xref: /dragonfly/sys/kern/uipc_usrreq.c (revision ef3ac1d1)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/domain.h>
37 #include <sys/fcntl.h>
38 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/filedesc.h>
42 #include <sys/mbuf.h>
43 #include <sys/nlookup.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/resourcevar.h>
48 #include <sys/stat.h>
49 #include <sys/mount.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <sys/unpcb.h>
53 #include <sys/vnode.h>
54 
55 #include <sys/file2.h>
56 #include <sys/spinlock2.h>
57 #include <sys/socketvar2.h>
58 #include <sys/msgport2.h>
59 
60 typedef struct unp_defdiscard {
61 	struct unp_defdiscard *next;
62 	struct file *fp;
63 } *unp_defdiscard_t;
64 
65 static	MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct");
66 static	unp_gen_t unp_gencnt;
67 static	u_int unp_count;
68 
69 static	struct unp_head unp_shead, unp_dhead;
70 
71 static struct lwkt_token unp_token = LWKT_TOKEN_INITIALIZER(unp_token);
72 static int unp_defdiscard_nest;
73 static unp_defdiscard_t unp_defdiscard_base;
74 
75 /*
76  * Unix communications domain.
77  *
78  * TODO:
79  *	RDM
80  *	rethink name space problems
81  *	need a proper out-of-band
82  *	lock pushdown
83  */
84 static struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
85 static ino_t	unp_ino = 1;		/* prototype for fake inode numbers */
86 static struct spinlock unp_ino_spin = SPINLOCK_INITIALIZER(&unp_ino_spin, "unp_ino_spin");
87 
88 static int     unp_attach (struct socket *, struct pru_attach_info *);
89 static void    unp_detach (struct unpcb *);
90 static int     unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
91 static int     unp_connect (struct socket *,struct sockaddr *,
92 				struct thread *);
93 static void    unp_disconnect (struct unpcb *);
94 static void    unp_shutdown (struct unpcb *);
95 static void    unp_drop (struct unpcb *, int);
96 static void    unp_gc (void);
97 static int     unp_gc_clearmarks(struct file *, void *);
98 static int     unp_gc_checkmarks(struct file *, void *);
99 static int     unp_gc_checkrefs(struct file *, void *);
100 static int     unp_revoke_gc_check(struct file *, void *);
101 static void    unp_scan (struct mbuf *, void (*)(struct file *, void *),
102 				void *data);
103 static void    unp_mark (struct file *, void *data);
104 static void    unp_discard (struct file *, void *);
105 static int     unp_internalize (struct mbuf *, struct thread *);
106 static int     unp_listen (struct unpcb *, struct thread *);
107 static void    unp_fp_externalize(struct lwp *lp, struct file *fp, int fd);
108 
109 /*
110  * SMP Considerations:
111  *
112  *	Since unp_token will be automaticly released upon execution of
113  *	blocking code, we need to reference unp_conn before any possible
114  *	blocking code to prevent it from being ripped behind our back.
115  *
116  *	Any adjustment to unp->unp_conn requires both the global unp_token
117  *	AND the per-unp token (lwkt_token_pool_lookup(unp)) to be held.
118  *
119  *	Any access to so_pcb to obtain unp requires the pool token for
120  *	unp to be held.
121  */
122 
123 /* NOTE: unp_token MUST be held */
124 static __inline void
125 unp_reference(struct unpcb *unp)
126 {
127 	atomic_add_int(&unp->unp_refcnt, 1);
128 }
129 
130 /* NOTE: unp_token MUST be held */
131 static __inline void
132 unp_free(struct unpcb *unp)
133 {
134 	KKASSERT(unp->unp_refcnt > 0);
135 	if (atomic_fetchadd_int(&unp->unp_refcnt, -1) == 1)
136 		unp_detach(unp);
137 }
138 
139 /*
140  * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
141  *	 will sofree() it when we return.
142  */
143 static void
144 uipc_abort(netmsg_t msg)
145 {
146 	struct unpcb *unp;
147 	int error;
148 
149 	lwkt_gettoken(&unp_token);
150 	unp = msg->base.nm_so->so_pcb;
151 	if (unp) {
152 		unp_drop(unp, ECONNABORTED);
153 		unp_free(unp);
154 		error = 0;
155 	} else {
156 		error = EINVAL;
157 	}
158 	lwkt_reltoken(&unp_token);
159 
160 	lwkt_replymsg(&msg->lmsg, error);
161 }
162 
163 static void
164 uipc_accept(netmsg_t msg)
165 {
166 	struct unpcb *unp;
167 	int error;
168 
169 	lwkt_gettoken(&unp_token);
170 	unp = msg->base.nm_so->so_pcb;
171 	if (unp == NULL) {
172 		error = EINVAL;
173 	} else {
174 		struct unpcb *unp2 = unp->unp_conn;
175 
176 		/*
177 		 * Pass back name of connected socket,
178 		 * if it was bound and we are still connected
179 		 * (our peer may have closed already!).
180 		 */
181 		if (unp2 && unp2->unp_addr) {
182 			unp_reference(unp2);
183 			*msg->accept.nm_nam = dup_sockaddr(
184 				(struct sockaddr *)unp2->unp_addr);
185 			unp_free(unp2);
186 		} else {
187 			*msg->accept.nm_nam = dup_sockaddr(&sun_noname);
188 		}
189 		error = 0;
190 	}
191 	lwkt_reltoken(&unp_token);
192 	lwkt_replymsg(&msg->lmsg, error);
193 }
194 
195 static void
196 uipc_attach(netmsg_t msg)
197 {
198 	struct unpcb *unp;
199 	int error;
200 
201 	lwkt_gettoken(&unp_token);
202 	unp = msg->base.nm_so->so_pcb;
203 	if (unp)
204 		error = EISCONN;
205 	else
206 		error = unp_attach(msg->base.nm_so, msg->attach.nm_ai);
207 	lwkt_reltoken(&unp_token);
208 	lwkt_replymsg(&msg->lmsg, error);
209 }
210 
211 static void
212 uipc_bind(netmsg_t msg)
213 {
214 	struct unpcb *unp;
215 	int error;
216 
217 	lwkt_gettoken(&unp_token);
218 	unp = msg->base.nm_so->so_pcb;
219 	if (unp)
220 		error = unp_bind(unp, msg->bind.nm_nam, msg->bind.nm_td);
221 	else
222 		error = EINVAL;
223 	lwkt_reltoken(&unp_token);
224 	lwkt_replymsg(&msg->lmsg, error);
225 }
226 
227 static void
228 uipc_connect(netmsg_t msg)
229 {
230 	struct unpcb *unp;
231 	int error;
232 
233 	unp = msg->base.nm_so->so_pcb;
234 	if (unp) {
235 		error = unp_connect(msg->base.nm_so,
236 				    msg->connect.nm_nam,
237 				    msg->connect.nm_td);
238 	} else {
239 		error = EINVAL;
240 	}
241 	lwkt_replymsg(&msg->lmsg, error);
242 }
243 
244 static void
245 uipc_connect2(netmsg_t msg)
246 {
247 	struct unpcb *unp;
248 	int error;
249 
250 	unp = msg->connect2.nm_so1->so_pcb;
251 	if (unp) {
252 		error = unp_connect2(msg->connect2.nm_so1,
253 				     msg->connect2.nm_so2);
254 	} else {
255 		error = EINVAL;
256 	}
257 	lwkt_replymsg(&msg->lmsg, error);
258 }
259 
260 /* control is EOPNOTSUPP */
261 
262 static void
263 uipc_detach(netmsg_t msg)
264 {
265 	struct unpcb *unp;
266 	int error;
267 
268 	lwkt_gettoken(&unp_token);
269 	unp = msg->base.nm_so->so_pcb;
270 	if (unp) {
271 		unp_free(unp);
272 		error = 0;
273 	} else {
274 		error = EINVAL;
275 	}
276 	lwkt_reltoken(&unp_token);
277 	lwkt_replymsg(&msg->lmsg, error);
278 }
279 
280 static void
281 uipc_disconnect(netmsg_t msg)
282 {
283 	struct unpcb *unp;
284 	int error;
285 
286 	lwkt_gettoken(&unp_token);
287 	unp = msg->base.nm_so->so_pcb;
288 	if (unp) {
289 		unp_disconnect(unp);
290 		error = 0;
291 	} else {
292 		error = EINVAL;
293 	}
294 	lwkt_reltoken(&unp_token);
295 	lwkt_replymsg(&msg->lmsg, error);
296 }
297 
298 static void
299 uipc_listen(netmsg_t msg)
300 {
301 	struct unpcb *unp;
302 	int error;
303 
304 	lwkt_gettoken(&unp_token);
305 	unp = msg->base.nm_so->so_pcb;
306 	if (unp == NULL || unp->unp_vnode == NULL)
307 		error = EINVAL;
308 	else
309 		error = unp_listen(unp, msg->listen.nm_td);
310 	lwkt_reltoken(&unp_token);
311 	lwkt_replymsg(&msg->lmsg, error);
312 }
313 
314 static void
315 uipc_peeraddr(netmsg_t msg)
316 {
317 	struct unpcb *unp;
318 	int error;
319 
320 	lwkt_gettoken(&unp_token);
321 	unp = msg->base.nm_so->so_pcb;
322 	if (unp == NULL) {
323 		error = EINVAL;
324 	} else if (unp->unp_conn && unp->unp_conn->unp_addr) {
325 		struct unpcb *unp2 = unp->unp_conn;
326 
327 		unp_reference(unp2);
328 		*msg->peeraddr.nm_nam = dup_sockaddr(
329 				(struct sockaddr *)unp2->unp_addr);
330 		unp_free(unp2);
331 		error = 0;
332 	} else {
333 		/*
334 		 * XXX: It seems that this test always fails even when
335 		 * connection is established.  So, this else clause is
336 		 * added as workaround to return PF_LOCAL sockaddr.
