xref: /dragonfly/sys/kern/usched_bsd4.c (revision 4d0c54c1)
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/queue.h>
37 #include <sys/proc.h>
38 #include <sys/rtprio.h>
39 #include <sys/uio.h>
40 #include <sys/sysctl.h>
41 #include <sys/resourcevar.h>
42 #include <sys/spinlock.h>
43 #include <sys/cpu_topology.h>
44 #include <sys/thread2.h>
45 #include <sys/spinlock2.h>
46 #include <sys/mplock2.h>
47 
48 #include <sys/ktr.h>
49 
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
52 
53 /*
54  * Priorities.  Note that with 32 run queues per scheduler each queue
55  * represents four priority levels.
56  */
57 
58 #define MAXPRI			128
59 #define PRIMASK			(MAXPRI - 1)
60 #define PRIBASE_REALTIME	0
61 #define PRIBASE_NORMAL		MAXPRI
62 #define PRIBASE_IDLE		(MAXPRI * 2)
63 #define PRIBASE_THREAD		(MAXPRI * 3)
64 #define PRIBASE_NULL		(MAXPRI * 4)
65 
66 #define NQS	32			/* 32 run queues. */
67 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
68 #define PPQMASK	(PPQ - 1)
69 
70 /*
71  * NICEPPQ	- number of nice units per priority queue
72  *
73  * ESTCPUPPQ	- number of estcpu units per priority queue
74  * ESTCPUMAX	- number of estcpu units
75  */
76 #define NICEPPQ		2
77 #define ESTCPUPPQ	512
78 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
79 #define BATCHMAX	(ESTCPUFREQ * 30)
80 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
81 
82 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
83 
84 TAILQ_HEAD(rq, lwp);
85 
86 #define lwp_priority	lwp_usdata.bsd4.priority
87 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
88 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
89 #define lwp_batch	lwp_usdata.bsd4.batch
90 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
91 
92 static void bsd4_acquire_curproc(struct lwp *lp);
93 static void bsd4_release_curproc(struct lwp *lp);
94 static void bsd4_select_curproc(globaldata_t gd);
95 static void bsd4_setrunqueue(struct lwp *lp);
96 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
97 				sysclock_t cpstamp);
98 static void bsd4_recalculate_estcpu(struct lwp *lp);
99 static void bsd4_resetpriority(struct lwp *lp);
100 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
101 static void bsd4_exiting(struct lwp *lp, struct proc *);
102 static void bsd4_uload_update(struct lwp *lp);
103 static void bsd4_yield(struct lwp *lp);
104 static void bsd4_need_user_resched_remote(void *dummy);
105 static int bsd4_batchy_looser_pri_test(struct lwp* lp);
106 static struct lwp *bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp);
107 static void bsd4_kick_helper(struct lwp *lp);
108 static struct lwp *bsd4_chooseproc_locked(struct lwp *chklp);
109 static void bsd4_remrunqueue_locked(struct lwp *lp);
110 static void bsd4_setrunqueue_locked(struct lwp *lp);
111 
112 struct usched usched_bsd4 = {
113 	{ NULL },
114 	"bsd4", "Original DragonFly Scheduler",
115 	NULL,			/* default registration */
116 	NULL,			/* default deregistration */
117 	bsd4_acquire_curproc,
118 	bsd4_release_curproc,
119 	bsd4_setrunqueue,
120 	bsd4_schedulerclock,
121 	bsd4_recalculate_estcpu,
122 	bsd4_resetpriority,
123 	bsd4_forking,
124 	bsd4_exiting,
125 	bsd4_uload_update,
126 	NULL,			/* setcpumask not supported */
127 	bsd4_yield
128 };
129 
130 struct usched_bsd4_pcpu {
131 	struct thread	helper_thread;
132 	short		rrcount;
133 	short		upri;
134 	struct lwp	*uschedcp;
135 	struct lwp	*old_uschedcp;
136 	cpu_node_t	*cpunode;
137 };
138 
139 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
140 
141 /*
142  * We have NQS (32) run queues per scheduling class.  For the normal
143  * class, there are 128 priorities scaled onto these 32 queues.  New
144  * processes are added to the last entry in each queue, and processes
145  * are selected for running by taking them from the head and maintaining
146  * a simple FIFO arrangement.  Realtime and Idle priority processes have
147  * and explicit 0-31 priority which maps directly onto their class queue
148  * index.  When a queue has something in it, the corresponding bit is
149  * set in the queuebits variable, allowing a single read to determine
150  * the state of all 32 queues and then a ffs() to find the first busy
151  * queue.
