 		vrele(unp->unp_vnode);
1081 		unp->unp_vnode = NULL;
1082 	}
1083 	soisdisconnected(so);
1084 	KKASSERT(so->so_pcb == unp);
1085 	so->so_pcb = NULL;		/* both tokens required */
1086 	unp->unp_socket = NULL;
1087 
1088 	lwkt_relpooltoken(unp);
1089 	lwkt_reltoken(&unp_token);
1090 
1091 	sofree(so);
1092 
1093 	KASSERT(unp->unp_conn == NULL, ("unp is still connected"));
1094 	KASSERT(LIST_EMPTY(&unp->unp_refs), ("unp still has references"));
1095 
1096 	if (unp->unp_addr)
1097 		kfree(unp->unp_addr, M_SONAME);
1098 	kfree(unp, M_UNPCB);
1099 
1100 	if (unp_rights)
1101 		taskqueue_enqueue(unp_taskqueue, &unp_gc_task);
1102 }
1103 
1104 static int
1105 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
1106 {
1107 	struct proc *p = td->td_proc;
1108 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1109 	struct vnode *vp;
1110 	struct vattr vattr;
1111 	int error, namelen;
1112 	struct nlookupdata nd;
1113 	char buf[SOCK_MAXADDRLEN];
1114 
1115 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
1116 	UNP_ASSERT_TOKEN_HELD(unp);
1117 
1118 	if (unp->unp_vnode != NULL)
1119 		return EINVAL;
1120 
1121 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
1122 	if (namelen <= 0)
1123 		return EINVAL;
1124 	strncpy(buf, soun->sun_path, namelen);
1125 	buf[namelen] = 0;	/* null-terminate the string */
1126 	error = nlookup_init(&nd, buf, UIO_SYSSPACE,
1127 			     NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
1128 	if (error == 0)
1129 		error = nlookup(&nd);
1130 	if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
1131 		error = EADDRINUSE;
1132 	if (error)
1133 		goto done;
1134 
1135 	VATTR_NULL(&vattr);
1136 	vattr.va_type = VSOCK;
1137 	vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
1138 	error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
1139 	if (error == 0) {
1140 		if (unp->unp_vnode == NULL) {
1141 			vp->v_socket = unp->unp_socket;
1142 			unp->unp_vnode = vp;
1143 			unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
1144 			vn_unlock(vp);
1145 		} else {
1146 			vput(vp);		/* late race */
1147 			error = EINVAL;
1148 		}
1149 	}
1150 done:
1151 	nlookup_done(&nd);
1152 	return (error);
1153 }
1154 
1155 static int
1156 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1157 {
1158 	struct unpcb *unp, *unp2;
1159 	int error, flags = 0;
1160 
1161 	lwkt_gettoken(&unp_token);
1162 
1163 	unp = unp_getsocktoken(so);
1164 	if (!UNP_ISATTACHED(unp)) {
1165 		error = EINVAL;
1166 		goto failed;
1167 	}
1168 
1169 	if ((unp->unp_flags & UNP_CONNECTING) || unp->unp_conn != NULL) {
1170 		error = EISCONN;
1171 		goto failed;
1172 	}
1173 
1174 	flags = UNP_CONNECTING;
1175 	unp_setflags(unp, flags);
1176 
1177 	error = unp_find_lockref(nam, td, so->so_type, &unp2);
1178 	if (error)
1179 		goto failed;
1180 	/*
1181 	 * NOTE:
1182 	 * unp2 is locked and referenced.
1183 	 */
1184 
1185 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1186 		struct socket *so2, *so3;
1187 		struct unpcb *unp3;
1188 
1189 		so2 = unp2->unp_socket;
1190 		if (!(so2->so_options & SO_ACCEPTCONN) ||
1191 		    /* listen is not completed yet */
1192 		    !(unp2->unp_flags & UNP_HAVEPCCACHED) ||
1193 		    (so3 = sonewconn_faddr(so2, 0, NULL,
1194 		     TRUE /* keep ref */)) == NULL) {
1195 			error = ECONNREFUSED;
1196 			goto done;
1197 		}
1198 		/* so3 has a socket reference. */
1199 
1200 		unp3 = unp_getsocktoken(so3);
1201 		if (!UNP_ISATTACHED(unp3)) {
1202 			unp_reltoken(unp3);
1203 			/*
1204 			 * Already aborted; we only need to drop the
1205 			 * socket reference held by sonewconn_faddr().
1206 			 */
1207 			sofree(so3);
1208 			error = ECONNREFUSED;
1209 			goto done;
1210 		}
1211 		unp_reference(unp3);
1212 		/*
1213 		 * NOTE:
1214 		 * unp3 is locked and referenced.
1215 		 */
1216 
1217 		/*
1218 		 * Release so3 socket reference held by sonewconn_faddr().
1219 		 * Since we have referenced unp3, neither unp3 nor so3 will
1220 		 * be destroyed here.
1221 		 */
1222 		sofree(so3);
1223 
1224 		if (unp2->unp_addr != NULL) {
1225 			unp3->unp_addr = (struct sockaddr_un *)
1226 			    dup_sockaddr((struct sockaddr *)unp2->unp_addr);
1227 		}
1228 
1229 		/*
1230 		 * unp_peercred management:
1231 		 *
1232 		 * The connecter's (client's) credentials are copied
1233 		 * from its process structure at the time of connect()
1234 		 * (which is now).
1235 		 */
1236 		cru2x(td->td_proc->p_ucred, &unp3->unp_peercred);
1237 		unp_setflags(unp3, UNP_HAVEPC);
1238 		/*
1239 		 * The receiver's (server's) credentials are copied
1240 		 * from the unp_peercred member of socket on which the
1241 		 * former called listen(); unp_listen() cached that
1242 		 * process's credentials at that time so we can use
1243 		 * them now.
1244 		 */
1245 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1246 		    ("unp_connect: listener without cached peercred"));
1247 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1248 		    sizeof(unp->unp_peercred));
1249 		unp_setflags(unp, UNP_HAVEPC);
1250 
1251 		error = unp_connect_pair(unp, unp3);
1252 		if (error)
1253 			soabort_direct(so3);
1254 
1255 		/* Done with unp3 */
1256 		unp_free(unp3);
1257 		unp_reltoken(unp3);
1258 	} else {
1259 		error = unp_connect_pair(unp, unp2);
1260 	}
1261 done:
1262 	unp_free(unp2);
1263 	unp_reltoken(unp2);
1264 failed:
1265 	if (flags)
1266 		unp_clrflags(unp, flags);
1267 	unp_reltoken(unp);
1268 
1269 	lwkt_reltoken(&unp_token);
1270 	return (error);
1271 }
1272 
1273 /*
1274  * Connect two unix domain sockets together.