337 		 */
338 		*msg->peeraddr.nm_nam = dup_sockaddr(&sun_noname);
339 		error = 0;
340 	}
341 	lwkt_reltoken(&unp_token);
342 	lwkt_replymsg(&msg->lmsg, error);
343 }
344 
345 static void
346 uipc_rcvd(netmsg_t msg)
347 {
348 	struct unpcb *unp, *unp2;
349 	struct socket *so;
350 	struct socket *so2;
351 	int error;
352 
353 	/*
354 	 * so_pcb is only modified with both the global and the unp
355 	 * pool token held.  The unp pointer is invalid until we verify
356 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
357 	 */
358 	so = msg->base.nm_so;
359 	while ((unp = so->so_pcb) != NULL) {
360 		lwkt_getpooltoken(unp);
361 		if (unp == so->so_pcb)
362 			break;
363 		lwkt_relpooltoken(unp);
364 	}
365 	if (unp == NULL) {
366 		error = EINVAL;
367 		goto done;
368 	}
369 	/* pool token held */
370 
371 	switch (so->so_type) {
372 	case SOCK_DGRAM:
373 		panic("uipc_rcvd DGRAM?");
374 		/*NOTREACHED*/
375 	case SOCK_STREAM:
376 	case SOCK_SEQPACKET:
377 		if (unp->unp_conn == NULL)
378 			break;
379 		unp2 = unp->unp_conn;	/* protected by pool token */
380 
381 		/*
382 		 * Because we are transfering mbufs directly to the
383 		 * peer socket we have to use SSB_STOP on the sender
384 		 * to prevent it from building up infinite mbufs.
385 		 *
386 		 * As in several places in this module w ehave to ref unp2
387 		 * to ensure that it does not get ripped out from under us
388 		 * if we block on the so2 token or in sowwakeup().
389 		 */
390 		so2 = unp2->unp_socket;
391 		unp_reference(unp2);
392 		lwkt_gettoken(&so2->so_rcv.ssb_token);
393 		if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
394 		    so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
395 		) {
396 			atomic_clear_int(&so2->so_snd.ssb_flags, SSB_STOP);
397 
398 			sowwakeup(so2);
399 		}
400 		lwkt_reltoken(&so2->so_rcv.ssb_token);
401 		unp_free(unp2);
402 		break;
403 	default:
404 		panic("uipc_rcvd unknown socktype");
405 		/*NOTREACHED*/
406 	}
407 	error = 0;
408 	lwkt_relpooltoken(unp);
409 done:
410 	lwkt_replymsg(&msg->lmsg, error);
411 }
412 
413 /* pru_rcvoob is EOPNOTSUPP */
414 
415 static void
416 uipc_send(netmsg_t msg)
417 {
418 	struct unpcb *unp, *unp2;
419 	struct socket *so;
420 	struct socket *so2;
421 	struct mbuf *control;
422 	struct mbuf *m;
423 	int error = 0;
424 
425 	so = msg->base.nm_so;
426 	control = msg->send.nm_control;
427 	m = msg->send.nm_m;
428 
429 	/*
430 	 * so_pcb is only modified with both the global and the unp
431 	 * pool token held.  The unp pointer is invalid until we verify
432 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
433 	 */
434 	so = msg->base.nm_so;
435 	while ((unp = so->so_pcb) != NULL) {
436 		lwkt_getpooltoken(unp);
437 		if (unp == so->so_pcb)
438 			break;
439 		lwkt_relpooltoken(unp);
440 	}
441 	if (unp == NULL) {
442 		error = EINVAL;
443 		goto done;
444 	}
445 	/* pool token held */
446 
447 	if (msg->send.nm_flags & PRUS_OOB) {
448 		error = EOPNOTSUPP;
449 		goto release;
450 	}
451 
452 	wakeup_start_delayed();
453 
454 	if (control && (error = unp_internalize(control, msg->send.nm_td)))
455 		goto release;
456 
457 	switch (so->so_type) {
458 	case SOCK_DGRAM:
459 	{
460 		struct sockaddr *from;
461 
462 		if (msg->send.nm_addr) {
463 			if (unp->unp_conn) {
464 				error = EISCONN;
465 				break;
466 			}
467 			error = unp_connect(so,
468 					    msg->send.nm_addr,
469 					    msg->send.nm_td);
470 			if (error)
471 				break;
472 		} else {
473 			if (unp->unp_conn == NULL) {
474 				error = ENOTCONN;
475 				break;
476 			}
477 		}
478 		unp2 = unp->unp_conn;
479 		so2 = unp2->unp_socket;
480 		if (unp->unp_addr)
481 			from = (struct sockaddr *)unp->unp_addr;
482 		else
483 			from = &sun_noname;
484 
485 		unp_reference(unp2);
486 
487 		lwkt_gettoken(&so2->so_rcv.ssb_token);
488 		if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
489 			sorwakeup(so2);
490 			m = NULL;
491 			control = NULL;
492 		} else {
493 			error = ENOBUFS;
494 		}
495 		if (msg->send.nm_addr)
496 			unp_disconnect(unp);
497 		lwkt_reltoken(&so2->so_rcv.ssb_token);
498 
499 		unp_free(unp2);
500 		break;
501 	}
502 
503 	case SOCK_STREAM:
504 	case SOCK_SEQPACKET:
505 		/* Connect if not connected yet. */
506 		/*
507 		 * Note: A better implementation would complain
508 		 * if not equal to the peer's address.
509 		 */
510 		if (!(so->so_state & SS_ISCONNECTED)) {
511 			if (msg->send.nm_addr) {
512 				error = unp_connect(so,
513 						    msg->send.nm_addr,
514 						    msg->send.nm_td);
515 				if (error)
516 					break;	/* XXX */
517 			} else {
518 				error = ENOTCONN;
519 				break;
520 			}
521 		}
522 
523 		if (so->so_state & SS_CANTSENDMORE) {
524 			error = EPIPE;
525 			break;
526 		}
527 		if (unp->unp_conn == NULL)
528 			panic("uipc_send connected but no connection?");
529 		unp2 = unp->unp_conn;
530 		so2 = unp2->unp_socket;
531 
532 		unp_reference(unp2);
533 
534 		/*
535 		 * Send to paired receive port, and then reduce
536 		 * send buffer hiwater marks to maintain backpressure.
537 		 * Wake up readers.
538 		 */
539 		lwkt_gettoken(&so2->so_rcv.ssb_token);
540 		if (control) {
541 			if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
542 				control = NULL;
543 				m = NULL;
544 			}
545 		} else if (so->so_type == SOCK_SEQPACKET) {
546 			sbappendrecord(&so2->so_rcv.sb, m);
547 			m = NULL;
548 		} else {
549 			sbappend(&so2->so_rcv.sb, m);
550 			m = NULL;
551 		}
552 
553 		/*
554 		 * Because we are transfering mbufs directly to the
555 		 * peer socket we have to use SSB_STOP on the sender
556 		 * to prevent it from building up infinite mbufs.