152  */
153 static struct rq bsd4_queues[NQS];
154 static struct rq bsd4_rtqueues[NQS];
155 static struct rq bsd4_idqueues[NQS];
156 static u_int32_t bsd4_queuebits;
157 static u_int32_t bsd4_rtqueuebits;
158 static u_int32_t bsd4_idqueuebits;
159 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
160 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
161 static int	 bsd4_runqcount;
162 static volatile int bsd4_scancpu;
163 static struct spinlock bsd4_spin;
164 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
165 static struct sysctl_ctx_list usched_bsd4_sysctl_ctx;
166 static struct sysctl_oid *usched_bsd4_sysctl_tree;
167 
168 /* Debug info exposed through debug.* sysctl */
169 
170 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD,
171 	   &bsd4_runqcount, 0,
172 	   "Number of run queues");
173 
174 static int usched_bsd4_debug = -1;
175 SYSCTL_INT(_debug, OID_AUTO, bsd4_scdebug, CTLFLAG_RW,
176 	   &usched_bsd4_debug, 0,
177 	   "Print debug information for this pid");
178 
179 static int usched_bsd4_pid_debug = -1;
180 SYSCTL_INT(_debug, OID_AUTO, bsd4_pid_debug, CTLFLAG_RW,
181 	   &usched_bsd4_pid_debug, 0,
182 	   "Print KTR debug information for this pid");
183 
184 /* Tunning usched_bsd4 - configurable through kern.usched_bsd4.* */
185 static int usched_bsd4_smt = 0;
186 static int usched_bsd4_cache_coherent = 0;
187 static int usched_bsd4_upri_affinity = 16; /* 32 queues - half-way */
188 static int usched_bsd4_queue_checks = 5;
189 static int usched_bsd4_stick_to_level = 0;
190 static long usched_bsd4_kicks;
191 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
192 static int usched_bsd4_decay = 8;
193 static int usched_bsd4_batch_time = 10;
194 
195 /* KTR debug printings */
196 
197 KTR_INFO_MASTER_EXTERN(usched);
198 
199 #if !defined(KTR_USCHED_BSD4)
200 #define	KTR_USCHED_BSD4	KTR_ALL
201 #endif
202 
203 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_urw, 0,
204     "USCHED_BSD4(bsd4_acquire_curproc in user_reseched_wanted "
205     "after release: pid %d, cpuid %d, curr_cpuid %d)",
206     pid_t pid, int cpuid, int curr);
207 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_before_loop, 0,
208     "USCHED_BSD4(bsd4_acquire_curproc before loop: pid %d, cpuid %d, "
209     "curr_cpuid %d)",
210     pid_t pid, int cpuid, int curr);
211 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_not, 0,
212     "USCHED_BSD4(bsd4_acquire_curproc couldn't acquire after "
213     "bsd4_setrunqueue: pid %d, cpuid %d, curr_lp pid %d, curr_cpuid %d)",
214     pid_t pid, int cpuid, pid_t curr_pid, int curr_cpuid);
215 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_acquire_curproc_switch, 0,
216     "USCHED_BSD4(bsd4_acquire_curproc after lwkt_switch: pid %d, "
217     "cpuid %d, curr_cpuid %d)",
218     pid_t pid, int cpuid, int curr);
219 
220 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_release_curproc, 0,
221     "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
222     "cpuid %d, curr_cpuid %d)",
223     pid_t pid, int cpuid, int curr);
224 
225 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_select_curproc, 0,
226     "USCHED_BSD4(bsd4_release_curproc before select: pid %d, "
227     "cpuid %d, old_pid %d, old_cpuid %d, curr_cpuid %d)",
228     pid_t pid, int cpuid, pid_t old_pid, int old_cpuid, int curr);
229 
230 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_false, 0,
231     "USCHED_BSD4(batchy_looser_pri_test false: pid %d, "
232     "cpuid %d, verify_mask %lu)",
233     pid_t pid, int cpuid, cpumask_t mask);
234 KTR_INFO(KTR_USCHED_BSD4, usched, batchy_test_true, 0,
235     "USCHED_BSD4(batchy_looser_pri_test true: pid %d, "
236     "cpuid %d, verify_mask %lu)",
237     pid_t pid, int cpuid, cpumask_t mask);
238 
239 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_smt, 0,
240     "USCHED_BSD4(bsd4_setrunqueue free cpus smt: pid %d, cpuid %d, "
241     "mask %lu, curr_cpuid %d)",
242     pid_t pid, int cpuid, cpumask_t mask, int curr);
243 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_fc_non_smt, 0,
244     "USCHED_BSD4(bsd4_setrunqueue free cpus check non_smt: pid %d, "
245     "cpuid %d, mask %lu, curr_cpuid %d)",