1275  *
1276  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1277  *	 pool token also be held.
1278  */
1279 int
1280 unp_connect2(struct socket *so, struct socket *so2)
1281 {
1282 	struct unpcb *unp, *unp2;
1283 	int error;
1284 
1285 	lwkt_gettoken(&unp_token);
1286 	if (so2->so_type != so->so_type) {
1287 		lwkt_reltoken(&unp_token);
1288 		return (EPROTOTYPE);
1289 	}
1290 	unp = unp_getsocktoken(so);
1291 	unp2 = unp_getsocktoken(so2);
1292 
1293 	if (!UNP_ISATTACHED(unp)) {
1294 		error = EINVAL;
1295 		goto done;
1296 	}
1297 	if (!UNP_ISATTACHED(unp2)) {
1298 		error = ECONNREFUSED;
1299 		goto done;
1300 	}
1301 
1302 	if (unp->unp_conn != NULL) {
1303 		error = EISCONN;
1304 		goto done;
1305 	}
1306 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1307 	    unp2->unp_conn != NULL) {
1308 		error = EISCONN;
1309 		goto done;
1310 	}
1311 
1312 	error = unp_connect_pair(unp, unp2);
1313 done:
1314 	unp_reltoken(unp2);
1315 	unp_reltoken(unp);
1316 	lwkt_reltoken(&unp_token);
1317 	return (error);
1318 }
1319 
1320 /*
1321  * Disconnect a unix domain socket pair.
1322  *
1323  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1324  *	 pool token also be held.
1325  */
1326 static void
1327 unp_disconnect(struct unpcb *unp, int error)
1328 {
1329 	struct socket *so = unp->unp_socket;
1330 	struct unpcb *unp2;
1331 
1332 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
1333 	UNP_ASSERT_TOKEN_HELD(unp);
1334 
1335 	if (error)
1336 		so->so_error = error;
1337 
1338 	while ((unp2 = unp->unp_conn) != NULL) {
1339 		lwkt_getpooltoken(unp2);
1340 		if (unp2 == unp->unp_conn)
1341 			break;
1342 		lwkt_relpooltoken(unp2);
1343 	}
1344 	if (unp2 == NULL)
1345 		return;
1346 	/* unp2 is locked. */
1347 
1348 	KASSERT((unp2->unp_flags & UNP_DROPPED) == 0, ("unp2 was dropped"));
1349 
1350 	unp->unp_conn = NULL;
1351 
1352 	switch (so->so_type) {
1353 	case SOCK_DGRAM:
1354 		LIST_REMOVE(unp, unp_reflink);
1355 		soclrstate(so, SS_ISCONNECTED);
1356 		break;
1357 
1358 	case SOCK_STREAM:
1359 	case SOCK_SEQPACKET:
1360 		/*
1361 		 * Keep a reference before clearing the unp_conn
1362 		 * to avoid racing uipc_detach()/uipc_abort() in
1363 		 * other thread.
1364 		 */
1365 		unp_reference(unp2);
1366 		KASSERT(unp2->unp_conn == unp, ("unp_conn mismatch"));
1367 		unp2->unp_conn = NULL;
1368 
1369 		soisdisconnected(so);
1370 		soisdisconnected(unp2->unp_socket);
1371 
1372 		unp_free(unp2);
1373 		break;
1374 	}
1375 
1376 	lwkt_relpooltoken(unp2);
1377 }
1378 
1379 #ifdef notdef
1380 void
1381 unp_abort(struct unpcb *unp)
1382 {
1383 	lwkt_gettoken(&unp_token);
1384 	unp_free(unp);
1385 	lwkt_reltoken(&unp_token);
1386 }
1387 #endif
1388 
1389 static int
1390 prison_unpcb(struct thread *td, struct unpcb *unp)
1391 {
1392 	struct proc *p;
1393 
1394 	if (td == NULL)
1395 		return (0);
1396 	if ((p = td->td_proc) == NULL)
1397 		return (0);
1398 	if (!p->p_ucred->cr_prison)
1399 		return (0);
1400 	if (p->p_fd->fd_rdir == unp->unp_rvnode)
1401 		return (0);
1402 	return (1);
1403 }
1404 
1405 static int
1406 unp_pcblist(SYSCTL_HANDLER_ARGS)
1407 {
1408 	struct unp_global_head *head = arg1;
1409 	int error, i, n;
1410 	struct unpcb *unp, *marker;
1411 
1412 	KKASSERT(curproc != NULL);
1413 
1414 	/*
1415 	 * The process of preparing the PCB list is too time-consuming and
1416 	 * resource-intensive to repeat twice on every request.
1417 	 */
1418 	if (req->oldptr == NULL) {
1419 		n = head->count;
1420 		req->oldidx = (n + n/8) * sizeof(struct xunpcb);
1421 		return 0;
1422 	}
1423 
1424 	if (req->newptr != NULL)
1425 		return EPERM;
1426 
1427 	marker = kmalloc(sizeof(*marker), M_UNPCB, M_WAITOK | M_ZERO);
1428 	marker->unp_flags |= UNP_MARKER;
1429 
1430 	lwkt_gettoken(&unp_token);
1431 
1432 	n = head->count;
1433 	i = 0;
1434 	error = 0;
1435 
1436 	TAILQ_INSERT_HEAD(&head->list, marker, unp_link);
1437 	while ((unp = TAILQ_NEXT(marker, unp_link)) != NULL && i < n) {
1438 		struct xunpcb xu;
1439 
1440 		TAILQ_REMOVE(&head->list, marker, unp_link);
1441 		TAILQ_INSERT_AFTER(&head->list, unp, marker, unp_link);
1442 
1443 		if (unp->unp_flags & UNP_MARKER)
1444 			continue;
1445 		if (prison_unpcb(req->td, unp))
1446 			continue;
1447 
1448 		xu.xu_len = sizeof(xu);
1449 		xu.xu_unpp = unp;
1450 
1451 		/*
1452 		 * NOTE:
1453 		 * unp->unp_addr and unp->unp_conn are protected by
1454 		 * unp_token.  So if we want to get rid of unp_token
1455 		 * or reduce the coverage of unp_token, care must be
1456 		 * taken.
