xref: /dragonfly/sys/kern/usched_bsd4.c (revision 23265324)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.21 2007/02/18 16:16:11 corecode Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
42 
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 
46 /*
47  * Priorities.  Note that with 32 run queues per scheduler each queue
48  * represents four priority levels.
49  */
50 
51 #define MAXPRI			128
52 #define PRIMASK			(MAXPRI - 1)
53 #define PRIBASE_REALTIME	0
54 #define PRIBASE_NORMAL		MAXPRI
55 #define PRIBASE_IDLE		(MAXPRI * 2)
56 #define PRIBASE_THREAD		(MAXPRI * 3)
57 #define PRIBASE_NULL		(MAXPRI * 4)
58 
59 #define NQS	32			/* 32 run queues. */
60 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
61 #define PPQMASK	(PPQ - 1)
62 
63 /*
64  * NICEPPQ	- number of nice units per priority queue
65  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
66  *
67  * ESTCPUPPQ	- number of estcpu units per priority queue
68  * ESTCPUMAX	- number of estcpu units
69  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
70  *		  100% cpu.
71  */
72 #define NICEPPQ		2
73 #define ESTCPURAMP	4
74 #define ESTCPUPPQ	512
75 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
76 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
77 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
78 
79 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
80 
81 TAILQ_HEAD(rq, lwp);
82 
83 #define lwp_priority	lwp_usdata.bsd4.priority
84 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
85 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
86 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
87 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
88 
89 static void bsd4_acquire_curproc(struct lwp *lp);
90 static void bsd4_release_curproc(struct lwp *lp);
91 static void bsd4_select_curproc(globaldata_t gd);
92 static void bsd4_setrunqueue(struct lwp *lp);
93 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
94 				sysclock_t cpstamp);
95 static void bsd4_recalculate_estcpu(struct lwp *lp);
96 static void bsd4_resetpriority(struct lwp *lp);
97 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
98 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
99 
100 #ifdef SMP
101 static void need_user_resched_remote(void *dummy);
102 #endif
103 static struct lwp *chooseproc_locked(struct lwp *chklp);
104 static void bsd4_remrunqueue_locked(struct lwp *lp);
105 static void bsd4_setrunqueue_locked(struct lwp *lp);
106 
107 struct usched usched_bsd4 = {
108 	{ NULL },
109 	"bsd4", "Original DragonFly Scheduler",
110 	NULL,			/* default registration */
111 	NULL,			/* default deregistration */
112 	bsd4_acquire_curproc,
113 	bsd4_release_curproc,
114 	bsd4_setrunqueue,
115 	bsd4_schedulerclock,
116 	bsd4_recalculate_estcpu,
117 	bsd4_resetpriority,
118 	bsd4_forking,
119 	bsd4_exiting,
120 	NULL			/* setcpumask not supported */
121 };
122 
123 struct usched_bsd4_pcpu {
124 	struct thread helper_thread;
125 	short	rrcount;
126 	short	upri;
127 	struct lwp *uschedcp;
128 };
129 
130 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
131 
132 /*
133  * We have NQS (32) run queues per scheduling class.  For the normal
134  * class, there are 128 priorities scaled onto these 32 queues.  New
135  * processes are added to the last entry in each queue, and processes
136  * are selected for running by taking them from the head and maintaining
137  * a simple FIFO arrangement.  Realtime and Idle priority processes have
138  * and explicit 0-31 priority which maps directly onto their class queue
139  * index.  When a queue has something in it, the corresponding bit is
140  * set in the queuebits variable, allowing a single read to determine
141  * the state of all 32 queues and then a ffs() to find the first busy
142  * queue.
143  */
144 static struct rq bsd4_queues[NQS];
145 static struct rq bsd4_rtqueues[NQS];
146 static struct rq bsd4_idqueues[NQS];
147 static u_int32_t bsd4_queuebits;
148 static u_int32_t bsd4_rtqueuebits;
149 static u_int32_t bsd4_idqueuebits;
150 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
151 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
152 static int	 bsd4_runqcount;
153 #ifdef SMP
154 static volatile int bsd4_scancpu;
155 #endif
156 static struct spinlock bsd4_spin;
157 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
158 
159 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, "");
160 #ifdef INVARIANTS
161 static int usched_nonoptimal;
162 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
163         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
164 static int usched_optimal;
165 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
166         &usched_optimal, 0, "acquire_curproc() was optimal");
167 #endif
168 static int usched_debug = -1;
169 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, "");
170 #ifdef SMP
171 static int remote_resched_nonaffinity;
172 static int remote_resched_affinity;
173 static int choose_affinity;
174 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
175         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
176 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
177         &remote_resched_affinity, 0, "Number of remote rescheds");
178 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
179         &choose_affinity, 0, "chooseproc() was smart");
180 #endif
181 
182 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
183 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
184         &usched_bsd4_rrinterval, 0, "");
185 static int usched_bsd4_decay = ESTCPUINCR / 2;
186 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
187         &usched_bsd4_decay, 0, "");
188 
189 /*
190  * Initialize the run queues at boot time.