246     pid_t pid, int cpuid, cpumask_t mask, int curr);
247 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_rc, 0,
248     "USCHED_BSD4(bsd4_setrunqueue running cpus check: pid %d, "
249     "cpuid %d, mask %lu, curr_cpuid %d)",
250     pid_t pid, int cpuid, cpumask_t mask, int curr);
251 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found, 0,
252     "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
253     "mask %lu, found_cpuid %d, curr_cpuid %d)",
254     pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
255 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_not_found, 0,
256     "USCHED_BSD4(bsd4_setrunqueue not found cpu: pid %d, cpuid %d, "
257     "try_cpuid %d, curr_cpuid %d)",
258     pid_t pid, int cpuid, int try_cpuid, int curr);
259 KTR_INFO(KTR_USCHED_BSD4, usched, bsd4_setrunqueue_found_best_cpuid, 0,
260     "USCHED_BSD4(bsd4_setrunqueue found cpu: pid %d, cpuid %d, "
261     "mask %lu, found_cpuid %d, curr_cpuid %d)",
262     pid_t pid, int cpuid, cpumask_t mask, int found_cpuid, int curr);
263 
264 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc, 0,
265     "USCHED_BSD4(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
266     pid_t pid, int old_cpuid, int curr);
267 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc, 0,
268     "USCHED_BSD4(chooseproc_cc: pid %d, old_cpuid %d, curr_cpuid %d)",
269     pid_t pid, int old_cpuid, int curr);
270 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_not_good, 0,
271     "USCHED_BSD4(chooseproc_cc not good: pid %d, old_cpumask %lu, "
272     "sibling_mask %lu, curr_cpumask %lu)",
273     pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
274 KTR_INFO(KTR_USCHED_BSD4, usched, chooseproc_cc_elected, 0,
275     "USCHED_BSD4(chooseproc_cc elected: pid %d, old_cpumask %lu, "
276     "sibling_mask %lu, curr_cpumask: %lu)",
277     pid_t pid, cpumask_t old_cpumask, cpumask_t sibling_mask, cpumask_t curr);
278 
279 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process, 0,
280     "USCHED_BSD4(sched_thread %d no process scheduled: pid %d, old_cpuid %d)",
281     int id, pid_t pid, int cpuid);
282 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_process, 0,
283     "USCHED_BSD4(sched_thread %d process scheduled: pid %d, old_cpuid %d)",
284     int id, pid_t pid, int cpuid);
285 KTR_INFO(KTR_USCHED_BSD4, usched, sched_thread_no_process_found, 0,
286     "USCHED_BSD4(sched_thread %d no process found; tmpmask %lu)",
287     int id, cpumask_t tmpmask);
288 
289 /*
290  * Initialize the run queues at boot time.
291  */
292 static void
293 bsd4_rqinit(void *dummy)
294 {
295 	int i;
296 
297 	spin_init(&bsd4_spin);
298 	for (i = 0; i < NQS; i++) {
299 		TAILQ_INIT(&bsd4_queues[i]);
300 		TAILQ_INIT(&bsd4_rtqueues[i]);
301 		TAILQ_INIT(&bsd4_idqueues[i]);
302 	}
303 	atomic_clear_cpumask(&bsd4_curprocmask, 1);
304 }
305 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, bsd4_rqinit, NULL)
306 
307 /*
308  * BSD4_ACQUIRE_CURPROC
309  *
310  * This function is called when the kernel intends to return to userland.
311  * It is responsible for making the thread the current designated userland
312  * thread for this cpu, blocking if necessary.
313  *
314  * The kernel will not depress our LWKT priority until after we return,
315  * in case we have to shove over to another cpu.
316  *
317  * We must determine our thread's disposition before we switch away.  This
318  * is very sensitive code.
319  *
320  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
321  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
322  * occur, this function is called only under very controlled circumstances.
323  *
324  * MPSAFE
325  */
326 static void
327 bsd4_acquire_curproc(struct lwp *lp)
328 {
329 	globaldata_t gd;
330 	bsd4_pcpu_t dd;
331 	thread_t td;
332 #if 0
333 	struct lwp *olp;
334 #endif
335 
336 	/*
337 	 * Make sure we aren't sitting on a tsleep queue.
338 	 */
339 	td = lp->lwp_thread;
340 	crit_enter_quick(td);
341 	if (td->td_flags & TDF_TSLEEPQ)
342 		tsleep_remove(td);
343 	bsd4_recalculate_estcpu(lp);
344 
345 	/*
346 	 * If a reschedule was requested give another thread the
347 	 * driver's seat.