1457 		 */
1458 		if (unp->unp_addr) {
1459 			bcopy(unp->unp_addr, &xu.xu_addr,
1460 			      unp->unp_addr->sun_len);
1461 		}
1462 		if (unp->unp_conn && unp->unp_conn->unp_addr) {
1463 			bcopy(unp->unp_conn->unp_addr,
1464 			      &xu.xu_caddr,
1465 			      unp->unp_conn->unp_addr->sun_len);
1466 		}
1467 		bcopy(unp, &xu.xu_unp, sizeof(*unp));
1468 		sotoxsocket(unp->unp_socket, &xu.xu_socket);
1469 
1470 		/* NOTE: This could block and temporarily release unp_token */
1471 		error = SYSCTL_OUT(req, &xu, sizeof(xu));
1472 		if (error)
1473 			break;
1474 		++i;
1475 	}
1476 	TAILQ_REMOVE(&head->list, marker, unp_link);
1477 
1478 	lwkt_reltoken(&unp_token);
1479 
1480 	kfree(marker, M_UNPCB);
1481 	return error;
1482 }
1483 
1484 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1485 	    &unp_dgram_head, 0, unp_pcblist, "S,xunpcb",
1486 	    "List of active local datagram sockets");
1487 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1488 	    &unp_stream_head, 0, unp_pcblist, "S,xunpcb",
1489 	    "List of active local stream sockets");
1490 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1491 	    &unp_seqpkt_head, 0, unp_pcblist, "S,xunpcb",
1492 	    "List of active local seqpacket sockets");
1493 
1494 static void
1495 unp_shutdown(struct unpcb *unp)
1496 {
1497 	struct socket *so;
1498 
1499 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1500 	     unp->unp_socket->so_type == SOCK_SEQPACKET) &&
1501 	    unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
1502 		socantrcvmore(so);
1503 	}
1504 }
1505 
1506 #ifdef notdef
1507 void
1508 unp_drain(void)
1509 {
1510 	lwkt_gettoken(&unp_token);
1511 	lwkt_reltoken(&unp_token);
1512 }
1513 #endif
1514 
1515 int
1516 unp_externalize(struct mbuf *rights, int flags)
1517 {
1518 	struct thread *td = curthread;
1519 	struct proc *p = td->td_proc;		/* XXX */
1520 	struct lwp *lp = td->td_lwp;
1521 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1522 	int *fdp;
1523 	int i;
1524 	struct file **rp;
1525 	struct file *fp;
1526 	int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
1527 		/ sizeof(struct file *);
1528 	int f;
1529 
1530 	lwkt_gettoken(&unp_rights_token);
1531 
1532 	/*
1533 	 * if the new FD's will not fit, then we free them all
1534 	 */
1535 	if (!fdavail(p, newfds)) {
1536 		rp = (struct file **)CMSG_DATA(cm);
1537 		for (i = 0; i < newfds; i++) {
1538 			fp = *rp;
1539 			/*
1540 			 * zero the pointer before calling unp_discard,
1541 			 * since it may end up in unp_gc()..
1542 			 */
1543 			*rp++ = NULL;
1544 			unp_discard(fp, NULL);
1545 		}
1546 		lwkt_reltoken(&unp_rights_token);
1547 		return (EMSGSIZE);
1548 	}
1549 
1550 	/*
1551 	 * now change each pointer to an fd in the global table to
1552 	 * an integer that is the index to the local fd table entry
1553 	 * that we set up to point to the global one we are transferring.
1554 	 * Since the sizeof(struct file *) is bigger than or equal to
1555 	 * the sizeof(int), we do it in forward order.  In that case,
1556 	 * an integer will always come in the same place or before its
1557 	 * corresponding struct file pointer.
1558 	 *
1559 	 * Hold revoke_token in 'shared' mode, so that we won't miss
1560 	 * the FREVOKED update on fps being externalized (fsetfd).
1561 	 */
1562 	lwkt_gettoken_shared(&revoke_token);
1563 	fdp = (int *)CMSG_DATA(cm);
1564 	rp = (struct file **)CMSG_DATA(cm);
1565 	for (i = 0; i < newfds; i++) {
1566 		if (fdalloc(p, 0, &f)) {
1567 			int j;
1568 
1569 			/*
1570 			 * Previous fdavail() can't garantee
1571 			 * fdalloc() success due to SMP race.
1572 			 * Just clean up and return the same
1573 			 * error value as if fdavail() failed.
1574 			 */
1575 			lwkt_reltoken(&revoke_token);
1576 
1577 			/* Close externalized files */
1578 			for (j = 0; j < i; j++)
1579 				kern_close(fdp[j]);
1580 			/* Discard the rest of internal files */
1581 			for (; i < newfds; i++)
1582 				unp_discard(rp[i], NULL);
1583 			/* Wipe out the control message */
1584 			for (i = 0; i < newfds; i++)
1585 				rp[i] = NULL;
1586 
1587 			lwkt_reltoken(&unp_rights_token);
1588 			return (EMSGSIZE);
1589 		}
1590 		fp = rp[i];
1591 		unp_fp_externalize(lp, fp, f, flags);
1592 		fdp[i] = f;
1593 	}
1594 	lwkt_reltoken(&revoke_token);
1595 
1596 	lwkt_reltoken(&unp_rights_token);
1597 
1598 	/*
1599 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1600 	 * differs.
1601 	 */
1602 	cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1603 	rights->m_len = cm->cmsg_len;
1604 
1605 	return (0);
1606 }
1607 
1608 static void
1609 unp_fp_externalize(struct lwp *lp, struct file *fp, int fd, int flags)
1610 {
1611 	if (lp) {
1612 		struct filedesc *fdp = lp->lwp_proc->p_fd;
1613 
1614 		KKASSERT(fd >= 0);
1615 		if (fp->f_flag & FREVOKED) {
1616 			struct file *fx;
1617 			int error;
1618 
1619 			kprintf("Warning: revoked fp exiting unix socket\n");
1620 			error = falloc(lp, &fx, NULL);
1621 			if (error == 0) {
1622 				if (flags & MSG_CMSG_CLOEXEC)
1623 					fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
1624 				fsetfd(fdp, fx, fd);
1625 				fdrop(fx);
1626 			} else {
1627 				fsetfd(fdp, NULL, fd);
1628 			}
1629 		} else {
1630 			if (flags & MSG_CMSG_CLOEXEC)
1631 				fdp->fd_files[fd].fileflags |= UF_EXCLOSE;
1632 			fsetfd(fdp, fp, fd);
1633 		}
1634 	}
1635 	unp_del_right(fp);
1636 	fdrop(fp);
1637 }
1638 
1639 void
1640 unp_init(void)
1641 {
1642 	TAILQ_INIT(&unp_stream_head.list);
1643 	TAILQ_INIT(&unp_dgram_head.list);
1644 	TAILQ_INIT(&unp_seqpkt_head.list);
1645 
1646 	SLIST_INIT(&unp_defdiscard_head);
1647 	spin_init(&unp_defdiscard_spin, "unpdisc");
1648 	TASK_INIT(&unp_defdiscard_task, 0, unp_defdiscard_taskfunc, NULL);
1649 
1650 	/*
1651 	 * This implies that only one gc can be in-progress at any
1652 	 * given moment.