557 		 */
558 		if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
559 		    so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
560 		) {
561 			atomic_set_int(&so->so_snd.ssb_flags, SSB_STOP);
562 		}
563 		lwkt_reltoken(&so2->so_rcv.ssb_token);
564 		sorwakeup(so2);
565 
566 		unp_free(unp2);
567 		break;
568 
569 	default:
570 		panic("uipc_send unknown socktype");
571 	}
572 
573 	/*
574 	 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
575 	 */
576 	if (msg->send.nm_flags & PRUS_EOF) {
577 		socantsendmore(so);
578 		unp_shutdown(unp);
579 	}
580 
581 	if (control && error != 0)
582 		unp_dispose(control);
583 release:
584 	lwkt_relpooltoken(unp);
585 	wakeup_end_delayed();
586 done:
587 
588 	if (control)
589 		m_freem(control);
590 	if (m)
591 		m_freem(m);
592 	lwkt_replymsg(&msg->lmsg, error);
593 }
594 
595 /*
596  * MPSAFE
597  */
598 static void
599 uipc_sense(netmsg_t msg)
600 {
601 	struct unpcb *unp;
602 	struct socket *so;
603 	struct stat *sb;
604 	int error;
605 
606 	so = msg->base.nm_so;
607 	sb = msg->sense.nm_stat;
608 
609 	/*
610 	 * so_pcb is only modified with both the global and the unp
611 	 * pool token held.  The unp pointer is invalid until we verify
612 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
613 	 */
614 	while ((unp = so->so_pcb) != NULL) {
615 		lwkt_getpooltoken(unp);
616 		if (unp == so->so_pcb)
617 			break;
618 		lwkt_relpooltoken(unp);
619 	}
620 	if (unp == NULL) {
621 		error = EINVAL;
622 		goto done;
623 	}
624 	/* pool token held */
625 
626 	sb->st_blksize = so->so_snd.ssb_hiwat;
627 	sb->st_dev = NOUDEV;
628 	if (unp->unp_ino == 0) {	/* make up a non-zero inode number */
629 		spin_lock(&unp_ino_spin);
630 		unp->unp_ino = unp_ino++;
631 		spin_unlock(&unp_ino_spin);
632 	}
633 	sb->st_ino = unp->unp_ino;
634 	error = 0;
635 	lwkt_relpooltoken(unp);
636 done:
637 	lwkt_replymsg(&msg->lmsg, error);
638 }
639 
640 static void
641 uipc_shutdown(netmsg_t msg)
642 {
643 	struct socket *so;
644 	struct unpcb *unp;
645 	int error;
646 
647 	/*
648 	 * so_pcb is only modified with both the global and the unp
649 	 * pool token held.  The unp pointer is invalid until we verify
650 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
651 	 */
652 	so = msg->base.nm_so;
653 	while ((unp = so->so_pcb) != NULL) {
654 		lwkt_getpooltoken(unp);
655 		if (unp == so->so_pcb)
656 			break;
657 		lwkt_relpooltoken(unp);
658 	}
659 	if (unp) {
660 		/* pool token held */
661 		socantsendmore(so);
662 		unp_shutdown(unp);
663 		lwkt_relpooltoken(unp);
664 		error = 0;
665 	} else {
666 		error = EINVAL;
667 	}
668 	lwkt_replymsg(&msg->lmsg, error);
669 }
670 
671 static void
672 uipc_sockaddr(netmsg_t msg)
673 {
674 	struct socket *so;
675 	struct unpcb *unp;
676 	int error;
677 
678 	/*
679 	 * so_pcb is only modified with both the global and the unp
680 	 * pool token held.  The unp pointer is invalid until we verify
681 	 * that it is good by re-checking so_pcb AFTER obtaining the token.
682 	 */
683 	so = msg->base.nm_so;
684 	while ((unp = so->so_pcb) != NULL) {
685 		lwkt_getpooltoken(unp);
686 		if (unp == so->so_pcb)
687 			break;
688 		lwkt_relpooltoken(unp);
689 	}
690 	if (unp) {
691 		/* pool token held */
692 		if (unp->unp_addr) {
693 			*msg->sockaddr.nm_nam =
694 				dup_sockaddr((struct sockaddr *)unp->unp_addr);
695 		}
696 		lwkt_relpooltoken(unp);
697 		error = 0;
698 	} else {
699 		error = EINVAL;
700 	}
701 	lwkt_replymsg(&msg->lmsg, error);
702 }
703 
704 struct pr_usrreqs uipc_usrreqs = {
705 	.pru_abort = uipc_abort,
706 	.pru_accept = uipc_accept,
707 	.pru_attach = uipc_attach,
708 	.pru_bind = uipc_bind,
709 	.pru_connect = uipc_connect,
710 	.pru_connect2 = uipc_connect2,
711 	.pru_control = pr_generic_notsupp,
712 	.pru_detach = uipc_detach,
713 	.pru_disconnect = uipc_disconnect,
714 	.pru_listen = uipc_listen,
715 	.pru_peeraddr = uipc_peeraddr,
716 	.pru_rcvd = uipc_rcvd,
717 	.pru_rcvoob = pr_generic_notsupp,
718 	.pru_send = uipc_send,
719 	.pru_sense = uipc_sense,
720 	.pru_shutdown = uipc_shutdown,
721 	.pru_sockaddr = uipc_sockaddr,
722 	.pru_sosend = sosend,
723 	.pru_soreceive = soreceive
724 };
725 
726 void
727 uipc_ctloutput(netmsg_t msg)
728 {
729 	struct socket *so;
730 	struct sockopt *sopt;
731 	struct unpcb *unp;
732 	int error = 0;
733 
734 	lwkt_gettoken(&unp_token);
735 	so = msg->base.nm_so;
736 	sopt = msg->ctloutput.nm_sopt;
737 	unp = so->so_pcb;
738 
739 	switch (sopt->sopt_dir) {
740 	case SOPT_GET:
741 		switch (sopt->sopt_name) {
742 		case LOCAL_PEERCRED:
743 			if (unp->unp_flags & UNP_HAVEPC)
744 				soopt_from_kbuf(sopt, &unp->unp_peercred,
745 						sizeof(unp->unp_peercred));
746 			else {
747 				if (so->so_type == SOCK_STREAM)
748 					error = ENOTCONN;
749 				else if (so->so_type == SOCK_SEQPACKET)
750 					error = ENOTCONN;
751 				else
752 					error = EINVAL;
753 			}
754 			break;
755 		default:
756 			error = EOPNOTSUPP;
757 			break;
758 		}
759 		break;
760 	case SOPT_SET:
761 	default:
762 		error = EOPNOTSUPP;
763 		break;
764 	}
765 	lwkt_reltoken(&unp_token);
766 	lwkt_replymsg(&msg->lmsg, error);
767 }
768 
769 /*
770  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
771  * for stream sockets, although the total for sender and receiver is
772  * actually only PIPSIZ.
773  *
774  * Datagram sockets really use the sendspace as the maximum datagram size,
775  * and don't really want to reserve the sendspace.  Their recvspace should
776  * be large enough for at least one max-size datagram plus address.
777  *
778  * We want the local send/recv space to be significant larger then lo0's
779  * mtu of 16384.