191  */
192 static void
193 rqinit(void *dummy)
194 {
195 	int i;
196 
197 	spin_init(&bsd4_spin);
198 	for (i = 0; i < NQS; i++) {
199 		TAILQ_INIT(&bsd4_queues[i]);
200 		TAILQ_INIT(&bsd4_rtqueues[i]);
201 		TAILQ_INIT(&bsd4_idqueues[i]);
202 	}
203 	atomic_clear_int(&bsd4_curprocmask, 1);
204 }
205 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
206 
207 /*
208  * BSD4_ACQUIRE_CURPROC
209  *
210  * This function is called when the kernel intends to return to userland.
211  * It is responsible for making the thread the current designated userland
212  * thread for this cpu, blocking if necessary.
213  *
214  * We are expected to handle userland reschedule requests here too.
215  *
216  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
217  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
218  * occur, this function is called only under very controlled circumstances.
219  *
220  * Basically we recalculate our estcpu to hopefully give us a more
221  * favorable disposition, setrunqueue, then wait for the curlwp
222  * designation to be handed to us (if the setrunqueue didn't do it).
223  *
224  * MPSAFE
225  */
226 static void
227 bsd4_acquire_curproc(struct lwp *lp)
228 {
229 	globaldata_t gd = mycpu;
230 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
231 
232 	/*
233 	 * Possibly select another thread, or keep the current thread.
234 	 */
235 	if (user_resched_wanted())
236 		bsd4_select_curproc(gd);
237 
238 	/*
239 	 * If uschedcp is still pointing to us, we're done
240 	 */
241 	if (dd->uschedcp == lp)
242 		return;
243 
244 	/*
245 	 * If this cpu has no current thread, and the run queue is
246 	 * empty, we can safely select ourself.
247 	 */
248 	if (dd->uschedcp == NULL && bsd4_runqcount == 0) {
249 		atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
250 		dd->uschedcp = lp;
251 		dd->upri = lp->lwp_priority;
252 		return;
253 	}
254 
255 	/*
256 	 * Adjust estcpu and recalculate our priority, then put us back on
257 	 * the user process scheduler's runq.  Only increment the involuntary
258 	 * context switch count if the setrunqueue call did not immediately
259 	 * schedule us.
260 	 *
261 	 * Loop until we become the currently scheduled process.  Note that
262 	 * calling setrunqueue can cause us to be migrated to another cpu
263 	 * after we switch away.
264 	 */
265 	do {
266 		crit_enter();
267 		bsd4_recalculate_estcpu(lp);
268 		lwkt_deschedule_self(gd->gd_curthread);
269 		bsd4_setrunqueue(lp);
270 		if ((gd->gd_curthread->td_flags & TDF_RUNQ) == 0)
271 			++lp->lwp_ru.ru_nivcsw;
272 		lwkt_switch();
273 		crit_exit();
274 		gd = mycpu;
275 		dd = &bsd4_pcpu[gd->gd_cpuid];
276 	} while (dd->uschedcp != lp);
277 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
278 }
279 
280 /*
281  * BSD4_RELEASE_CURPROC
282  *
283  * This routine detaches the current thread from the userland scheduler,
284  * usually because the thread needs to run in the kernel (at kernel priority)
285  * for a while.
286  *
287  * This routine is also responsible for selecting a new thread to
288  * make the current thread.
289  *
290  * NOTE: This implementation differs from the dummy example in that
291  * bsd4_select_curproc() is able to select the current process, whereas
292  * dummy_select_curproc() is not able to select the current process.
293  * This means we have to NULL out uschedcp.
294  *
295  * Additionally, note that we may already be on a run queue if releasing
296  * via the lwkt_switch() in bsd4_setrunqueue().
297  *
298  * WARNING!  The MP lock may be in an unsynchronized state due to the
299  * way get_mplock() works and the fact that this function may be called
300  * from a passive release during a lwkt_switch().   try_mplock() will deal
301  * with this for us but you should be aware that td_mpcount may not be
302  * useable.
303  *
304  * MPSAFE
305  */
306 static void
307 bsd4_release_curproc(struct lwp *lp)
308 {
309 	globaldata_t gd = mycpu;
310 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
311 
312 	if (dd->uschedcp == lp) {
313 		/*
314 		 * Note: we leave ou curprocmask bit set to prevent
315 		 * unnecessary scheduler helper wakeups.
316 		 * bsd4_select_curproc() will clean it up.
317 		 */
318 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
319 		dd->uschedcp = NULL;	/* don't let lp be selected */
320 		bsd4_select_curproc(gd);
321 	}
322 }
323 
324 /*
325  * BSD4_SELECT_CURPROC
326  *
327  * Select a new current process for this cpu.  This satisfies a user
328  * scheduler reschedule request so clear that too.
329  *
330  * This routine is also responsible for equal-priority round-robining,
331  * typically triggered from bsd4_schedulerclock().  In our dummy example
332  * all the 'user' threads are LWKT scheduled all at once and we just
333  * call lwkt_switch().