1653 	 */
1654 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1655 
1656 	unp_gc_marker = kmalloc(sizeof(*unp_gc_marker), M_UNPCB,
1657 	    M_WAITOK | M_ZERO);
1658 	unp_gc_marker->unp_flags |= UNP_MARKER;
1659 
1660 	/*
1661 	 * Create taskqueue for defered discard, and stick it to
1662 	 * the last CPU.
1663 	 */
1664 	unp_taskqueue = taskqueue_create("unp_taskq", M_WAITOK,
1665 	    taskqueue_thread_enqueue, &unp_taskqueue);
1666 	taskqueue_start_threads(&unp_taskqueue, 1, TDPRI_KERN_DAEMON,
1667 	    ncpus - 1, "unp taskq");
1668 }
1669 
1670 static int
1671 unp_internalize(struct mbuf *control, struct thread *td)
1672 {
1673 	struct proc *p = td->td_proc;
1674 	struct filedesc *fdescp;
1675 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1676 	struct file **rp;
1677 	struct file *fp;
1678 	int i, fd, *fdp;
1679 	struct cmsgcred *cmcred;
1680 	int oldfds;
1681 	u_int newlen;
1682 	int error;
1683 
1684 	KKASSERT(p);
1685 
1686 	if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1687 	    cm->cmsg_level != SOL_SOCKET ||
1688 	    CMSG_ALIGN(cm->cmsg_len) != control->m_len)
1689 		return EINVAL;
1690 
1691 	/*
1692 	 * Fill in credential information.
1693 	 */
1694 	if (cm->cmsg_type == SCM_CREDS) {
1695 		cmcred = (struct cmsgcred *)CMSG_DATA(cm);
1696 		cmcred->cmcred_pid = p->p_pid;
1697 		cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1698 		cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1699 		cmcred->cmcred_euid = p->p_ucred->cr_uid;
1700 		cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1701 							CMGROUP_MAX);
1702 		for (i = 0; i < cmcred->cmcred_ngroups; i++)
1703 			cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1704 		return 0;
1705 	}
1706 
1707 	/*
1708 	 * cmsghdr may not be aligned, do not allow calculation(s) to
1709 	 * go negative.
1710 	 */
1711 	if (cm->cmsg_len < CMSG_LEN(0))
1712 		return EINVAL;
1713 
1714 	oldfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof(int);
1715 
1716 	/*
1717 	 * Now replace the integer FDs with pointers to
1718 	 * the associated global file table entry..
1719 	 * Allocate a bigger buffer as necessary. But if an cluster is not
1720 	 * enough, return E2BIG.
1721 	 */
1722 	newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1723 	if (newlen > MCLBYTES)
1724 		return E2BIG;
1725 	if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1726 		if (control->m_flags & M_EXT)
1727 			return E2BIG;
1728 		MCLGET(control, M_WAITOK);
1729 		if (!(control->m_flags & M_EXT))
1730 			return ENOBUFS;
1731 
1732 		/* copy the data to the cluster */
1733 		memcpy(mtod(control, char *), cm, cm->cmsg_len);
1734 		cm = mtod(control, struct cmsghdr *);
1735 	}
1736 
1737 	lwkt_gettoken(&unp_rights_token);
1738 
1739 	fdescp = p->p_fd;
1740 	spin_lock_shared(&fdescp->fd_spin);
1741 
1742 	/*
1743 	 * check that all the FDs passed in refer to legal OPEN files
1744 	 * If not, reject the entire operation.
1745 	 */
1746 	fdp = (int *)CMSG_DATA(cm);
1747 	for (i = 0; i < oldfds; i++) {
1748 		fd = *fdp++;
1749 		if ((unsigned)fd >= fdescp->fd_nfiles ||
1750 		    fdescp->fd_files[fd].fp == NULL) {
1751 			error = EBADF;
1752 			goto done;
1753 		}
1754 		if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) {
1755 			error = EOPNOTSUPP;
1756 			goto done;
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1762 	 * differs.
1763 	 */
1764 	cm->cmsg_len = newlen;
1765 	control->m_len = CMSG_ALIGN(newlen);
1766 
1767 	/*
1768 	 * Transform the file descriptors into struct file pointers.
1769 	 * Since the sizeof(struct file *) is bigger than or equal to
1770 	 * the sizeof(int), we do it in reverse order so that the int
1771 	 * won't get trashed until we're done.
1772 	 */
1773 	fdp = (int *)CMSG_DATA(cm) + oldfds - 1;
1774 	rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1775 	for (i = 0; i < oldfds; i++) {
1776 		fp = fdescp->fd_files[*fdp--].fp;
1777 		*rp-- = fp;
1778 		fhold(fp);
1779 		unp_add_right(fp);
1780 	}
1781 	error = 0;
1782 done:
1783 	spin_unlock_shared(&fdescp->fd_spin);
1784 	lwkt_reltoken(&unp_rights_token);
1785 	return error;
1786 }
1787 
1788 #ifdef UNP_GC_ALLFILES
1789 
1790 /*
1791  * Garbage collect in-transit file descriptors that get lost due to
1792  * loops (i.e. when a socket is sent to another process over itself,
1793  * and more complex situations).
1794  *
1795  * NOT MPSAFE - TODO socket flush code and maybe fdrop.  Rest is MPSAFE.
1796  */
1797 
1798 struct unp_gc_info {
1799 	struct file **extra_ref;
1800 	struct file *locked_fp;
1801 	int defer;
1802 	int index;
1803 	int maxindex;
1804 };
1805 
1806 static void
1807 unp_gc(void *arg __unused, int pending __unused)
1808 {
1809 	struct unp_gc_info info;
1810 	struct file **fpp;
1811 	int i;
1812 
1813 	lwkt_gettoken(&unp_rights_token);
1814 
1815 	/*
1816 	 * Before going through all this, set all FDs to be NOT defered
1817 	 * and NOT externally accessible (not marked).  During the scan
1818 	 * a fd can be marked externally accessible but we may or may not
1819 	 * be able to immediately process it (controlled by FDEFER).