780  */
781 #ifndef PIPSIZ
782 #define	PIPSIZ	57344
783 #endif
784 static u_long	unpst_sendspace = PIPSIZ;
785 static u_long	unpst_recvspace = PIPSIZ;
786 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
787 static u_long	unpdg_recvspace = 4*1024;
788 
789 static int	unp_rights;			/* file descriptors in flight */
790 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin, "unp_spin");
791 
792 SYSCTL_DECL(_net_local_seqpacket);
793 SYSCTL_DECL(_net_local_stream);
794 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
795     &unpst_sendspace, 0, "Size of stream socket send buffer");
796 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
797     &unpst_recvspace, 0, "Size of stream socket receive buffer");
798 
799 SYSCTL_DECL(_net_local_dgram);
800 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
801     &unpdg_sendspace, 0, "Max datagram socket size");
802 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
803     &unpdg_recvspace, 0, "Size of datagram socket receive buffer");
804 
805 SYSCTL_DECL(_net_local);
806 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
807    "File descriptors in flight");
808 
809 static int
810 unp_attach(struct socket *so, struct pru_attach_info *ai)
811 {
812 	struct unpcb *unp;
813 	int error;
814 
815 	lwkt_gettoken(&unp_token);
816 
817 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
818 		switch (so->so_type) {
819 		case SOCK_STREAM:
820 		case SOCK_SEQPACKET:
821 			error = soreserve(so, unpst_sendspace, unpst_recvspace,
822 					  ai->sb_rlimit);
823 			break;
824 
825 		case SOCK_DGRAM:
826 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
827 					  ai->sb_rlimit);
828 			break;
829 
830 		default:
831 			panic("unp_attach");
832 		}
833 		if (error)
834 			goto failed;
835 	}
836 
837 	/*
838 	 * In order to support sendfile we have to set either SSB_STOPSUPP
839 	 * or SSB_PREALLOC.  Unix domain sockets use the SSB_STOP flow
840 	 * control mechanism.
841 	 */
842 	if (so->so_type == SOCK_STREAM) {
843 		atomic_set_int(&so->so_rcv.ssb_flags, SSB_STOPSUPP);
844 		atomic_set_int(&so->so_snd.ssb_flags, SSB_STOPSUPP);
845 	}
846 
847 	unp = kmalloc(sizeof(*unp), M_UNPCB, M_WAITOK | M_ZERO | M_NULLOK);
848 	if (unp == NULL) {
849 		error = ENOBUFS;
850 		goto failed;
851 	}
852 	unp->unp_refcnt = 1;
853 	unp->unp_gencnt = ++unp_gencnt;
854 	unp_count++;
855 	LIST_INIT(&unp->unp_refs);
856 	unp->unp_socket = so;
857 	unp->unp_rvnode = ai->fd_rdir;		/* jail cruft XXX JH */
858 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
859 			 : &unp_shead, unp, unp_link);
860 	so->so_pcb = (caddr_t)unp;
861 	soreference(so);
862 	error = 0;
863 failed:
864 	lwkt_reltoken(&unp_token);
865 	return error;
866 }
867 
868 static void
869 unp_detach(struct unpcb *unp)
870 {
871 	struct socket *so;
872 
873 	lwkt_gettoken(&unp_token);
874 	lwkt_getpooltoken(unp);
875 
876 	LIST_REMOVE(unp, unp_link);	/* both tokens required */
877 	unp->unp_gencnt = ++unp_gencnt;
878 	--unp_count;
879 	if (unp->unp_vnode) {
880 		unp->unp_vnode->v_socket = NULL;
881 		vrele(unp->unp_vnode);
882 		unp->unp_vnode = NULL;
883 	}
884 	if (unp->unp_conn)
885 		unp_disconnect(unp);
886 	while (!LIST_EMPTY(&unp->unp_refs))
887 		unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
888 	soisdisconnected(unp->unp_socket);
889 	so = unp->unp_socket;
890 	soreference(so);		/* for delayed sorflush */
891 	KKASSERT(so->so_pcb == unp);
892 	so->so_pcb = NULL;		/* both tokens required */
893 	unp->unp_socket = NULL;
894 	sofree(so);		/* remove pcb ref */
895 
896 	if (unp_rights) {
897 		/*
898 		 * Normally the receive buffer is flushed later,
899 		 * in sofree, but if our receive buffer holds references
900 		 * to descriptors that are now garbage, we will dispose
901 		 * of those descriptor references after the garbage collector
902 		 * gets them (resulting in a "panic: closef: count < 0").
903 		 */
904 		sorflush(so);
905 		unp_gc();
906 	}
907 	sofree(so);
908 	lwkt_relpooltoken(unp);
909 	lwkt_reltoken(&unp_token);
910 
911 	if (unp->unp_addr)
912 		kfree(unp->unp_addr, M_SONAME);
913 	kfree(unp, M_UNPCB);
914 }
915 
916 static int
917 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
918 {
919 	struct proc *p = td->td_proc;
920 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
921 	struct vnode *vp;
922 	struct vattr vattr;
923 	int error, namelen;
924 	struct nlookupdata nd;
925 	char buf[SOCK_MAXADDRLEN];
926 
927 	lwkt_gettoken(&unp_token);
928 	if (unp->unp_vnode != NULL) {
929 		error = EINVAL;
930 		goto failed;
931 	}
932 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
933 	if (namelen <= 0) {
934 		error = EINVAL;
935 		goto failed;
936 	}
937 	strncpy(buf, soun->sun_path, namelen);
938 	buf[namelen] = 0;	/* null-terminate the string */
939 	error = nlookup_init(&nd, buf, UIO_SYSSPACE,
940 			     NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
941 	if (error == 0)
942 		error = nlookup(&nd);
943 	if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
944 		error = EADDRINUSE;
945 	if (error)
946 		goto done;
947 
948 	VATTR_NULL(&vattr);
949 	vattr.va_type = VSOCK;
950 	vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
951 	error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
952 	if (error == 0) {
953 		if (unp->unp_vnode == NULL) {
954 			vp->v_socket = unp->unp_socket;
955 			unp->unp_vnode = vp;
956 			unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
957 			vn_unlock(vp);
958 		} else {
959 			vput(vp);		/* late race */
960 			error = EINVAL;
961 		}
962 	}
963 done:
964 	nlookup_done(&nd);
965 failed:
966 	lwkt_reltoken(&unp_token);
967 	return (error);
968 }
969 
970 static int
971 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
972 {
973 	struct proc *p = td->td_proc;
974 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
975 	struct vnode *vp;
976 	struct socket *so2, *so3;
977 	struct unpcb *unp, *unp2, *unp3;
978 	int error, len;
979 	struct nlookupdata nd;
980 	char buf[SOCK_MAXADDRLEN];
981 
982 	lwkt_gettoken(&unp_token);
983 
984 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
985 	if (len <= 0) {
986 		error = EINVAL;
987 		goto failed;
988 	}
989 	strncpy(buf, soun->sun_path, len);
990 	buf[len] = 0;
991 
992 	vp = NULL;
993 	error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
994 	if (error == 0)
995 		error = nlookup(&nd);
996 	if (error == 0)
997 		error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
998 	nlookup_done(&nd);
999 	if (error)
1000 		goto failed;
1001 
1002 	if (vp->v_type != VSOCK) {
1003 		error = ENOTSOCK;
1004 		goto bad;
1005 	}
1006 	error = VOP_EACCESS(vp, VWRITE, p->p_ucred);
1007 	if (error)
1008 		goto bad;
1009 	so2 = vp->v_socket;
1010 	if (so2 == NULL) {
1011 		error = ECONNREFUSED;
1012 		goto bad;
1013 	}
1014 	if (so->so_type != so2->so_type) {
1015 		error = EPROTOTYPE;
1016 		goto bad;
1017 	}
1018 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1019 		if (!(so2->so_options & SO_ACCEPTCONN) ||
1020 		    (so3 = sonewconn(so2, 0)) == NULL) {
1021 			error = ECONNREFUSED;
1022 			goto bad;
1023 		}
1024 		unp = so->so_pcb;
1025 		if (unp->unp_conn) {	/* race, already connected! */
1026 			error = EISCONN;
1027 			sofree(so3);
1028 			goto bad;
1029 		}
1030 		unp2 = so2->so_pcb;
1031 		unp3 = so3->so_pcb;
1032 		if (unp2->unp_addr)
1033 			unp3->unp_addr = (struct sockaddr_un *)
1034 				dup_sockaddr((struct sockaddr *)unp2->unp_addr);
1035 
1036 		/*
1037 		 * unp_peercred management:
1038 		 *
1039 		 * The connecter's (client's) credentials are copied
1040 		 * from its process structure at the time of connect()
1041 		 * (which is now).
1042 		 */
1043 		cru2x(p->p_ucred, &unp3->unp_peercred);
1044 		unp3->unp_flags |= UNP_HAVEPC;
1045 		/*
1046 		 * The receiver's (server's) credentials are copied
1047 		 * from the unp_peercred member of socket on which the
1048 		 * former called listen(); unp_listen() cached that
1049 		 * process's credentials at that time so we can use
1050 		 * them now.