334  *
335  * MPSAFE
336  */
337 static
338 void
339 bsd4_select_curproc(globaldata_t gd)
340 {
341 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
342 	struct lwp *nlp;
343 	int cpuid = gd->gd_cpuid;
344 
345 	crit_enter_gd(gd);
346 	clear_user_resched();	/* This satisfied the reschedule request */
347 	dd->rrcount = 0;	/* Reset the round-robin counter */
348 
349 	spin_lock_wr(&bsd4_spin);
350 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
351 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
352 		dd->upri = nlp->lwp_priority;
353 		dd->uschedcp = nlp;
354 		spin_unlock_wr(&bsd4_spin);
355 #ifdef SMP
356 		lwkt_acquire(nlp->lwp_thread);
357 #endif
358 		lwkt_schedule(nlp->lwp_thread);
359 	} else if (dd->uschedcp) {
360 		dd->upri = dd->uschedcp->lwp_priority;
361 		spin_unlock_wr(&bsd4_spin);
362 		KKASSERT(bsd4_curprocmask & (1 << cpuid));
363 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) {
364 		atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
365 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
366 		dd->uschedcp = NULL;
367 		dd->upri = PRIBASE_NULL;
368 		spin_unlock_wr(&bsd4_spin);
369 		lwkt_schedule(&dd->helper_thread);
370 	} else {
371 		dd->uschedcp = NULL;
372 		dd->upri = PRIBASE_NULL;
373 		atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
374 		spin_unlock_wr(&bsd4_spin);
375 	}
376 	crit_exit_gd(gd);
377 }
378 
379 /*
380  * BSD4_SETRUNQUEUE
381  *
382  * This routine is called to schedule a new user process after a fork.
383  *
384  * The caller may set P_PASSIVE_ACQ in p_flag to indicate that we should
385  * attempt to leave the thread on the current cpu.
386  *
387  * If P_PASSIVE_ACQ is set setrunqueue() will not wakeup potential target
388  * cpus in an attempt to keep the process on the current cpu at least for
389  * a little while to take advantage of locality of reference (e.g. fork/exec
390  * or short fork/exit, and uio_yield()).
391  *
392  * CPU AFFINITY: cpu affinity is handled by attempting to either schedule
393  * or (user level) preempt on the same cpu that a process was previously
394  * scheduled to.  If we cannot do this but we are at enough of a higher
395  * priority then the processes running on other cpus, we will allow the
396  * process to be stolen by another cpu.
397  *
398  * WARNING!  This routine cannot block.  bsd4_acquire_curproc() does
399  * a deschedule/switch interlock and we can be moved to another cpu
400  * the moment we are switched out.  Our LWKT run state is the only
401  * thing preventing the transfer.
402  *
403  * The associated thread must NOT currently be scheduled (but can be the
404  * current process after it has been LWKT descheduled).  It must NOT be on
405  * a bsd4 scheduler queue either.  The purpose of this routine is to put
406  * it on a scheduler queue or make it the current user process and LWKT
407  * schedule it.  It is possible that the thread is in the middle of a LWKT
408  * switchout on another cpu, lwkt_acquire() deals with that case.
409  *
410  * The process must be runnable.
411  *
412  * MPSAFE
413  */
414 static void
415 bsd4_setrunqueue(struct lwp *lp)
416 {
417 	globaldata_t gd;
418 	bsd4_pcpu_t dd;
419 	int cpuid;
420 #ifdef SMP
421 	cpumask_t mask;
422 	cpumask_t tmpmask;
423 #endif
424 
425 	/*
426 	 * First validate the process state relative to the current cpu.
427 	 * We don't need the spinlock for this, just a critical section.
428 	 * We are in control of the process.
429 	 */
430 	crit_enter();
431 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
432 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
433 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
434 	     lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
435 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
436 
437 	/*
438 	 * Note: gd and dd are relative to the target thread's last cpu,
439 	 * NOT our current cpu.
440 	 */
441 	gd = lp->lwp_thread->td_gd;
442 	dd = &bsd4_pcpu[gd->gd_cpuid];
443 
444 	/*
445 	 * This process is not supposed to be scheduled anywhere or assigned
446 	 * as the current process anywhere.  Assert the condition.
447 	 */
448 	KKASSERT(dd->uschedcp != lp);
449 
450 	/*
451 	 * Check local cpu affinity.  The associated thread is stable at
452 	 * the moment.  Note that we may be checking another cpu here so we
453 	 * have to be careful.  We can only assign uschedcp on OUR cpu.
454 	 *
455 	 * This allows us to avoid actually queueing the process.
456 	 * acquire_curproc() will handle any threads we mistakenly schedule.
457 	 */
458 	cpuid = gd->gd_cpuid;
459 	if (gd == mycpu && (bsd4_curprocmask & (1 << cpuid)) == 0) {
460 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
461 		dd->uschedcp = lp;
462 		dd->upri = lp->lwp_priority;
463 		lwkt_schedule(lp->lwp_thread);
464 		crit_exit();
465 		return;
466 	}
467 
468 	/*
469 	 * gd and cpuid may still 'hint' at another cpu.  Even so we have
470 	 * to place this process on the userland scheduler's run queue for
471 	 * action by the target cpu.