1820 	 *
1821 	 * If we loop sleep a bit.  The complexity of the topology can cause
1822 	 * multiple loops.  Also failure to acquire the socket's so_rcv
1823 	 * token can cause us to loop.
1824 	 */
1825 	allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1826 	do {
1827 		info.defer = 0;
1828 		allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1829 		if (info.defer)
1830 			tsleep(&info, 0, "gcagain", 1);
1831 	} while (info.defer);
1832 
1833 	/*
1834 	 * We grab an extra reference to each of the file table entries
1835 	 * that are not otherwise accessible and then free the rights
1836 	 * that are stored in messages on them.
1837 	 *
1838 	 * The bug in the orginal code is a little tricky, so I'll describe
1839 	 * what's wrong with it here.
1840 	 *
1841 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1842 	 * times -- consider the case of sockets A and B that contain
1843 	 * references to each other.  On a last close of some other socket,
1844 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1845 	 * is non-zero.  If during the sweep phase the gc code unp_discards,
1846 	 * we end up doing a (full) fdrop on the descriptor.  A fdrop on A
1847 	 * results in the following chain.  Closef calls soo_close, which
1848 	 * calls soclose.   Soclose calls first (through the switch
1849 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1850 	 * returns because the previous instance had set unp_gcing, and
1851 	 * we return all the way back to soclose, which marks the socket
1852 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1853 	 * to free up the rights that are queued in messages on the socket A,
1854 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1855 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1856 	 * instance of unp_discard just calls fdrop on B.
1857 	 *
1858 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1859 	 * which results in another fdrop on A.  Unfortunately, A is already
1860 	 * being closed, and the descriptor has already been marked with
1861 	 * SS_NOFDREF, and soclose panics at this point.
1862 	 *
1863 	 * Here, we first take an extra reference to each inaccessible
1864 	 * descriptor.  Then, we call sorflush ourself, since we know
1865 	 * it is a Unix domain socket anyhow.  After we destroy all the
1866 	 * rights carried in messages, we do a last fdrop to get rid
1867 	 * of our extra reference.  This is the last close, and the
1868 	 * unp_detach etc will shut down the socket.
1869 	 *
1870 	 * 91/09/19, bsy@cs.cmu.edu
1871 	 */
1872 	info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1873 	info.maxindex = 256;
1874 
1875 	do {
1876 		/*
1877 		 * Look for matches
1878 		 */
1879 		info.index = 0;
1880 		allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1881 
1882 		/*
1883 		 * For each FD on our hit list, do the following two things
1884 		 */
1885 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1886 			struct file *tfp = *fpp;
1887 			if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1888 				sorflush((struct socket *)(tfp->f_data));
1889 		}
1890 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1891 			fdrop(*fpp);
1892 	} while (info.index == info.maxindex);
1893 
1894 	kfree((caddr_t)info.extra_ref, M_FILE);
1895 
1896 	lwkt_reltoken(&unp_rights_token);
1897 }
1898 
1899 /*
1900  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1901  */
1902 static int
1903 unp_gc_checkrefs(struct file *fp, void *data)
1904 {
1905 	struct unp_gc_info *info = data;
1906 
1907 	if (fp->f_count == 0)
1908 		return(0);
1909 	if (info->index == info->maxindex)
1910 		return(-1);
1911 
1912 	/*
1913 	 * If all refs are from msgs, and it's not marked accessible
1914 	 * then it must be referenced from some unreachable cycle
1915 	 * of (shut-down) FDs, so include it in our
1916 	 * list of FDs to remove
1917 	 */
1918 	if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1919 		info->extra_ref[info->index++] = fp;
1920 		fhold(fp);
1921 	}
1922 	return(0);
1923 }
1924 
1925 /*
1926  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1927  */
1928 static int
1929 unp_gc_clearmarks(struct file *fp, void *data __unused)
1930 {
1931 	atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1932 	return(0);
1933 }
1934 
1935 /*
1936  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1937  */
1938 static int
1939 unp_gc_checkmarks(struct file *fp, void *data)
1940 {
1941 	struct unp_gc_info *info = data;
1942 	struct socket *so;
1943 
1944 	/*
1945 	 * If the file is not open, skip it.  Make sure it isn't marked
1946 	 * defered or we could loop forever, in case we somehow race
1947 	 * something.
1948 	 */
1949 	if (fp->f_count == 0) {
1950 		if (fp->f_flag & FDEFER)
1951 			atomic_clear_int(&fp->f_flag, FDEFER);
1952 		return(0);
1953 	}
1954 	/*
1955 	 * If we already marked it as 'defer'  in a
1956 	 * previous pass, then try process it this time
1957 	 * and un-mark it
1958 	 */
1959 	if (fp->f_flag & FDEFER) {
1960 		atomic_clear_int(&fp->f_flag, FDEFER);
1961 	} else {
1962 		/*
1963 		 * if it's not defered, then check if it's
1964 		 * already marked.. if so skip it
1965 		 */
1966 		if (fp->f_flag & FMARK)
1967 			return(0);
1968 		/*
1969 		 * If all references are from messages
1970 		 * in transit, then skip it. it's not
1971 		 * externally accessible.
1972 		 */
1973 		if (fp->f_count == fp->f_msgcount)
1974 			return(0);
1975 		/*
1976 		 * If it got this far then it must be
1977 		 * externally accessible.
1978 		 */
1979 		atomic_set_int(&fp->f_flag, FMARK);
1980 	}
1981 
1982 	/*
1983 	 * either it was defered, or it is externally
1984 	 * accessible and not already marked so.
1985 	 * Now check if it is possibly one of OUR sockets.
1986 	 */
1987 	if (fp->f_type != DTYPE_SOCKET ||
1988 	    (so = (struct socket *)fp->f_data) == NULL) {
1989 		return(0);
1990 	}
1991 	if (so->so_proto->pr_domain != &localdomain ||
1992 	    !(so->so_proto->pr_flags & PR_RIGHTS)) {
1993 		return(0);
1994 	}
1995 
1996 	/*
1997 	 * So, Ok, it's one of our sockets and it IS externally accessible
1998 	 * (or was defered).  Now we look to see if we hold any file
1999 	 * descriptors in its message buffers.  Follow those links and mark
2000 	 * them as accessible too.
2001 	 *
2002 	 * We are holding multiple spinlocks here, if we cannot get the
2003 	 * token non-blocking defer until the next loop.