1051 		 */
1052 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1053 		    ("unp_connect: listener without cached peercred"));
1054 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1055 		    sizeof(unp->unp_peercred));
1056 		unp->unp_flags |= UNP_HAVEPC;
1057 
1058 		so2 = so3;
1059 	}
1060 	error = unp_connect2(so, so2);
1061 bad:
1062 	vput(vp);
1063 failed:
1064 	lwkt_reltoken(&unp_token);
1065 	return (error);
1066 }
1067 
1068 /*
1069  * Connect two unix domain sockets together.
1070  *
1071  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1072  *	 pool token also be held.
1073  */
1074 int
1075 unp_connect2(struct socket *so, struct socket *so2)
1076 {
1077 	struct unpcb *unp;
1078 	struct unpcb *unp2;
1079 
1080 	lwkt_gettoken(&unp_token);
1081 	unp = so->so_pcb;
1082 	if (so2->so_type != so->so_type) {
1083 		lwkt_reltoken(&unp_token);
1084 		return (EPROTOTYPE);
1085 	}
1086 	unp2 = so2->so_pcb;
1087 	lwkt_getpooltoken(unp);
1088 	lwkt_getpooltoken(unp2);
1089 
1090 	unp->unp_conn = unp2;
1091 
1092 	switch (so->so_type) {
1093 	case SOCK_DGRAM:
1094 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1095 		soisconnected(so);
1096 		break;
1097 
1098 	case SOCK_STREAM:
1099 	case SOCK_SEQPACKET:
1100 		unp2->unp_conn = unp;
1101 		soisconnected(so);
1102 		soisconnected(so2);
1103 		break;
1104 
1105 	default:
1106 		panic("unp_connect2");
1107 	}
1108 	lwkt_relpooltoken(unp2);
1109 	lwkt_relpooltoken(unp);
1110 	lwkt_reltoken(&unp_token);
1111 	return (0);
1112 }
1113 
1114 /*
1115  * Disconnect a unix domain socket pair.
1116  *
1117  * NOTE: Semantics for any change to unp_conn requires that the per-unp
1118  *	 pool token also be held.
1119  */
1120 static void
1121 unp_disconnect(struct unpcb *unp)
1122 {
1123 	struct unpcb *unp2;
1124 
1125 	lwkt_gettoken(&unp_token);
1126 	lwkt_getpooltoken(unp);
1127 
1128 	while ((unp2 = unp->unp_conn) != NULL) {
1129 		lwkt_getpooltoken(unp2);
1130 		if (unp2 == unp->unp_conn)
1131 			break;
1132 		lwkt_relpooltoken(unp2);
1133 	}
1134 	if (unp2 == NULL)
1135 		goto done;
1136 
1137 	unp->unp_conn = NULL;
1138 
1139 	switch (unp->unp_socket->so_type) {
1140 	case SOCK_DGRAM:
1141 		LIST_REMOVE(unp, unp_reflink);
1142 		soclrstate(unp->unp_socket, SS_ISCONNECTED);
1143 		break;
1144 
1145 	case SOCK_STREAM:
1146 	case SOCK_SEQPACKET:
1147 		unp_reference(unp2);
1148 		unp2->unp_conn = NULL;
1149 
1150 		soisdisconnected(unp->unp_socket);
1151 		soisdisconnected(unp2->unp_socket);
1152 
1153 		unp_free(unp2);
1154 		break;
1155 	}
1156 	lwkt_relpooltoken(unp2);
1157 done:
1158 	lwkt_relpooltoken(unp);
1159 	lwkt_reltoken(&unp_token);
1160 }
1161 
1162 #ifdef notdef
1163 void
1164 unp_abort(struct unpcb *unp)
1165 {
1166 	lwkt_gettoken(&unp_token);
1167 	unp_free(unp);
1168 	lwkt_reltoken(&unp_token);
1169 }
1170 #endif
1171 
1172 static int
1173 prison_unpcb(struct thread *td, struct unpcb *unp)
1174 {
1175 	struct proc *p;
1176 
1177 	if (td == NULL)
1178 		return (0);
1179 	if ((p = td->td_proc) == NULL)
1180 		return (0);
1181 	if (!p->p_ucred->cr_prison)
1182 		return (0);
1183 	if (p->p_fd->fd_rdir == unp->unp_rvnode)
1184 		return (0);
1185 	return (1);
1186 }
1187 
1188 static int
1189 unp_pcblist(SYSCTL_HANDLER_ARGS)
1190 {
1191 	int error, i, n;
1192 	struct unpcb *unp, **unp_list;
1193 	unp_gen_t gencnt;
1194 	struct unp_head *head;
1195 
1196 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1197 
1198 	KKASSERT(curproc != NULL);
1199 
1200 	/*
1201 	 * The process of preparing the PCB list is too time-consuming and
1202 	 * resource-intensive to repeat twice on every request.
1203 	 */
1204 	if (req->oldptr == NULL) {
1205 		n = unp_count;
1206 		req->oldidx = (n + n/8) * sizeof(struct xunpcb);
1207 		return 0;
1208 	}
1209 
1210 	if (req->newptr != NULL)
1211 		return EPERM;
1212 
1213 	lwkt_gettoken(&unp_token);
1214 
1215 	/*
1216 	 * OK, now we're committed to doing something.
1217 	 */
1218 	gencnt = unp_gencnt;
1219 	n = unp_count;
1220 
1221 	unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1222 
1223 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1224 	     unp = LIST_NEXT(unp, unp_link)) {
1225 		if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
1226 			unp_list[i++] = unp;
1227 	}
1228 	n = i;			/* in case we lost some during malloc */
1229 
1230 	error = 0;
1231 	for (i = 0; i < n; i++) {
1232 		unp = unp_list[i];
1233 		if (unp->unp_gencnt <= gencnt) {
1234 			struct xunpcb xu;
1235 			xu.xu_len = sizeof xu;
1236 			xu.xu_unpp = unp;
1237 			/*
1238 			 * XXX - need more locking here to protect against
1239 			 * connect/disconnect races for SMP.
1240 			 */
1241 			if (unp->unp_addr)
1242 				bcopy(unp->unp_addr, &xu.xu_addr,
1243 				      unp->unp_addr->sun_len);
1244 			if (unp->unp_conn && unp->unp_conn->unp_addr)
1245 				bcopy(unp->unp_conn->unp_addr,
1246 				      &xu.xu_caddr,
1247 				      unp->unp_conn->unp_addr->sun_len);
1248 			bcopy(unp, &xu.xu_unp, sizeof *unp);
1249 			sotoxsocket(unp->unp_socket, &xu.xu_socket);
1250 			error = SYSCTL_OUT(req, &xu, sizeof xu);
1251 		}
1252 	}
1253 	lwkt_reltoken(&unp_token);
1254 	kfree(unp_list, M_TEMP);
1255 
1256 	return error;
1257 }
1258 
1259 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1260 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1261 	    "List of active local datagram sockets");
1262 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1263 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1264 	    "List of active local stream sockets");
1265 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1266 	    (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1267 	    "List of active local seqpacket stream sockets");
1268 
1269 static void
1270 unp_shutdown(struct unpcb *unp)
1271 {
1272 	struct socket *so;
1273 
1274 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1275 	     unp->unp_socket->so_type == SOCK_SEQPACKET) &&
1276 	    unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
1277 		socantrcvmore(so);
1278 	}
1279 }
1280 
1281 static void
1282 unp_drop(struct unpcb *unp, int err)
1283 {
1284 	struct socket *so = unp->unp_socket;
1285 
1286 	so->so_error = err;
1287 	unp_disconnect(unp);
1288 }
1289 
1290 #ifdef notdef
1291 void
1292 unp_drain(void)
1293 {
1294 	lwkt_gettoken(&unp_token);
1295 	lwkt_reltoken(&unp_token);
1296 }
1297 #endif
1298 
1299 int
1300 unp_externalize(struct mbuf *rights)
1301 {
1302 	struct thread *td = curthread;
1303 	struct proc *p = td->td_proc;		/* XXX */
1304 	struct lwp *lp = td->td_lwp;
1305 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1306 	int *fdp;
1307 	int i;
1308 	struct file **rp;
1309 	struct file *fp;
1310 	int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
1311 		/ sizeof (struct file *);
1312 	int f;
1313 
1314 	lwkt_gettoken(&unp_token);
1315 
1316 	/*
1317 	 * if the new FD's will not fit, then we free them all
1318 	 */
1319 	if (!fdavail(p, newfds)) {
1320 		rp = (struct file **)CMSG_DATA(cm);
1321 		for (i = 0; i < newfds; i++) {
1322 			fp = *rp;
1323 			/*
1324 			 * zero the pointer before calling unp_discard,
1325 			 * since it may end up in unp_gc()..