472 	 */
473 #ifdef SMP
474 	/*
475 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
476 	 * operation when the priority is recalculated, so TDF_MIGRATING
477 	 * may already be set.
478 	 */
479 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
480 		lwkt_giveaway(lp->lwp_thread);
481 #endif
482 
483 	/*
484 	 * We lose control of lp the moment we release the spinlock after
485 	 * having placed lp on the queue.  i.e. another cpu could pick it
486 	 * up and it could exit, or its priority could be further adjusted,
487 	 * or something like that.
488 	 */
489 	spin_lock_wr(&bsd4_spin);
490 	bsd4_setrunqueue_locked(lp);
491 
492 	/*
493 	 * gd, dd, and cpuid are still our target cpu 'hint', not our current
494 	 * cpu info.
495 	 *
496 	 * We always try to schedule a LWP to its original cpu first.  It
497 	 * is possible for the scheduler helper or setrunqueue to assign
498 	 * the LWP to a different cpu before the one we asked for wakes
499 	 * up.
500 	 *
501 	 * If the LWP has higher priority (lower lwp_priority value) on
502 	 * its target cpu, reschedule on that cpu.
503 	 */
504 	if ((lp->lwp_thread->td_flags & TDF_NORESCHED) == 0) {
505 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
506 			dd->upri = lp->lwp_priority;
507 			spin_unlock_wr(&bsd4_spin);
508 #ifdef SMP
509 			if (gd == mycpu) {
510 				need_user_resched();
511 			} else {
512 				lwkt_send_ipiq(gd, need_user_resched_remote,
513 					       NULL);
514 			}
515 #else
516 			need_user_resched();
517 #endif
518 			crit_exit();
519 			return;
520 		}
521 	}
522 	spin_unlock_wr(&bsd4_spin);
523 
524 #ifdef SMP
525 	/*
526 	 * Otherwise the LWP has a lower priority or we were asked not
527 	 * to reschedule.  Look for an idle cpu whos scheduler helper
528 	 * is ready to accept more work.
529 	 *
530 	 * Look for an idle cpu starting at our rotator (bsd4_scancpu).
531 	 *
532 	 * If no cpus are ready to accept work, just return.
533 	 *
534 	 * XXX P_PASSIVE_ACQ
535 	 */
536 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask & mycpu->gd_other_cpus &
537 	    lp->lwp_cpumask;
538 	if (mask) {
539 		cpuid = bsd4_scancpu;
540 		if (++cpuid == ncpus)
541 			cpuid = 0;
542 		tmpmask = ~((1 << cpuid) - 1);
543 		if (mask & tmpmask)
544 			cpuid = bsfl(mask & tmpmask);
545 		else
546 			cpuid = bsfl(mask);
547 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
548 		bsd4_scancpu = cpuid;
549 		lwkt_schedule(&bsd4_pcpu[cpuid].helper_thread);
550 	}
551 #endif
552 	crit_exit();
553 }
554 
555 /*
556  * This routine is called from a systimer IPI.  It MUST be MP-safe and
557  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
558  * each cpu.
559  *
560  * Because this is effectively a 'fast' interrupt, we cannot safely
561  * use spinlocks unless gd_spinlock_rd is NULL and gd_spinlocks_wr is 0,
562  * even if the spinlocks are 'non conflicting'.  This is due to the way
563  * spinlock conflicts against cached read locks are handled.
564  *
565  * MPSAFE
566  */
567 static
568 void
569 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
570 {
571 	globaldata_t gd = mycpu;
572 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
573 
574 	/*
575 	 * Do we need to round-robin?  We round-robin 10 times a second.
576 	 * This should only occur for cpu-bound batch processes.
577 	 */
578 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
579 		dd->rrcount = 0;
580 		need_user_resched();
581 	}
582 
583 	/*
584 	 * As the process accumulates cpu time p_estcpu is bumped and may
585 	 * push the process into another scheduling queue.  It typically
586 	 * takes 4 ticks to bump the queue.
587 	 */
588 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
589 
590 	/*
591 	 * Reducing p_origcpu over time causes more of our estcpu to be
592 	 * returned to the parent when we exit.  This is a small tweak
593 	 * for the batch detection heuristic.
594 	 */
595 	if (lp->lwp_origcpu)
596 		--lp->lwp_origcpu;
597 
598 	/*
599 	 * We can only safely call bsd4_resetpriority(), which uses spinlocks,
600 	 * if we aren't interrupting a thread that is using spinlocks.
601 	 * Otherwise we can deadlock with another cpu waiting for our read
602 	 * spinlocks to clear.
603 	 */
604 	if (gd->gd_spinlock_rd == NULL && gd->gd_spinlocks_wr == 0)
605 		bsd4_resetpriority(lp);
606 	else
607 		need_user_resched();
608 }
609 
610 /*
611  * Called from acquire and from kern_synch's one-second timer (one of the
612  * callout helper threads) with a critical section held.