348 	 */
349 	if (user_resched_wanted()) {
350 		clear_user_resched();
351 		bsd4_release_curproc(lp);
352 
353 		KTR_COND_LOG(usched_bsd4_acquire_curproc_urw,
354 		    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
355 		    lp->lwp_proc->p_pid,
356 		    lp->lwp_thread->td_gd->gd_cpuid,
357 		    mycpu->gd_cpuid);
358 	}
359 
360 	/*
361 	 * Loop until we are the current user thread
362 	 */
363 	gd = mycpu;
364 	dd = &bsd4_pcpu[gd->gd_cpuid];
365 
366 	KTR_COND_LOG(usched_bsd4_acquire_curproc_before_loop,
367 	    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
368 	    lp->lwp_proc->p_pid,
369 	    lp->lwp_thread->td_gd->gd_cpuid,
370 	    gd->gd_cpuid);
371 
372 	do {
373 		/*
374 		 * Process any pending events and higher priority threads.
375 		 */
376 		lwkt_yield();
377 
378 		/*
379 		 * Become the currently scheduled user thread for this cpu
380 		 * if we can do so trivially.
381 		 *
382 		 * We can steal another thread's current thread designation
383 		 * on this cpu since if we are running that other thread
384 		 * must not be, so we can safely deschedule it.
385 		 */
386 		if (dd->uschedcp == lp) {
387 			/*
388 			 * We are already the current lwp (hot path).
389 			 */
390 			dd->upri = lp->lwp_priority;
391 		} else if (dd->uschedcp == NULL) {
392 			/*
393 			 * We can trivially become the current lwp.
394 			 */
395 			atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
396 			dd->uschedcp = lp;
397 			dd->upri = lp->lwp_priority;
398 		} else if (dd->upri > lp->lwp_priority) {
399 			/*
400 			 * We can steal the current cpu's lwp designation
401 			 * away simply by replacing it.  The other thread
402 			 * will stall when it tries to return to userland.
403 			 */
404 			dd->uschedcp = lp;
405 			dd->upri = lp->lwp_priority;
406 			/*
407 			lwkt_deschedule(olp->lwp_thread);
408 			bsd4_setrunqueue(olp);
409 			*/
410 		} else {
411 			/*
412 			 * We cannot become the current lwp, place the lp
413 			 * on the bsd4 run-queue and deschedule ourselves.
414 			 *
415 			 * When we are reactivated we will have another
416 			 * chance.
417 			 */
418 			lwkt_deschedule(lp->lwp_thread);
419 
420 			bsd4_setrunqueue(lp);
421 
422 			KTR_COND_LOG(usched_bsd4_acquire_curproc_not,
423 			    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
424 			    lp->lwp_proc->p_pid,
425 			    lp->lwp_thread->td_gd->gd_cpuid,
426 			    dd->uschedcp->lwp_proc->p_pid,
427 			    gd->gd_cpuid);
428 
429 
430 			lwkt_switch();
431 
432 			/*
433 			 * Reload after a switch or setrunqueue/switch possibly
434 			 * moved us to another cpu.
435 			 */
436 			gd = mycpu;
437 			dd = &bsd4_pcpu[gd->gd_cpuid];
438 
439 			KTR_COND_LOG(usched_bsd4_acquire_curproc_switch,
440 			    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
441 			    lp->lwp_proc->p_pid,
442 			    lp->lwp_thread->td_gd->gd_cpuid,
443 			    gd->gd_cpuid);
444 		}
445 	} while (dd->uschedcp != lp);
446 
447 	crit_exit_quick(td);
448 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
449 }
450 
451 /*
452  * BSD4_RELEASE_CURPROC
453  *
454  * This routine detaches the current thread from the userland scheduler,
455  * usually because the thread needs to run or block in the kernel (at
456  * kernel priority) for a while.
457  *
458  * This routine is also responsible for selecting a new thread to
459  * make the current thread.
460  *
461  * NOTE: This implementation differs from the dummy example in that
462  * bsd4_select_curproc() is able to select the current process, whereas
463  * dummy_select_curproc() is not able to select the current process.
464  * This means we have to NULL out uschedcp.
465  *
466  * Additionally, note that we may already be on a run queue if releasing
467  * via the lwkt_switch() in bsd4_setrunqueue().
468  *
469  * MPSAFE
470  */
471 
472 static void
473 bsd4_release_curproc(struct lwp *lp)
474 {
475 	globaldata_t gd = mycpu;
476 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
477 
478 	if (dd->uschedcp == lp) {
479 		crit_enter();
480 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
481 
482 		KTR_COND_LOG(usched_bsd4_release_curproc,
483 		    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
484 		    lp->lwp_proc->p_pid,
485 		    lp->lwp_thread->td_gd->gd_cpuid,
486 		    gd->gd_cpuid);
487 
488 		dd->uschedcp = NULL;	/* don't let lp be selected */
489 		dd->upri = PRIBASE_NULL;
490 		atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
491 		dd->old_uschedcp = lp;	/* used only for KTR debug prints */
492 		bsd4_select_curproc(gd);
493 		crit_exit();
494 	}
495 }
496 
497 /*
498  * BSD4_SELECT_CURPROC
499  *
500  * Select a new current process for this cpu and clear any pending user
501  * reschedule request.  The cpu currently has no current process.