1326 			 */
1327 			*rp++ = NULL;
1328 			unp_discard(fp, NULL);
1329 		}
1330 		lwkt_reltoken(&unp_token);
1331 		return (EMSGSIZE);
1332 	}
1333 
1334 	/*
1335 	 * now change each pointer to an fd in the global table to
1336 	 * an integer that is the index to the local fd table entry
1337 	 * that we set up to point to the global one we are transferring.
1338 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1339 	 * then do it in forward order. In that case, an integer will
1340 	 * always come in the same place or before its corresponding
1341 	 * struct file pointer.
1342 	 * If sizeof (struct file *) is smaller than sizeof int, then
1343 	 * do it in reverse order.
1344 	 */
1345 	if (sizeof (struct file *) >= sizeof (int)) {
1346 		fdp = (int *)CMSG_DATA(cm);
1347 		rp = (struct file **)CMSG_DATA(cm);
1348 		for (i = 0; i < newfds; i++) {
1349 			if (fdalloc(p, 0, &f))
1350 				panic("unp_externalize");
1351 			fp = *rp++;
1352 			unp_fp_externalize(lp, fp, f);
1353 			*fdp++ = f;
1354 		}
1355 	} else {
1356 		fdp = (int *)CMSG_DATA(cm) + newfds - 1;
1357 		rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
1358 		for (i = 0; i < newfds; i++) {
1359 			if (fdalloc(p, 0, &f))
1360 				panic("unp_externalize");
1361 			fp = *rp--;
1362 			unp_fp_externalize(lp, fp, f);
1363 			*fdp-- = f;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1369 	 * differs.
1370 	 */
1371 	cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1372 	rights->m_len = cm->cmsg_len;
1373 
1374 	lwkt_reltoken(&unp_token);
1375 	return (0);
1376 }
1377 
1378 static void
1379 unp_fp_externalize(struct lwp *lp, struct file *fp, int fd)
1380 {
1381 	struct file *fx;
1382 	int error;
1383 
1384 	lwkt_gettoken(&unp_token);
1385 
1386 	if (lp) {
1387 		KKASSERT(fd >= 0);
1388 		if (fp->f_flag & FREVOKED) {
1389 			kprintf("Warning: revoked fp exiting unix socket\n");
1390 			fx = NULL;
1391 			error = falloc(lp, &fx, NULL);
1392 			if (error == 0)
1393 				fsetfd(lp->lwp_proc->p_fd, fx, fd);
1394 			else
1395 				fsetfd(lp->lwp_proc->p_fd, NULL, fd);
1396 			fdrop(fx);
1397 		} else {
1398 			fsetfd(lp->lwp_proc->p_fd, fp, fd);
1399 		}
1400 	}
1401 	spin_lock(&unp_spin);
1402 	fp->f_msgcount--;
1403 	unp_rights--;
1404 	spin_unlock(&unp_spin);
1405 	fdrop(fp);
1406 
1407 	lwkt_reltoken(&unp_token);
1408 }
1409 
1410 
1411 void
1412 unp_init(void)
1413 {
1414 	LIST_INIT(&unp_dhead);
1415 	LIST_INIT(&unp_shead);
1416 	spin_init(&unp_spin, "unpinit");
1417 }
1418 
1419 static int
1420 unp_internalize(struct mbuf *control, struct thread *td)
1421 {
1422 	struct proc *p = td->td_proc;
1423 	struct filedesc *fdescp;
1424 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1425 	struct file **rp;
1426 	struct file *fp;
1427 	int i, fd, *fdp;
1428 	struct cmsgcred *cmcred;
1429 	int oldfds;
1430 	u_int newlen;
1431 	int error;
1432 
1433 	KKASSERT(p);
1434 	lwkt_gettoken(&unp_token);
1435 
1436 	fdescp = p->p_fd;
1437 	if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1438 	    cm->cmsg_level != SOL_SOCKET ||
1439 	    CMSG_ALIGN(cm->cmsg_len) != control->m_len) {
1440 		error = EINVAL;
1441 		goto done;
1442 	}
1443 
1444 	/*
1445 	 * Fill in credential information.
1446 	 */
1447 	if (cm->cmsg_type == SCM_CREDS) {
1448 		cmcred = (struct cmsgcred *)CMSG_DATA(cm);
1449 		cmcred->cmcred_pid = p->p_pid;
1450 		cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1451 		cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1452 		cmcred->cmcred_euid = p->p_ucred->cr_uid;
1453 		cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1454 							CMGROUP_MAX);
1455 		for (i = 0; i < cmcred->cmcred_ngroups; i++)
1456 			cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1457 		error = 0;
1458 		goto done;
1459 	}
1460 
1461 	/*
1462 	 * cmsghdr may not be aligned, do not allow calculation(s) to
1463 	 * go negative.
1464 	 */
1465 	if (cm->cmsg_len < CMSG_LEN(0)) {
1466 		error = EINVAL;
1467 		goto done;
1468 	}
1469 
1470 	oldfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof (int);
1471 
1472 	/*
1473 	 * check that all the FDs passed in refer to legal OPEN files
1474 	 * If not, reject the entire operation.
1475 	 */
1476 	fdp = (int *)CMSG_DATA(cm);
1477 	for (i = 0; i < oldfds; i++) {
1478 		fd = *fdp++;
1479 		if ((unsigned)fd >= fdescp->fd_nfiles ||
1480 		    fdescp->fd_files[fd].fp == NULL) {
1481 			error = EBADF;
1482 			goto done;
1483 		}
1484 		if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) {
1485 			error = EOPNOTSUPP;
1486 			goto done;
1487 		}
1488 	}
1489 	/*
1490 	 * Now replace the integer FDs with pointers to
1491 	 * the associated global file table entry..
1492 	 * Allocate a bigger buffer as necessary. But if an cluster is not
1493 	 * enough, return E2BIG.
1494 	 */
1495 	newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1496 	if (newlen > MCLBYTES) {
1497 		error = E2BIG;
1498 		goto done;
1499 	}
1500 	if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1501 		if (control->m_flags & M_EXT) {
1502 			error = E2BIG;
1503 			goto done;
1504 		}
1505 		MCLGET(control, MB_WAIT);
1506 		if (!(control->m_flags & M_EXT)) {
1507 			error = ENOBUFS;
1508 			goto done;
1509 		}
1510 
1511 		/* copy the data to the cluster */
1512 		memcpy(mtod(control, char *), cm, cm->cmsg_len);
1513 		cm = mtod(control, struct cmsghdr *);
1514 	}
1515 
1516 	/*
1517 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1518 	 * differs.
1519 	 */
1520 	cm->cmsg_len = newlen;
1521 	control->m_len = CMSG_ALIGN(newlen);
1522 
1523 	/*
1524 	 * Transform the file descriptors into struct file pointers.
1525 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1526 	 * then do it in reverse order so that the int won't get until
1527 	 * we're done.
1528 	 * If sizeof (struct file *) is smaller than sizeof int, then
1529 	 * do it in forward order.
1530 	 */
1531 	if (sizeof (struct file *) >= sizeof (int)) {
1532 		fdp = (int *)CMSG_DATA(cm) + oldfds - 1;
1533 		rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1534 		for (i = 0; i < oldfds; i++) {
1535 			fp = fdescp->fd_files[*fdp--].fp;
1536 			*rp-- = fp;
1537 			fhold(fp);
1538 			spin_lock(&unp_spin);
1539 			fp->f_msgcount++;
1540 			unp_rights++;
1541 			spin_unlock(&unp_spin);
1542 		}
1543 	} else {
1544 		fdp = (int *)CMSG_DATA(cm);
1545 		rp = (struct file **)CMSG_DATA(cm);
1546 		for (i = 0; i < oldfds; i++) {
1547 			fp = fdescp->fd_files[*fdp++].fp;
1548 			*rp++ = fp;
1549 			fhold(fp);
1550 			spin_lock(&unp_spin);
1551 			fp->f_msgcount++;
1552 			unp_rights++;
1553 			spin_unlock(&unp_spin);
1554 		}
1555 	}
1556 	error = 0;
1557 done:
1558 	lwkt_reltoken(&unp_token);
1559 	return error;
1560 }
1561 
1562 /*
1563  * Garbage collect in-transit file descriptors that get lost due to
1564  * loops (i.e. when a socket is sent to another process over itself,
1565  * and more complex situations).