613  *
614  * Decay p_estcpu based on the number of ticks we haven't been running
615  * and our p_nice.  As the load increases each process observes a larger
616  * number of idle ticks (because other processes are running in them).
617  * This observation leads to a larger correction which tends to make the
618  * system more 'batchy'.
619  *
620  * Note that no recalculation occurs for a process which sleeps and wakes
621  * up in the same tick.  That is, a system doing thousands of context
622  * switches per second will still only do serious estcpu calculations
623  * ESTCPUFREQ times per second.
624  *
625  * MPSAFE
626  */
627 static
628 void
629 bsd4_recalculate_estcpu(struct lwp *lp)
630 {
631 	globaldata_t gd = mycpu;
632 	sysclock_t cpbase;
633 	int loadfac;
634 	int ndecay;
635 	int nticks;
636 	int nleft;
637 
638 	/*
639 	 * We have to subtract periodic to get the last schedclock
640 	 * timeout time, otherwise we would get the upcoming timeout.
641 	 * Keep in mind that a process can migrate between cpus and
642 	 * while the scheduler clock should be very close, boundary
643 	 * conditions could lead to a small negative delta.
644 	 */
645 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
646 
647 	if (lp->lwp_slptime > 1) {
648 		/*
649 		 * Too much time has passed, do a coarse correction.
650 		 */
651 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
652 		bsd4_resetpriority(lp);
653 		lp->lwp_cpbase = cpbase;
654 		lp->lwp_cpticks = 0;
655 	} else if (lp->lwp_cpbase != cpbase) {
656 		/*
657 		 * Adjust estcpu if we are in a different tick.  Don't waste
658 		 * time if we are in the same tick.
659 		 *
660 		 * First calculate the number of ticks in the measurement
661 		 * interval.  The nticks calculation can wind up 0 due to
662 		 * a bug in the handling of lwp_slptime  (as yet not found),
663 		 * so make sure we do not get a divide by 0 panic.
664 		 */
665 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
666 		if (nticks <= 0)
667 			nticks = 1;
668 		updatepcpu(lp, lp->lwp_cpticks, nticks);
669 
670 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
671 			nleft = 0;
672 		if (usched_debug == lp->lwp_proc->p_pid) {
673 			kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
674 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
675 				lp->lwp_cpticks, nticks, nleft);
676 		}
677 
678 		/*
679 		 * Calculate a decay value based on ticks remaining scaled
680 		 * down by the instantanious load and p_nice.
681 		 */
682 		if ((loadfac = bsd4_runqcount) < 2)
683 			loadfac = 2;
684 		ndecay = nleft * usched_bsd4_decay * 2 *
685 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
686 
687 		/*
688 		 * Adjust p_estcpu.  Handle a border case where batch jobs
689 		 * can get stalled long enough to decay to zero when they
690 		 * shouldn't.
691 		 */
692 		if (lp->lwp_estcpu > ndecay * 2)
693 			lp->lwp_estcpu -= ndecay;
694 		else
695 			lp->lwp_estcpu >>= 1;
696 
697 		if (usched_debug == lp->lwp_proc->p_pid)
698 			kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
699 		bsd4_resetpriority(lp);
700 		lp->lwp_cpbase = cpbase;
701 		lp->lwp_cpticks = 0;
702 	}
703 }
704 
705 /*
706  * Compute the priority of a process when running in user mode.
707  * Arrange to reschedule if the resulting priority is better
708  * than that of the current process.
709  *
710  * This routine may be called with any process.
711  *
712  * This routine is called by fork1() for initial setup with the process
713  * of the run queue, and also may be called normally with the process on or
714  * off the run queue.
715  *
716  * MPSAFE
717  */
718 static void
719 bsd4_resetpriority(struct lwp *lp)
720 {
721 	bsd4_pcpu_t dd;
722 	int newpriority;
723 	u_short newrqtype;
724 	int reschedcpu;
725 
726 	/*
727 	 * Calculate the new priority and queue type
728 	 */
729 	crit_enter();
730 	spin_lock_wr(&bsd4_spin);
731 
732 	newrqtype = lp->lwp_rtprio.type;
733 
734 	switch(newrqtype) {
735 	case RTP_PRIO_REALTIME:
736 	case RTP_PRIO_FIFO:
737 		newpriority = PRIBASE_REALTIME +
738 			     (lp->lwp_rtprio.prio & PRIMASK);
739 		break;
740 	case RTP_PRIO_NORMAL:
741 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
742 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
743 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
744 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
745 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
746 		break;
747 	case RTP_PRIO_IDLE:
748 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
749 		break;
750 	case RTP_PRIO_THREAD:
751 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
752 		break;
753 	default:
754 		panic("Bad RTP_PRIO %d", newrqtype);
755 		/* NOT REACHED */
756 	}
757 
758 	/*
759 	 * The newpriority incorporates the queue type so do a simple masked
760 	 * check to determine if the process has moved to another queue.  If
761 	 * it has, and it is currently on a run queue, then move it.