502  *
503  * This routine is also responsible for equal-priority round-robining,
504  * typically triggered from bsd4_schedulerclock().  In our dummy example
505  * all the 'user' threads are LWKT scheduled all at once and we just
506  * call lwkt_switch().
507  *
508  * The calling process is not on the queue and cannot be selected.
509  *
510  * MPSAFE
511  */
512 static
513 void
514 bsd4_select_curproc(globaldata_t gd)
515 {
516 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
517 	struct lwp *nlp;
518 	int cpuid = gd->gd_cpuid;
519 
520 	crit_enter_gd(gd);
521 
522 	spin_lock(&bsd4_spin);
523 	if(usched_bsd4_cache_coherent)
524 		nlp = bsd4_chooseproc_locked_cache_coherent(dd->uschedcp);
525 	else
526 		nlp = bsd4_chooseproc_locked(dd->uschedcp);
527 
528 	if (nlp) {
529 
530 		KTR_COND_LOG(usched_bsd4_select_curproc,
531 		    nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
532 		    nlp->lwp_proc->p_pid,
533 		    nlp->lwp_thread->td_gd->gd_cpuid,
534 		    dd->old_uschedcp->lwp_proc->p_pid,
535 		    dd->old_uschedcp->lwp_thread->td_gd->gd_cpuid,
536 		    gd->gd_cpuid);
537 
538 		atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid));
539 		dd->upri = nlp->lwp_priority;
540 		dd->uschedcp = nlp;
541 		dd->rrcount = 0;		/* reset round robin */
542 		spin_unlock(&bsd4_spin);
543 		lwkt_acquire(nlp->lwp_thread);
544 		lwkt_schedule(nlp->lwp_thread);
545 	} else {
546 		spin_unlock(&bsd4_spin);
547 	}
548 
549 #if 0
550 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) {
551 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
552 		spin_unlock(&bsd4_spin);
553 		lwkt_schedule(&dd->helper_thread);
554 	} else {
555 		spin_unlock(&bsd4_spin);
556 	}
557 #endif
558 	crit_exit_gd(gd);
559 }
560 
561 /*
562  * batchy_looser_pri_test() - determine if a process is batchy or not
563  * relative to the other processes running in the system
564  */
565 static int
566 bsd4_batchy_looser_pri_test(struct lwp* lp)
567 {
568 	cpumask_t mask;
569 	bsd4_pcpu_t other_dd;
570 	int cpu;
571 
572 	/* Current running processes */
573 	mask = bsd4_curprocmask & smp_active_mask
574 	    & usched_global_cpumask;
575 
576 	while(mask) {
577 		cpu = BSFCPUMASK(mask);
578 		other_dd = &bsd4_pcpu[cpu];
579 		if (other_dd->upri - lp->lwp_priority > usched_bsd4_upri_affinity * PPQ) {
580 
581 			KTR_COND_LOG(usched_batchy_test_false,
582 			    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
583 			    lp->lwp_proc->p_pid,
584 			    lp->lwp_thread->td_gd->gd_cpuid,
585 			    (unsigned long)mask);
586 
587 			return 0;
588 		}
589 		mask &= ~CPUMASK(cpu);
590 	}
591 
592 	KTR_COND_LOG(usched_batchy_test_true,
593 	    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
594 	    lp->lwp_proc->p_pid,
595 	    lp->lwp_thread->td_gd->gd_cpuid,
596 	    (unsigned long)mask);
597 
598 	return 1;
599 }
600 
601 /*
602  *
603  * BSD4_SETRUNQUEUE
604  *
605  * Place the specified lwp on the user scheduler's run queue.  This routine
606  * must be called with the thread descheduled.  The lwp must be runnable.
607  *
608  * The thread may be the current thread as a special case.
609  *
610  * MPSAFE
611  */
612 static void
613 bsd4_setrunqueue(struct lwp *lp)
614 {
615 	globaldata_t gd;
616 	bsd4_pcpu_t dd;
617 	int cpuid;
618 	cpumask_t mask;
619 	cpumask_t tmpmask;
620 
621 	/*
622 	 * First validate the process state relative to the current cpu.
623 	 * We don't need the spinlock for this, just a critical section.
624 	 * We are in control of the process.
625 	 */
626 	crit_enter();
627 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
628 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
629 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
630 	     lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
631 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
632 
633 	/*
634 	 * Note: gd and dd are relative to the target thread's last cpu,
635 	 * NOT our current cpu.