1566  *
1567  * NOT MPSAFE - TODO socket flush code and maybe closef.  Rest is MPSAFE.
1568  */
1569 
1570 struct unp_gc_info {
1571 	struct file **extra_ref;
1572 	struct file *locked_fp;
1573 	int defer;
1574 	int index;
1575 	int maxindex;
1576 };
1577 
1578 static void
1579 unp_gc(void)
1580 {
1581 	struct unp_gc_info info;
1582 	static boolean_t unp_gcing;
1583 	struct file **fpp;
1584 	int i;
1585 
1586 	/*
1587 	 * Only one gc can be in-progress at any given moment
1588 	 */
1589 	spin_lock(&unp_spin);
1590 	if (unp_gcing) {
1591 		spin_unlock(&unp_spin);
1592 		return;
1593 	}
1594 	unp_gcing = TRUE;
1595 	spin_unlock(&unp_spin);
1596 
1597 	lwkt_gettoken(&unp_token);
1598 
1599 	/*
1600 	 * Before going through all this, set all FDs to be NOT defered
1601 	 * and NOT externally accessible (not marked).  During the scan
1602 	 * a fd can be marked externally accessible but we may or may not
1603 	 * be able to immediately process it (controlled by FDEFER).
1604 	 *
1605 	 * If we loop sleep a bit.  The complexity of the topology can cause
1606 	 * multiple loops.  Also failure to acquire the socket's so_rcv
1607 	 * token can cause us to loop.
1608 	 */
1609 	allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1610 	do {
1611 		info.defer = 0;
1612 		allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1613 		if (info.defer)
1614 			tsleep(&info, 0, "gcagain", 1);
1615 	} while (info.defer);
1616 
1617 	/*
1618 	 * We grab an extra reference to each of the file table entries
1619 	 * that are not otherwise accessible and then free the rights
1620 	 * that are stored in messages on them.
1621 	 *
1622 	 * The bug in the orginal code is a little tricky, so I'll describe
1623 	 * what's wrong with it here.
1624 	 *
1625 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1626 	 * times -- consider the case of sockets A and B that contain
1627 	 * references to each other.  On a last close of some other socket,
1628 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1629 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1630 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1631 	 * results in the following chain.  Closef calls soo_close, which
1632 	 * calls soclose.   Soclose calls first (through the switch
1633 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1634 	 * returns because the previous instance had set unp_gcing, and
1635 	 * we return all the way back to soclose, which marks the socket
1636 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1637 	 * to free up the rights that are queued in messages on the socket A,
1638 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1639 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1640 	 * instance of unp_discard just calls closef on B.
1641 	 *
1642 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1643 	 * which results in another closef on A.  Unfortunately, A is already
1644 	 * being closed, and the descriptor has already been marked with
1645 	 * SS_NOFDREF, and soclose panics at this point.
1646 	 *
1647 	 * Here, we first take an extra reference to each inaccessible
1648 	 * descriptor.  Then, we call sorflush ourself, since we know
1649 	 * it is a Unix domain socket anyhow.  After we destroy all the
1650 	 * rights carried in messages, we do a last closef to get rid
1651 	 * of our extra reference.  This is the last close, and the
1652 	 * unp_detach etc will shut down the socket.
1653 	 *
1654 	 * 91/09/19, bsy@cs.cmu.edu
1655 	 */
1656 	info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1657 	info.maxindex = 256;
1658 
1659 	do {
1660 		/*
1661 		 * Look for matches
1662 		 */
1663 		info.index = 0;
1664 		allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1665 
1666 		/*
1667 		 * For each FD on our hit list, do the following two things
1668 		 */
1669 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1670 			struct file *tfp = *fpp;
1671 			if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1672 				sorflush((struct socket *)(tfp->f_data));
1673 		}
1674 		for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1675 			closef(*fpp, NULL);
1676 	} while (info.index == info.maxindex);
1677 
1678 	lwkt_reltoken(&unp_token);
1679 
1680 	kfree((caddr_t)info.extra_ref, M_FILE);
1681 	unp_gcing = FALSE;
1682 }
1683 
1684 /*
1685  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1686  */
1687 static int
1688 unp_gc_checkrefs(struct file *fp, void *data)
1689 {
1690 	struct unp_gc_info *info = data;
1691 
1692 	if (fp->f_count == 0)
1693 		return(0);
1694 	if (info->index == info->maxindex)
1695 		return(-1);
1696 
1697 	/*
1698 	 * If all refs are from msgs, and it's not marked accessible
1699 	 * then it must be referenced from some unreachable cycle
1700 	 * of (shut-down) FDs, so include it in our
1701 	 * list of FDs to remove
1702 	 */
1703 	if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1704 		info->extra_ref[info->index++] = fp;
1705 		fhold(fp);
1706 	}
1707 	return(0);
1708 }
1709 
1710 /*
1711  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1712  */
1713 static int
1714 unp_gc_clearmarks(struct file *fp, void *data __unused)
1715 {
1716 	atomic_clear_int(&fp->f_flag, FMARK | FDEFER);
1717 	return(0);
1718 }
1719 
1720 /*
1721  * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1722  */
1723 static int
1724 unp_gc_checkmarks(struct file *fp, void *data)
1725 {
1726 	struct unp_gc_info *info = data;
1727 	struct socket *so;
1728 
1729 	/*
1730 	 * If the file is not open, skip it.  Make sure it isn't marked
1731 	 * defered or we could loop forever, in case we somehow race
1732 	 * something.
1733 	 */
1734 	if (fp->f_count == 0) {
1735 		if (fp->f_flag & FDEFER)
1736 			atomic_clear_int(&fp->f_flag, FDEFER);
1737 		return(0);
1738 	}
1739 	/*
1740 	 * If we already marked it as 'defer'  in a
1741 	 * previous pass, then try process it this time
1742 	 * and un-mark it
1743 	 */
1744 	if (fp->f_flag & FDEFER) {
1745 		atomic_clear_int(&fp->f_flag, FDEFER);
1746 	} else {
1747 		/*
1748 		 * if it's not defered, then check if it's
1749 		 * already marked.. if so skip it
1750 		 */
1751 		if (fp->f_flag & FMARK)
1752 			return(0);
1753 		/*
1754 		 * If all references are from messages
1755 		 * in transit, then skip it. it's not
1756 		 * externally accessible.
1757 		 */
1758 		if (fp->f_count == fp->f_msgcount)
1759 			return(0);
1760 		/*
1761 		 * If it got this far then it must be
1762 		 * externally accessible.
1763 		 */
1764 		atomic_set_int(&fp->f_flag, FMARK);
1765 	}
1766 
1767 	/*
1768 	 * either it was defered, or it is externally
1769 	 * accessible and not already marked so.
1770 	 * Now check if it is possibly one of OUR sockets.
1771 	 */
1772 	if (fp->f_type != DTYPE_SOCKET ||
1773 	    (so = (struct socket *)fp->f_data) == NULL) {
1774 		return(0);
1775 	}
1776 	if (so->so_proto->pr_domain != &localdomain ||
1777 	    !(so->so_proto->pr_flags & PR_RIGHTS)) {
1778 		return(0);
1779 	}
1780 
1781 	/*
1782 	 * So, Ok, it's one of our sockets and it IS externally accessible
1783 	 * (or was defered).  Now we look to see if we hold any file
1784 	 * descriptors in its message buffers.  Follow those links and mark
1785 	 * them as accessible too.
1786 	 *
1787 	 * We are holding multiple spinlocks here, if we cannot get the
1788 	 * token non-blocking defer until the next loop.
1789 	 */
1790 	info->locked_fp = fp;
1791 	if (lwkt_trytoken(&so->so_rcv.ssb_token)) {
1792 		unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1793 		lwkt_reltoken(&so->so_rcv.ssb_token);
1794 	} else {
1795 		atomic_set_int(&fp->f_flag, FDEFER);
1796 		++info->defer;
1797 	}
1798 	return (0);
1799 }
1800 
1801 /*
1802  * Scan all unix domain sockets and replace any revoked file pointers
1803  * found with the dummy file pointer fx.  We don't worry about races
1804  * against file pointers being read out as those are handled in the
1805  * externalize code.