762 	 */
763 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
764 		lp->lwp_priority = newpriority;
765 		if (lp->lwp_flag & LWP_ONRUNQ) {
766 			bsd4_remrunqueue_locked(lp);
767 			lp->lwp_rqtype = newrqtype;
768 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
769 			bsd4_setrunqueue_locked(lp);
770 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
771 		} else {
772 			lp->lwp_rqtype = newrqtype;
773 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
774 			reschedcpu = -1;
775 		}
776 	} else {
777 		lp->lwp_priority = newpriority;
778 		reschedcpu = -1;
779 	}
780 	spin_unlock_wr(&bsd4_spin);
781 
782 	/*
783 	 * Determine if we need to reschedule the target cpu.  This only
784 	 * occurs if the LWP is already on a scheduler queue, which means
785 	 * that idle cpu notification has already occured.  At most we
786 	 * need only issue a need_user_resched() on the appropriate cpu.
787 	 */
788 	if (reschedcpu >= 0) {
789 		dd = &bsd4_pcpu[reschedcpu];
790 		KKASSERT(dd->uschedcp != lp);
791 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
792 			dd->upri = lp->lwp_priority;
793 #ifdef SMP
794 			if (reschedcpu == mycpu->gd_cpuid) {
795 				need_user_resched();
796 			} else {
797 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
798 					       need_user_resched_remote, NULL);
799 			}
800 #else
801 			need_user_resched();
802 #endif
803 		}
804 	}
805 	crit_exit();
806 }
807 
808 /*
809  * Called from fork1() when a new child process is being created.
810  *
811  * Give the child process an initial estcpu that is more batch then
812  * its parent and dock the parent for the fork (but do not
813  * reschedule the parent).   This comprises the main part of our batch
814  * detection heuristic for both parallel forking and sequential execs.
815  *
816  * Interactive processes will decay the boosted estcpu quickly while batch
817  * processes will tend to compound it.
818  * XXX lwp should be "spawning" instead of "forking"
819  *
820  * MPSAFE
821  */
822 static void
823 bsd4_forking(struct lwp *plp, struct lwp *lp)
824 {
825 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
826 	lp->lwp_origcpu = lp->lwp_estcpu;
827 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
828 }
829 
830 /*
831  * Called when the parent reaps a child.   Propogate cpu use by the child
832  * back to the parent.
833  *
834  * MPSAFE
835  */
836 static void
837 bsd4_exiting(struct lwp *plp, struct lwp *lp)
838 {
839 	int delta;
840 
841 	if (plp->lwp_proc->p_pid != 1) {
842 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
843 		if (delta > 0)
844 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
845 	}
846 }
847 
848 
849 /*
850  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
851  * it selects a user process and returns it.  If chklp is non-NULL and chklp
852  * has a better or equal priority then the process that would otherwise be
853  * chosen, NULL is returned.
854  *
855  * Until we fix the RUNQ code the chklp test has to be strict or we may
856  * bounce between processes trying to acquire the current process designation.
857  *
858  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
859  *	    left intact through the entire routine.
860  */
861 static
862 struct lwp *
863 chooseproc_locked(struct lwp *chklp)
864 {
865 	struct lwp *lp;
866 	struct rq *q;
867 	u_int32_t *which, *which2;
868 	u_int32_t pri;
869 	u_int32_t rtqbits;
870 	u_int32_t tsqbits;
871 	u_int32_t idqbits;
872 	cpumask_t cpumask;
873 
874 	rtqbits = bsd4_rtqueuebits;
875 	tsqbits = bsd4_queuebits;
876 	idqbits = bsd4_idqueuebits;
877 	cpumask = mycpu->gd_cpumask;
878 
879 #ifdef SMP
880 again:
881 #endif
882 	if (rtqbits) {
883 		pri = bsfl(rtqbits);
884 		q = &bsd4_rtqueues[pri];
885 		which = &bsd4_rtqueuebits;
886 		which2 = &rtqbits;
887 	} else if (tsqbits) {
888 		pri = bsfl(tsqbits);
889 		q = &bsd4_queues[pri];
890 		which = &bsd4_queuebits;
891 		which2 = &tsqbits;
892 	} else if (idqbits) {
893 		pri = bsfl(idqbits);
894 		q = &bsd4_idqueues[pri];
895 		which = &bsd4_idqueuebits;
896 		which2 = &idqbits;
897 	} else {
898 		return NULL;
899 	}
900 	lp = TAILQ_FIRST(q);
901 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
902 
903 #ifdef SMP
904 	while ((lp->lwp_cpumask & cpumask) == 0) {
905 		lp = TAILQ_NEXT(lp, lwp_procq);
906 		if (lp == NULL) {
907 			*which2 &= ~(1 << pri);
908 			goto again;
909 		}
910 	}
911 #endif
912 
913 	/*
914 	 * If the passed lwp <chklp> is reasonably close to the selected
915 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
916 	 *
917 	 * Note that we must error on the side of <chklp> to avoid bouncing
918 	 * between threads in the acquire code.