636 	 */
637 	gd = lp->lwp_thread->td_gd;
638 	dd = &bsd4_pcpu[gd->gd_cpuid];
639 
640 	/*
641 	 * This process is not supposed to be scheduled anywhere or assigned
642 	 * as the current process anywhere.  Assert the condition.
643 	 */
644 	KKASSERT(dd->uschedcp != lp);
645 
646 	/*
647 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
648 	 * operation when the priority is recalculated, so TDF_MIGRATING
649 	 * may already be set.
650 	 */
651 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
652 		lwkt_giveaway(lp->lwp_thread);
653 
654 	/*
655 	 * We lose control of lp the moment we release the spinlock after
656 	 * having placed lp on the queue.  i.e. another cpu could pick it
657 	 * up and it could exit, or its priority could be further adjusted,
658 	 * or something like that.
659 	 */
660 	spin_lock(&bsd4_spin);
661 	bsd4_setrunqueue_locked(lp);
662 	lp->lwp_rebal_ticks = sched_ticks;
663 
664 	/*
665 	 * Kick the scheduler helper on one of the other cpu's
666 	 * and request a reschedule if appropriate.
667 	 *
668 	 * NOTE: We check all cpus whos rdyprocmask is set.  First we
669 	 *	 look for cpus without designated lps, then we look for
670 	 *	 cpus with designated lps with a worse priority than our
671 	 *	 process.
672 	 */
673 	++bsd4_scancpu;
674 
675 	if (usched_bsd4_smt) {
676 
677 		/*
678 		 * SMT heuristic - Try to schedule on a free physical core.
679 		 * If no physical core found than choose the one that has
680 		 * an interactive thread.
681 		 */
682 
683 		int best_cpuid = -1;
684 		int min_prio = MAXPRI * MAXPRI;
685 		int sibling;
686 
687 		cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
688 		mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
689 		    smp_active_mask & usched_global_cpumask;
690 
691 		KTR_COND_LOG(usched_bsd4_setrunqueue_fc_smt,
692 		    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
693 		    lp->lwp_proc->p_pid,
694 		    lp->lwp_thread->td_gd->gd_cpuid,
695 		    (unsigned long)mask,
696 		    mycpu->gd_cpuid);
697 
698 		while (mask) {
699 			tmpmask = ~(CPUMASK(cpuid) - 1);
700 			if (mask & tmpmask)
701 				cpuid = BSFCPUMASK(mask & tmpmask);
702 			else
703 				cpuid = BSFCPUMASK(mask);
704 			gd = globaldata_find(cpuid);
705 			dd = &bsd4_pcpu[cpuid];
706 
707 			if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
708 				if (dd->cpunode->parent_node->members & ~dd->cpunode->members & mask) {
709 
710 					KTR_COND_LOG(usched_bsd4_setrunqueue_found,
711 					    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
712 					    lp->lwp_proc->p_pid,
713 					    lp->lwp_thread->td_gd->gd_cpuid,
714 					    (unsigned long)mask,
715 					    cpuid,
716 					    mycpu->gd_cpuid);
717 
718 					goto found;
719 				} else {
720 					sibling = BSFCPUMASK(dd->cpunode->parent_node->members &
721 					    ~dd->cpunode->members);
722 					if (min_prio > bsd4_pcpu[sibling].upri) {
723 						min_prio = bsd4_pcpu[sibling].upri;
724 						best_cpuid = cpuid;
725 					}
726 				}
727 			}
728 			mask &= ~CPUMASK(cpuid);
729 		}
730 
731 		if (best_cpuid != -1) {
732 			cpuid = best_cpuid;
733 			gd = globaldata_find(cpuid);
734 			dd = &bsd4_pcpu[cpuid];
735 
736 			KTR_COND_LOG(usched_bsd4_setrunqueue_found_best_cpuid,
737 			    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
738 			    lp->lwp_proc->p_pid,
739 			    lp->lwp_thread->td_gd->gd_cpuid,
740 			    (unsigned long)mask,
741 			    cpuid,
742 			    mycpu->gd_cpuid);
743 
744 			goto found;
745 		}
746 	} else {
747 		/* Fallback to the original heuristic */
748 		cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
749 		mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
750 		       smp_active_mask & usched_global_cpumask;
751 
752 		KTR_COND_LOG(usched_bsd4_setrunqueue_fc_non_smt,
753 		    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
754 		    lp->lwp_proc->p_pid,
755 		    lp->lwp_thread->td_gd->gd_cpuid,
756 		    (unsigned long)mask,
757 		    mycpu->gd_cpuid);
758 
759 		while (mask) {
760 			tmpmask = ~(CPUMASK(cpuid) - 1);
761 			if (mask & tmpmask)
762 				cpuid = BSFCPUMASK(mask & tmpmask);
763 			else
764 				cpuid = BSFCPUMASK(mask);
765 			gd = globaldata_find(cpuid);