1806  */
1807 
1808 #define REVOKE_GC_MAXFILES	32
1809 
1810 struct unp_revoke_gc_info {
1811 	struct file	*fx;
1812 	struct file	*fary[REVOKE_GC_MAXFILES];
1813 	int		fcount;
1814 };
1815 
1816 void
1817 unp_revoke_gc(struct file *fx)
1818 {
1819 	struct unp_revoke_gc_info info;
1820 	int i;
1821 
1822 	lwkt_gettoken(&unp_token);
1823 	info.fx = fx;
1824 	do {
1825 		info.fcount = 0;
1826 		allfiles_scan_exclusive(unp_revoke_gc_check, &info);
1827 		for (i = 0; i < info.fcount; ++i)
1828 			unp_fp_externalize(NULL, info.fary[i], -1);
1829 	} while (info.fcount == REVOKE_GC_MAXFILES);
1830 	lwkt_reltoken(&unp_token);
1831 }
1832 
1833 /*
1834  * Check for and replace revoked descriptors.
1835  *
1836  * WARNING:  This routine is not allowed to block.
1837  */
1838 static int
1839 unp_revoke_gc_check(struct file *fps, void *vinfo)
1840 {
1841 	struct unp_revoke_gc_info *info = vinfo;
1842 	struct file *fp;
1843 	struct socket *so;
1844 	struct mbuf *m0;
1845 	struct mbuf *m;
1846 	struct file **rp;
1847 	struct cmsghdr *cm;
1848 	int i;
1849 	int qfds;
1850 
1851 	/*
1852 	 * Is this a unix domain socket with rights-passing abilities?
1853 	 */
1854 	if (fps->f_type != DTYPE_SOCKET)
1855 		return (0);
1856 	if ((so = (struct socket *)fps->f_data) == NULL)
1857 		return(0);
1858 	if (so->so_proto->pr_domain != &localdomain)
1859 		return(0);
1860 	if ((so->so_proto->pr_flags & PR_RIGHTS) == 0)
1861 		return(0);
1862 
1863 	/*
1864 	 * Scan the mbufs for control messages and replace any revoked
1865 	 * descriptors we find.
1866 	 */
1867 	lwkt_gettoken(&so->so_rcv.ssb_token);
1868 	m0 = so->so_rcv.ssb_mb;
1869 	while (m0) {
1870 		for (m = m0; m; m = m->m_next) {
1871 			if (m->m_type != MT_CONTROL)
1872 				continue;
1873 			if (m->m_len < sizeof(*cm))
1874 				continue;
1875 			cm = mtod(m, struct cmsghdr *);
1876 			if (cm->cmsg_level != SOL_SOCKET ||
1877 			    cm->cmsg_type != SCM_RIGHTS) {
1878 				continue;
1879 			}
1880 			qfds = (cm->cmsg_len - CMSG_LEN(0)) / sizeof(void *);
1881 			rp = (struct file **)CMSG_DATA(cm);
1882 			for (i = 0; i < qfds; i++) {
1883 				fp = rp[i];
1884 				if (fp->f_flag & FREVOKED) {
1885 					kprintf("Warning: Removing revoked fp from unix domain socket queue\n");
1886 					fhold(info->fx);
1887 					info->fx->f_msgcount++;
1888 					unp_rights++;
1889 					rp[i] = info->fx;
1890 					info->fary[info->fcount++] = fp;
1891 				}
1892 				if (info->fcount == REVOKE_GC_MAXFILES)
1893 					break;
1894 			}
1895 			if (info->fcount == REVOKE_GC_MAXFILES)
1896 				break;
1897 		}
1898 		m0 = m0->m_nextpkt;
1899 		if (info->fcount == REVOKE_GC_MAXFILES)
1900 			break;
1901 	}
1902 	lwkt_reltoken(&so->so_rcv.ssb_token);
1903 
1904 	/*
1905 	 * Stop the scan if we filled up our array.
1906 	 */
1907 	if (info->fcount == REVOKE_GC_MAXFILES)
1908 		return(-1);
1909 	return(0);
1910 }
1911 
1912 /*
1913  * Dispose of the fp's stored in a mbuf.
1914  *
1915  * The dds loop can cause additional fps to be entered onto the
1916  * list while it is running, flattening out the operation and avoiding
1917  * a deep kernel stack recursion.
1918  */
1919 void
1920 unp_dispose(struct mbuf *m)
1921 {
1922 	unp_defdiscard_t dds;
1923 
1924 	lwkt_gettoken(&unp_token);
1925 	++unp_defdiscard_nest;
1926 	if (m) {
1927 		unp_scan(m, unp_discard, NULL);
1928 	}
1929 	if (unp_defdiscard_nest == 1) {
1930 		while ((dds = unp_defdiscard_base) != NULL) {
1931 			unp_defdiscard_base = dds->next;
1932 			closef(dds->fp, NULL);
1933 			kfree(dds, M_UNPCB);
1934 		}
1935 	}
1936 	--unp_defdiscard_nest;
1937 	lwkt_reltoken(&unp_token);
1938 }
1939 
1940 static int
1941 unp_listen(struct unpcb *unp, struct thread *td)
1942 {
1943 	struct proc *p = td->td_proc;
1944 
1945 	KKASSERT(p);
1946 	lwkt_gettoken(&unp_token);
1947 	cru2x(p->p_ucred, &unp->unp_peercred);
1948 	unp->unp_flags |= UNP_HAVEPCCACHED;
1949 	lwkt_reltoken(&unp_token);
1950 	return (0);
1951 }
1952 
1953 static void
1954 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1955 {
1956 	struct mbuf *m;
1957 	struct file **rp;
1958 	struct cmsghdr *cm;
1959 	int i;
1960 	int qfds;
1961 
1962 	while (m0) {
1963 		for (m = m0; m; m = m->m_next) {
1964 			if (m->m_type == MT_CONTROL &&
1965 			    m->m_len >= sizeof(*cm)) {
1966 				cm = mtod(m, struct cmsghdr *);
1967 				if (cm->cmsg_level != SOL_SOCKET ||
1968 				    cm->cmsg_type != SCM_RIGHTS)
1969 					continue;
1970 				qfds = (cm->cmsg_len - CMSG_LEN(0)) /
1971 					sizeof(void *);
1972 				rp = (struct file **)CMSG_DATA(cm);
1973 				for (i = 0; i < qfds; i++)
1974 					(*op)(*rp++, data);
1975 				break;		/* XXX, but saves time */
1976 			}
1977 		}
1978 		m0 = m0->m_nextpkt;
1979 	}
1980 }
1981 
1982 /*
1983  * Mark visibility.  info->defer is recalculated on every pass.
1984  */
1985 static void
1986 unp_mark(struct file *fp, void *data)
1987 {
1988 	struct unp_gc_info *info = data;
1989 
1990 	if ((fp->f_flag & FMARK) == 0) {
1991 		++info->defer;
1992 		atomic_set_int(&fp->f_flag, FMARK | FDEFER);
1993 	} else if (fp->f_flag & FDEFER) {
1994 		++info->defer;
1995 	}
1996 }
1997 
1998 /*
1999  * Discard a fp previously held in a unix domain socket mbuf.  To
2000  * avoid blowing out the kernel stack due to contrived chain-reactions
2001  * we may have to defer the operation to a higher procedural level.
2002  *
2003  * Caller holds unp_token
2004  */
2005 static void
2006 unp_discard(struct file *fp, void *data __unused)
2007 {
2008 	unp_defdiscard_t dds;
2009 
2010 	spin_lock(&unp_spin);
2011 	fp->f_msgcount--;
2012 	unp_rights--;
2013 	spin_unlock(&unp_spin);
2014 
2015 	if (unp_defdiscard_nest) {
2016 		dds = kmalloc(sizeof(*dds), M_UNPCB, M_WAITOK|M_ZERO);
2017 		dds->fp = fp;
2018 		dds->next = unp_defdiscard_base;
2019 		unp_defdiscard_base = dds;
2020 	} else {
2021 		closef(fp, NULL);
2022 	}
2023 }
2024 
2025