919 	 */
920 	if (chklp) {
921 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
922 			return(NULL);
923 	}
924 
925 #ifdef SMP
926 	/*
927 	 * If the chosen lwp does not reside on this cpu spend a few
928 	 * cycles looking for a better candidate at the same priority level.
929 	 * This is a fallback check, setrunqueue() tries to wakeup the
930 	 * correct cpu and is our front-line affinity.
931 	 */
932 	if (lp->lwp_thread->td_gd != mycpu &&
933 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
934 	) {
935 		if (chklp->lwp_thread->td_gd == mycpu) {
936 			++choose_affinity;
937 			lp = chklp;
938 		}
939 	}
940 #endif
941 
942 	TAILQ_REMOVE(q, lp, lwp_procq);
943 	--bsd4_runqcount;
944 	if (TAILQ_EMPTY(q))
945 		*which &= ~(1 << pri);
946 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
947 	lp->lwp_flag &= ~LWP_ONRUNQ;
948 	return lp;
949 }
950 
951 #ifdef SMP
952 /*
953  * Called via an ipi message to reschedule on another cpu.
954  *
955  * MPSAFE
956  */
957 static
958 void
959 need_user_resched_remote(void *dummy)
960 {
961 	need_user_resched();
962 }
963 
964 #endif
965 
966 
967 /*
968  * bsd4_remrunqueue_locked() removes a given process from the run queue
969  * that it is on, clearing the queue busy bit if it becomes empty.
970  *
971  * Note that user process scheduler is different from the LWKT schedule.
972  * The user process scheduler only manages user processes but it uses LWKT
973  * underneath, and a user process operating in the kernel will often be
974  * 'released' from our management.
975  *
976  * MPSAFE - bsd4_spin must be held exclusively on call
977  */
978 static void
979 bsd4_remrunqueue_locked(struct lwp *lp)
980 {
981 	struct rq *q;
982 	u_int32_t *which;
983 	u_int8_t pri;
984 
985 	KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
986 	lp->lwp_flag &= ~LWP_ONRUNQ;
987 	--bsd4_runqcount;
988 	KKASSERT(bsd4_runqcount >= 0);
989 
990 	pri = lp->lwp_rqindex;
991 	switch(lp->lwp_rqtype) {
992 	case RTP_PRIO_NORMAL:
993 		q = &bsd4_queues[pri];
994 		which = &bsd4_queuebits;
995 		break;
996 	case RTP_PRIO_REALTIME:
997 	case RTP_PRIO_FIFO:
998 		q = &bsd4_rtqueues[pri];
999 		which = &bsd4_rtqueuebits;
1000 		break;
1001 	case RTP_PRIO_IDLE:
1002 		q = &bsd4_idqueues[pri];
1003 		which = &bsd4_idqueuebits;
1004 		break;
1005 	default:
1006 		panic("remrunqueue: invalid rtprio type");
1007 		/* NOT REACHED */
1008 	}
1009 	TAILQ_REMOVE(q, lp, lwp_procq);
1010 	if (TAILQ_EMPTY(q)) {
1011 		KASSERT((*which & (1 << pri)) != 0,
1012 			("remrunqueue: remove from empty queue"));
1013 		*which &= ~(1 << pri);
1014 	}
1015 }
1016 
1017 /*
1018  * bsd4_setrunqueue_locked()
1019  *
1020  * Add a process whos rqtype and rqindex had previously been calculated
1021  * onto the appropriate run queue.   Determine if the addition requires
1022  * a reschedule on a cpu and return the cpuid or -1.
1023  *
1024  * NOTE: Lower priorities are better priorities.
1025  *
1026  * MPSAFE - bsd4_spin must be held exclusively on call
1027  */
1028 static void
1029 bsd4_setrunqueue_locked(struct lwp *lp)
1030 {
1031 	struct rq *q;
1032 	u_int32_t *which;
1033 	int pri;
1034 
1035 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1036 	lp->lwp_flag |= LWP_ONRUNQ;
1037 	++bsd4_runqcount;
1038 
1039 	pri = lp->lwp_rqindex;
1040 
1041 	switch(lp->lwp_rqtype) {
1042 	case RTP_PRIO_NORMAL:
1043 		q = &bsd4_queues[pri];
1044 		which = &bsd4_queuebits;
1045 		break;
1046 	case RTP_PRIO_REALTIME:
1047 	case RTP_PRIO_FIFO:
1048 		q = &bsd4_rtqueues[pri];
1049 		which = &bsd4_rtqueuebits;
1050 		break;
1051 	case RTP_PRIO_IDLE:
1052 		q = &bsd4_idqueues[pri];
1053 		which = &bsd4_idqueuebits;
1054 		break;
1055 	default:
1056 		panic("remrunqueue: invalid rtprio type");
1057 		/* NOT REACHED */
1058 	}
1059 
1060 	/*
1061 	 * Add to the correct queue and set the appropriate bit.  If no
1062 	 * lower priority (i.e. better) processes are in the queue then
1063 	 * we want a reschedule, calculate the best cpu for the job.