766 			dd = &bsd4_pcpu[cpuid];
767 
768 			if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) {
769 
770 				KTR_COND_LOG(usched_bsd4_setrunqueue_found,
771 				    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
772 				    lp->lwp_proc->p_pid,
773 				    lp->lwp_thread->td_gd->gd_cpuid,
774 				    (unsigned long)mask,
775 				    cpuid,
776 				    mycpu->gd_cpuid);
777 
778 				goto found;
779 			}
780 			mask &= ~CPUMASK(cpuid);
781 		}
782 	}
783 
784 	/*
785 	 * Then cpus which might have a currently running lp
786 	 */
787 	mask = bsd4_curprocmask & bsd4_rdyprocmask &
788 	       lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
789 
790 	KTR_COND_LOG(usched_bsd4_setrunqueue_rc,
791 	    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
792 	    lp->lwp_proc->p_pid,
793 	    lp->lwp_thread->td_gd->gd_cpuid,
794 	    (unsigned long)mask,
795 	    mycpu->gd_cpuid);
796 
797 	while (mask) {
798 		tmpmask = ~(CPUMASK(cpuid) - 1);
799 		if (mask & tmpmask)
800 			cpuid = BSFCPUMASK(mask & tmpmask);
801 		else
802 			cpuid = BSFCPUMASK(mask);
803 		gd = globaldata_find(cpuid);
804 		dd = &bsd4_pcpu[cpuid];
805 
806 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
807 
808 			KTR_COND_LOG(usched_bsd4_setrunqueue_found,
809 			    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
810 			    lp->lwp_proc->p_pid,
811 			    lp->lwp_thread->td_gd->gd_cpuid,
812 			    (unsigned long)mask,
813 			    cpuid,
814 			    mycpu->gd_cpuid);
815 
816 			goto found;
817 		}
818 		mask &= ~CPUMASK(cpuid);
819 	}
820 
821 	/*
822 	 * If we cannot find a suitable cpu we reload from bsd4_scancpu
823 	 * and round-robin.  Other cpus will pickup as they release their
824 	 * current lwps or become ready.
825 	 *
826 	 * Avoid a degenerate system lockup case if usched_global_cpumask
827 	 * is set to 0 or otherwise does not cover lwp_cpumask.
828 	 *
829 	 * We only kick the target helper thread in this case, we do not
830 	 * set the user resched flag because
831 	 */
832 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
833 	if ((CPUMASK(cpuid) & usched_global_cpumask) == 0) {
834 		cpuid = 0;
835 	}
836 	gd = globaldata_find(cpuid);
837 	dd = &bsd4_pcpu[cpuid];
838 
839 	KTR_COND_LOG(usched_bsd4_setrunqueue_not_found,
840 	    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
841 	    lp->lwp_proc->p_pid,
842 	    lp->lwp_thread->td_gd->gd_cpuid,
843 	    cpuid,
844 	    mycpu->gd_cpuid);
845 
846 found:
847 	if (gd == mycpu) {
848 		spin_unlock(&bsd4_spin);
849 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
850 			if (dd->uschedcp == NULL) {
851 				wakeup_mycpu(&dd->helper_thread);
852 			} else {
853 				need_user_resched();
854 			}
855 		}
856 	} else {
857 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
858 		spin_unlock(&bsd4_spin);
859 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
860 			lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
861 		else
862 			wakeup(&dd->helper_thread);
863 	}
864 	crit_exit();
865 }
866 
867 /*
868  * This routine is called from a systimer IPI.  It MUST be MP-safe and
869  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
870  * each cpu.
871  *
872  * This routine is called on every sched tick.  If the currently running
873  * thread belongs to this scheduler it will be called with a non-NULL lp,
874  * otherwise it will be called with a NULL lp.
875  *
876  * MPSAFE
877  */
878 static
879 void
880 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
881 {
882 	globaldata_t gd = mycpu;
883 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
884 
885 	/*
886 	 * No impl if no lp running.
887 	 */
888 	if (lp == NULL)
889 		return;
890 
891 	/*
892 	 * Do we need to round-robin?  We round-robin 10 times a second.
893 	 * This should only occur for cpu-bound batch processes.
894 	 */
895 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
896 		dd->rrcount = 0;
897 		need_user_resched();
898 	}
899 
900 	/*
901 	 * Adjust estcpu upward using a real time equivalent calculation.
902 	 */
903 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
904 
905 	/*
906 	 * Spinlocks also hold a critical section so there should not be
907 	 * any active.