2004 	 */
2005 	info->locked_fp = fp;
2006 	if (lwkt_trytoken(&so->so_rcv.ssb_token)) {
2007 		unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
2008 		lwkt_reltoken(&so->so_rcv.ssb_token);
2009 	} else {
2010 		atomic_set_int(&fp->f_flag, FDEFER);
2011 		++info->defer;
2012 	}
2013 	return (0);
2014 }
2015 
2016 /*
2017  * Mark visibility.  info->defer is recalculated on every pass.
2018  */
2019 static void
2020 unp_mark(struct file *fp, void *data)
2021 {
2022 	struct unp_gc_info *info = data;
2023 
2024 	if ((fp->f_flag & FMARK) == 0) {
2025 		++info->defer;
2026 		atomic_set_int(&fp->f_flag, FMARK | FDEFER);
2027 	} else if (fp->f_flag & FDEFER) {
2028 		++info->defer;
2029 	}
2030 }
2031 
2032 #else	/* !UNP_GC_ALLFILES */
2033 
2034 /*
2035  * They are thread local and do not require explicit synchronization.
2036  */
2037 static int	unp_marked;
2038 static int	unp_unreachable;
2039 
2040 static void
2041 unp_accessable(struct file *fp, void *data __unused)
2042 {
2043 	struct unpcb *unp;
2044 
2045 	if ((unp = unp_fp2unpcb(fp)) == NULL)
2046 		return;
2047 	if (unp->unp_gcflags & UNPGC_REF)
2048 		return;
2049 	unp->unp_gcflags &= ~UNPGC_DEAD;
2050 	unp->unp_gcflags |= UNPGC_REF;
2051 	unp_marked++;
2052 }
2053 
2054 static void
2055 unp_gc_process(struct unpcb *unp)
2056 {
2057 	struct file *fp;
2058 
2059 	/* Already processed. */
2060 	if (unp->unp_gcflags & UNPGC_SCANNED)
2061 		return;
2062 	fp = unp->unp_fp;
2063 
2064 	/*
2065 	 * Check for a socket potentially in a cycle.  It must be in a
2066 	 * queue as indicated by msgcount, and this must equal the file
2067 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2068 	 */
2069 	if ((unp->unp_gcflags & UNPGC_REF) == 0 && fp &&
2070 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2071 		unp->unp_gcflags |= UNPGC_DEAD;
2072 		unp_unreachable++;
2073 		return;
2074 	}
2075 
2076 	/*
2077 	 * Mark all sockets we reference with RIGHTS.
2078 	 */
2079 	if (UNP_ISATTACHED(unp)) {
2080 		struct signalsockbuf *ssb = &unp->unp_socket->so_rcv;
2081 
2082 		unp_reference(unp);
2083 		lwkt_gettoken(&ssb->ssb_token);
2084 		/*
2085 		 * unp_token would be temporarily dropped, if getting
2086 		 * so_rcv token blocks, so we need to check unp state
2087 		 * here again.
2088 		 */
2089 		if (UNP_ISATTACHED(unp))
2090 			unp_scan(ssb->ssb_mb, unp_accessable, NULL);
2091 		lwkt_reltoken(&ssb->ssb_token);
2092 		unp->unp_gcflags |= UNPGC_SCANNED;
2093 		unp_free(unp);
2094 	} else {
2095 		unp->unp_gcflags |= UNPGC_SCANNED;
2096 	}
2097 }
2098 
2099 static void
2100 unp_gc(void *arg __unused, int pending __unused)
2101 {
2102 	struct unp_global_head *head;
2103 	int h, filemax, fileidx, filetot;
2104 	struct file **unref;
2105 	struct unpcb *unp;
2106 
2107 	lwkt_gettoken(&unp_rights_token);
2108 	lwkt_gettoken(&unp_token);
2109 
2110 	/*
2111 	 * First clear all gc flags from previous runs.
2112 	 */
2113 	for (h = 0; unp_heads[h] != NULL; ++h) {
2114 		/*
2115 		 * NOTE: This loop does not block, so it is safe
2116 		 * to use TAILQ_FOREACH here.
2117 		 */
2118 		head = unp_heads[h];
2119 		TAILQ_FOREACH(unp, &head->list, unp_link)
2120 			unp->unp_gcflags = 0;
2121 	}
2122 
2123 	/*
2124 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2125 	 * is reachable all of the sockets it references are reachable.
2126 	 * Stop the scan once we do a complete loop without discovering
2127 	 * a new reachable socket.
2128 	 */
2129 	do {
2130 		unp_unreachable = 0;
2131 		unp_marked = 0;
2132 		for (h = 0; unp_heads[h] != NULL; ++h) {
2133 			head = unp_heads[h];
2134 			TAILQ_INSERT_HEAD(&head->list, unp_gc_marker, unp_link);
2135 			while ((unp = TAILQ_NEXT(unp_gc_marker, unp_link))
2136 			    != NULL) {
2137 				TAILQ_REMOVE(&head->list, unp_gc_marker,
2138 				    unp_link);
2139 				TAILQ_INSERT_AFTER(&head->list, unp,
2140 				    unp_gc_marker, unp_link);
2141 
2142 				if (unp->unp_flags & UNP_MARKER)
2143 					continue;
2144 				unp_gc_process(unp);
2145 			}
2146 			TAILQ_REMOVE(&head->list, unp_gc_marker, unp_link);
2147 		}
2148 	} while (unp_marked);
2149 
2150 	if (unp_unreachable == 0)
2151 		goto done;
2152 
2153 	/*
2154 	 * We grab an extra reference to each of the file table entries
2155 	 * that are not otherwise accessible and then free the rights
2156 	 * that are stored in messages on them.
2157 	 *
2158 	 * The bug in the orginal code is a little tricky, so I'll describe
2159 	 * what's wrong with it here.
2160 	 *
2161 	 * It is incorrect to simply unp_discard each entry for f_msgcount
2162 	 * times -- consider the case of sockets A and B that contain
2163 	 * references to each other.  On a last close of some other socket,
2164 	 * we trigger a gc since the number of outstanding rights (unp_rights)
2165 	 * is non-zero.  If during the sweep phase the gc code unp_discards,
2166 	 * we end up doing a (full) fdrop on the descriptor.  A fdrop on A
2167 	 * results in the following chain.  Closef calls soo_close, which
2168 	 * calls soclose.   Soclose calls first (through the switch
2169 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
2170 	 * returns because the previous instance had set unp_gcing, and
2171 	 * we return all the way back to soclose, which marks the socket
2172 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
2173 	 * to free up the rights that are queued in messages on the socket A,
2174 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
2175 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
2176 	 * instance of unp_discard just calls fdrop on B.