1064 	 *
1065 	 * Always run reschedules on the LWPs original cpu.
1066 	 */
1067 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1068 	*which |= 1 << pri;
1069 }
1070 
1071 #ifdef SMP
1072 
1073 /*
1074  * For SMP systems a user scheduler helper thread is created for each
1075  * cpu and is used to allow one cpu to wakeup another for the purposes of
1076  * scheduling userland threads from setrunqueue().  UP systems do not
1077  * need the helper since there is only one cpu.  We can't use the idle
1078  * thread for this because we need to hold the MP lock.  Additionally,
1079  * doing things this way allows us to HLT idle cpus on MP systems.
1080  *
1081  * MPSAFE
1082  */
1083 static void
1084 sched_thread(void *dummy)
1085 {
1086     globaldata_t gd;
1087     bsd4_pcpu_t  dd;
1088     struct lwp *nlp;
1089     cpumask_t cpumask;
1090     cpumask_t tmpmask;
1091     int cpuid;
1092     int tmpid;
1093 
1094     gd = mycpu;
1095     cpuid = gd->gd_cpuid;	/* doesn't change */
1096     cpumask = 1 << cpuid;	/* doesn't change */
1097     dd = &bsd4_pcpu[cpuid];
1098 
1099     /*
1100      * The scheduler thread does not need to hold the MP lock.  Since we
1101      * are woken up only when no user processes are scheduled on a cpu, we
1102      * can run at an ultra low priority.
1103      */
1104     rel_mplock();
1105     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1106 
1107     for (;;) {
1108 	/*
1109 	 * We use the LWKT deschedule-interlock trick to avoid racing
1110 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1111 	 * manual lwkt_switch() call we make below.
1112 	 */
1113 	crit_enter_gd(gd);
1114 	lwkt_deschedule_self(gd->gd_curthread);
1115 	spin_lock_wr(&bsd4_spin);
1116 	atomic_set_int(&bsd4_rdyprocmask, cpumask);
1117 	if ((bsd4_curprocmask & cpumask) == 0) {
1118 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1119 			atomic_set_int(&bsd4_curprocmask, cpumask);
1120 			dd->upri = nlp->lwp_priority;
1121 			dd->uschedcp = nlp;
1122 			spin_unlock_wr(&bsd4_spin);
1123 			lwkt_acquire(nlp->lwp_thread);
1124 			lwkt_schedule(nlp->lwp_thread);
1125 		} else {
1126 			spin_unlock_wr(&bsd4_spin);
1127 		}
1128 	} else {
1129 		/*
1130 		 * Someone scheduled us but raced.  In order to not lose
1131 		 * track of the fact that there may be a LWP ready to go,
1132 		 * forward the request to another cpu if available.
1133 		 *
1134 		 * Rotate through cpus starting with cpuid + 1.  Since cpuid
1135 		 * is already masked out by gd_other_cpus, just use ~cpumask.
1136 		 */
1137 		tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask &
1138 			  mycpu->gd_other_cpus;
1139 		if (tmpmask) {
1140 			if (tmpmask & ~(cpumask - 1))
1141 				tmpid = bsfl(tmpmask & ~(cpumask - 1));
1142 			else
1143 				tmpid = bsfl(tmpmask);
1144 			bsd4_scancpu = tmpid;
1145 			atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid);
1146 			spin_unlock_wr(&bsd4_spin);
1147 			lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread);
1148 		} else {
1149 			spin_unlock_wr(&bsd4_spin);
1150 		}
1151 	}
1152 	crit_exit_gd(gd);
1153 	lwkt_switch();
1154     }
1155 }
1156 
1157 /*
1158  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1159  * been cleared by rqinit() and we should not mess with it further.
1160  */
1161 static void
1162 sched_thread_cpu_init(void)
1163 {
1164     int i;
1165 
1166     if (bootverbose)
1167 	kprintf("start scheduler helpers on cpus:");
1168 
1169     for (i = 0; i < ncpus; ++i) {
1170 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1171 	cpumask_t mask = 1 << i;
1172 
1173 	if ((mask & smp_active_mask) == 0)
1174 	    continue;
1175 
1176 	if (bootverbose)
1177 	    kprintf(" %d", i);
1178 
1179 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1180 		    TDF_STOPREQ, i, "usched %d", i);
1181 
1182 	/*
1183 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1184 	 * been enabled in rqinit().
1185 	 */
1186 	if (i)
1187 	    atomic_clear_int(&bsd4_curprocmask, mask);
1188 	atomic_set_int(&bsd4_rdyprocmask, mask);
1189     }
1190     if (bootverbose)
1191 	kprintf("\n");
1192 }
1193 SYSINIT(uschedtd, SI_SUB_FINISH_SMP, SI_ORDER_ANY, sched_thread_cpu_init, NULL)
1194 
1195 #endif
1196 
1197