2177 	 *
2178 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
2179 	 * which results in another fdrop on A.  Unfortunately, A is already
2180 	 * being closed, and the descriptor has already been marked with
2181 	 * SS_NOFDREF, and soclose panics at this point.
2182 	 *
2183 	 * Here, we first take an extra reference to each inaccessible
2184 	 * descriptor.  Then, we call sorflush ourself, since we know
2185 	 * it is a Unix domain socket anyhow.  After we destroy all the
2186 	 * rights carried in messages, we do a last fdrop to get rid
2187 	 * of our extra reference.  This is the last close, and the
2188 	 * unp_detach etc will shut down the socket.
2189 	 *
2190 	 * 91/09/19, bsy@cs.cmu.edu
2191 	 */
2192 
2193 	filemax = unp_unreachable;
2194 	if (filemax > UNP_GCFILE_MAX)
2195 		filemax = UNP_GCFILE_MAX;
2196 	unref = kmalloc(filemax * sizeof(struct file *), M_TEMP, M_WAITOK);
2197 
2198 	filetot = 0;
2199 	do {
2200 		int i;
2201 
2202 		/*
2203 		 * Iterate looking for sockets which have been specifically
2204 		 * marked as as unreachable and store them locally.
2205 		 */
2206 		fileidx = 0;
2207 		for (h = 0; unp_heads[h] != NULL; ++h) {
2208 			/*
2209 			 * NOTE: This loop does not block, so it is safe
2210 			 * to use TAILQ_FOREACH here.
2211 			 */
2212 			head = unp_heads[h];
2213 			TAILQ_FOREACH(unp, &head->list, unp_link) {
2214 				struct file *fp;
2215 
2216 				if ((unp->unp_gcflags & UNPGC_DEAD) == 0)
2217 					continue;
2218 				unp->unp_gcflags &= ~UNPGC_DEAD;
2219 
2220 				fp = unp->unp_fp;
2221 				if (unp->unp_msgcount == 0 || fp == NULL ||
2222 				    fp->f_count != unp->unp_msgcount)
2223 					continue;
2224 				fhold(fp);
2225 
2226 				KASSERT(fileidx < filemax,
2227 				    ("invalid fileidx %d, filemax %d",
2228 				     fileidx, filemax));
2229 				unref[fileidx++] = fp;
2230 
2231 				KASSERT(filetot < unp_unreachable,
2232 				    ("invalid filetot %d and "
2233 				     "unp_unreachable %d",
2234 				     filetot, unp_unreachable));
2235 				++filetot;
2236 
2237 				if (fileidx == filemax ||
2238 				    filetot == unp_unreachable)
2239 					goto dogc;
2240 			}
2241 		}
2242 dogc:
2243 		/*
2244 		 * For each Unix domain socket on our hit list, do the
2245 		 * following two things.
2246 		 */
2247 		for (i = 0; i < fileidx; ++i)
2248 			sorflush(unref[i]->f_data);
2249 		for (i = 0; i < fileidx; ++i)
2250 			fdrop(unref[i]);
2251 	} while (fileidx == filemax && filetot < unp_unreachable);
2252 	kfree(unref, M_TEMP);
2253 done:
2254 	lwkt_reltoken(&unp_token);
2255 	lwkt_reltoken(&unp_rights_token);
2256 }
2257 
2258 #endif	/* UNP_GC_ALLFILES */
2259 
2260 /*
2261  * Dispose of the fp's stored in a mbuf.
2262  *
2263  * The dds loop can cause additional fps to be entered onto the
2264  * list while it is running, flattening out the operation and avoiding
2265  * a deep kernel stack recursion.
2266  */
2267 void
2268 unp_dispose(struct mbuf *m)
2269 {
2270 	lwkt_gettoken(&unp_rights_token);
2271 	if (m)
2272 		unp_scan(m, unp_discard, NULL);
2273 	lwkt_reltoken(&unp_rights_token);
2274 }
2275 
2276 static int
2277 unp_listen(struct unpcb *unp, struct thread *td)
2278 {
2279 	struct proc *p = td->td_proc;
2280 
2281 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
2282 	UNP_ASSERT_TOKEN_HELD(unp);
2283 
2284 	KKASSERT(p);
2285 	cru2x(p->p_ucred, &unp->unp_peercred);
2286 	unp_setflags(unp, UNP_HAVEPCCACHED);
2287 	return (0);
2288 }
2289 
2290 static void
2291 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
2292 {
2293 	struct mbuf *m;
2294 	struct file **rp;
2295 	struct cmsghdr *cm;
2296 	int i;
2297 	int qfds;
2298 
2299 	while (m0) {
2300 		for (m = m0; m; m = m->m_next) {
2301 			if (m->m_type == MT_CONTROL &&
2302 			    m->m_len >= sizeof(*cm)) {
2303 				cm = mtod(m, struct cmsghdr *);
2304 				if (cm->cmsg_level != SOL_SOCKET ||
2305 				    cm->cmsg_type != SCM_RIGHTS)
2306 					continue;
2307 				qfds = (cm->cmsg_len - CMSG_LEN(0)) /
2308 					sizeof(void *);
2309 				rp = (struct file **)CMSG_DATA(cm);
2310 				for (i = 0; i < qfds; i++)
2311 					(*op)(*rp++, data);
2312 				break;		/* XXX, but saves time */
2313 			}
2314 		}
2315 		m0 = m0->m_nextpkt;
2316 	}
2317 }
2318 
2319 /*
2320  * Discard a fp previously held in a unix domain socket mbuf.  To
2321  * avoid blowing out the kernel stack due to contrived chain-reactions
2322  * we may have to defer the operation to a dedicated taskqueue.
2323  *
2324  * Caller holds unp_rights_token.
2325  */
2326 static void
2327 unp_discard(struct file *fp, void *data __unused)
2328 {
2329 	unp_del_right(fp);
2330 	if (unp_fp2unpcb(fp) != NULL) {
2331 		struct unp_defdiscard *d;
2332 
2333 		/*
2334 		 * This fp is a Unix domain socket itself and fdrop()
2335 		 * it here directly may cause deep unp_discard()
2336 		 * recursion, so the fdrop() is defered to the
2337 		 * dedicated taskqueue.
2338 		 */
2339 		d = kmalloc(sizeof(*d), M_UNPCB, M_WAITOK);
2340 		d->fp = fp;
2341 
2342 		spin_lock(&unp_defdiscard_spin);
2343 		SLIST_INSERT_HEAD(&unp_defdiscard_head, d, next);
2344 		spin_unlock(&unp_defdiscard_spin);
2345 
2346 		taskqueue_enqueue(unp_taskqueue, &unp_defdiscard_task);
2347 	} else {
2348 		/* This fp is not a Unix domain socket */
2349 		fdrop(fp);
2350 	}
2351 }
2352 
2353 /*
2354  * NOTE:
2355  * unp_token must be held before calling this function to avoid name
2356  * resolution and v_socket accessing races, especially racing against
2357  * the unp_detach().
2358  *
2359  * NOTE:
2360  * For anyone caring about unconnected Unix domain socket sending
2361  * performance, other approach could be taken...
2362  */
2363 static int
2364 unp_find_lockref(struct sockaddr *nam, struct thread *td, short type,
2365     struct unpcb **unp_ret)
2366 {
2367 	struct proc *p = td->td_proc;
2368 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
2369 	struct vnode *vp = NULL;
2370 	struct socket *so;
2371 	struct unpcb *unp;
2372 	int error, len;
2373 	struct nlookupdata nd;
2374 	char buf[SOCK_MAXADDRLEN];
2375 
2376 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
2377 
2378 	*unp_ret = NULL;
2379 
2380 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2381 	if (len <= 0) {
2382 		error = EINVAL;
2383 		goto failed;
2384 	}
2385 	strncpy(buf, soun->sun_path, len);
2386 	buf[len] = 0;
2387 
2388 	error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
2389 	if (error == 0)
2390 		error = nlookup(&nd);
2391 	if (error == 0)
2392 		error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
2393 	nlookup_done(&nd);
2394 	if (error) {
2395 		vp = NULL;
2396 		goto failed;
2397 	}
2398 
2399 	if (vp->v_type != VSOCK) {
2400 		error = ENOTSOCK;
2401 		goto failed;
2402 	}
2403 	error = VOP_EACCESS(vp, VWRITE, p->p_ucred);
2404 	if (error)
2405 		goto failed;
2406 	so = vp->v_socket;
2407 	if (so == NULL) {
2408 		error = ECONNREFUSED;
2409 		goto failed;
2410 	}
2411 	if (so->so_type != type) {
2412 		error = EPROTOTYPE;
2413 		goto failed;
2414 	}
2415 
2416 	/* Lock this unp. */
2417 	unp = unp_getsocktoken(so);
2418 	if (!UNP_ISATTACHED(unp)) {
2419 		unp_reltoken(unp);
2420 		error = ECONNREFUSED;
2421 		goto failed;
2422 	}
2423 	/* And keep this unp referenced. */
2424 	unp_reference(unp);
2425 
2426 	/* Done! */
2427 	*unp_ret = unp;
2428 	error = 0;
2429 failed:
2430 	if (vp != NULL)
2431 		vput(vp);
2432 	return error;
2433 }
2434 
2435 static int
2436 unp_connect_pair(struct unpcb *unp, struct unpcb *unp2)
2437 {
2438 	struct socket *so = unp->unp_socket;
2439 	struct socket *so2 = unp2->unp_socket;
2440 
2441 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
2442 	UNP_ASSERT_TOKEN_HELD(unp);
2443 	UNP_ASSERT_TOKEN_HELD(unp2);
2444 
2445 	KASSERT(so->so_type == so2->so_type,
2446 	    ("socket type mismatch, so %d, so2 %d", so->so_type, so2->so_type));
2447 
2448 	if (!UNP_ISATTACHED(unp))
2449 		return EINVAL;
2450 	if (!UNP_ISATTACHED(unp2))
2451 		return ECONNREFUSED;
2452 
2453 	KASSERT(unp->unp_conn == NULL, ("unp is already connected"));
2454 	unp->unp_conn = unp2;
2455 
2456 	switch (so->so_type) {
2457 	case SOCK_DGRAM:
2458 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2459 		soisconnected(so);
2460 		break;
2461 
2462 	case SOCK_STREAM:
2463 	case SOCK_SEQPACKET:
2464 		KASSERT(unp2->unp_conn == NULL, ("unp2 is already connected"));
2465 		unp2->unp_conn = unp;
2466 		soisconnected(so);
2467 		soisconnected(so2);
2468 		break;
2469 
2470 	default:
2471 		panic("unp_connect_pair: unknown socket type %d", so->so_type);
2472 	}
2473 	return 0;
2474 }
2475 
2476 static void
2477 unp_drop(struct unpcb *unp, int error)
2478 {
2479 	struct unp_global_head *head;
2480 	struct unpcb *unp2;
2481 
2482 	ASSERT_LWKT_TOKEN_HELD(&unp_token);
2483 	UNP_ASSERT_TOKEN_HELD(unp);
2484 
2485 	KASSERT((unp->unp_flags & (UNP_DETACHED | UNP_DROPPED)) == 0,
2486 	    ("unp is dropped"));
2487 
2488 	/* Mark this unp as detached. */
2489 	unp_setflags(unp, UNP_DETACHED);
2490 
2491 	/* Remove this unp from the global unp list. */
2492 	head = unp_globalhead(unp->unp_socket->so_type);
2493 	KASSERT(head->count > 0, ("invalid unp count"));
2494 	TAILQ_REMOVE(&head->list, unp, unp_link);
2495 	head->count--;
2496 
2497 	/* Disconnect all. */
2498 	unp_disconnect(unp, error);
2499 	while ((unp2 = LIST_FIRST(&unp->unp_refs)) != NULL) {
2500 		lwkt_getpooltoken(unp2);
2501 		unp_disconnect(unp2, ECONNRESET);
2502 		lwkt_relpooltoken(unp2);
2503 	}
2504 	unp_setflags(unp, UNP_DROPPED);
2505 
2506 	/* Try freeing this unp. */
2507 	unp_free(unp);
2508 }
2509 
2510 static void
2511 unp_defdiscard_taskfunc(void *arg __unused, int pending __unused)
2512 {
2513 	struct unp_defdiscard *d;
2514 
2515 	spin_lock(&unp_defdiscard_spin);
2516 	while ((d = SLIST_FIRST(&unp_defdiscard_head)) != NULL) {
2517 		SLIST_REMOVE_HEAD(&unp_defdiscard_head, next);
2518 		spin_unlock(&unp_defdiscard_spin);
2519 
2520 		fdrop(d->fp);
2521 		kfree(d, M_UNPCB);
2522 
2523 		spin_lock(&unp_defdiscard_spin);
2524 	}
2525 	spin_unlock(&unp_defdiscard_spin);
2526 }
2527