908 	 */
909 	KKASSERT(gd->gd_spinlocks == 0);
910 
911 	bsd4_resetpriority(lp);
912 }
913 
914 /*
915  * Called from acquire and from kern_synch's one-second timer (one of the
916  * callout helper threads) with a critical section held.
917  *
918  * Decay p_estcpu based on the number of ticks we haven't been running
919  * and our p_nice.  As the load increases each process observes a larger
920  * number of idle ticks (because other processes are running in them).
921  * This observation leads to a larger correction which tends to make the
922  * system more 'batchy'.
923  *
924  * Note that no recalculation occurs for a process which sleeps and wakes
925  * up in the same tick.  That is, a system doing thousands of context
926  * switches per second will still only do serious estcpu calculations
927  * ESTCPUFREQ times per second.
928  *
929  * MPSAFE
930  */
931 static
932 void
933 bsd4_recalculate_estcpu(struct lwp *lp)
934 {
935 	globaldata_t gd = mycpu;
936 	sysclock_t cpbase;
937 	sysclock_t ttlticks;
938 	int estcpu;
939 	int decay_factor;
940 
941 	/*
942 	 * We have to subtract periodic to get the last schedclock
943 	 * timeout time, otherwise we would get the upcoming timeout.
944 	 * Keep in mind that a process can migrate between cpus and
945 	 * while the scheduler clock should be very close, boundary
946 	 * conditions could lead to a small negative delta.
947 	 */
948 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
949 
950 	if (lp->lwp_slptime > 1) {
951 		/*
952 		 * Too much time has passed, do a coarse correction.
953 		 */
954 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
955 		bsd4_resetpriority(lp);
956 		lp->lwp_cpbase = cpbase;
957 		lp->lwp_cpticks = 0;
958 		lp->lwp_batch -= ESTCPUFREQ;
959 		if (lp->lwp_batch < 0)
960 			lp->lwp_batch = 0;
961 	} else if (lp->lwp_cpbase != cpbase) {
962 		/*
963 		 * Adjust estcpu if we are in a different tick.  Don't waste
964 		 * time if we are in the same tick.
965 		 *
966 		 * First calculate the number of ticks in the measurement
967 		 * interval.  The ttlticks calculation can wind up 0 due to
968 		 * a bug in the handling of lwp_slptime  (as yet not found),
969 		 * so make sure we do not get a divide by 0 panic.
970 		 */
971 		ttlticks = (cpbase - lp->lwp_cpbase) /
972 			   gd->gd_schedclock.periodic;
973 		if ((ssysclock_t)ttlticks < 0) {
974 			ttlticks = 0;
975 			lp->lwp_cpbase = cpbase;
976 		}
977 		if (ttlticks == 0)
978 			return;
979 		updatepcpu(lp, lp->lwp_cpticks, ttlticks);
980 
981 		/*
982 		 * Calculate the percentage of one cpu used factoring in ncpus
983 		 * and the load and adjust estcpu.  Handle degenerate cases
984 		 * by adding 1 to bsd4_runqcount.
985 		 *
986 		 * estcpu is scaled by ESTCPUMAX.
987 		 *
988 		 * bsd4_runqcount is the excess number of user processes
989 		 * that cannot be immediately scheduled to cpus.  We want
990 		 * to count these as running to avoid range compression
991 		 * in the base calculation (which is the actual percentage
992 		 * of one cpu used).
993 		 */
994 		estcpu = (lp->lwp_cpticks * ESTCPUMAX) *
995 			 (bsd4_runqcount + ncpus) / (ncpus * ttlticks);
996 
997 		/*
998 		 * If estcpu is > 50% we become more batch-like
999 		 * If estcpu is <= 50% we become less batch-like
1000 		 *
1001 		 * It takes 30 cpu seconds to traverse the entire range.
1002 		 */
1003 		if (estcpu > ESTCPUMAX / 2) {
1004 			lp->lwp_batch += ttlticks;
1005 			if (lp->lwp_batch > BATCHMAX)
1006 				lp->lwp_batch = BATCHMAX;
1007 		} else {
1008 			lp->lwp_batch -= ttlticks;
1009 			if (lp->lwp_batch < 0)
1010 				lp->lwp_batch = 0;
1011 		}
1012 
1013 		if (usched_bsd4_debug == lp->lwp_proc->p_pid) {
1014 			kprintf("pid %d lwp %p estcpu %3d %3d bat %d cp %d/%d",
1015 				lp->lwp_proc->p_pid, lp,
1016 				estcpu, lp->lwp_estcpu,
1017 				lp->lwp_batch,
1018 				lp->lwp_cpticks, ttlticks);
1019 		}
1020 
1021 		/*
1022 		 * Adjust lp->lwp_esetcpu.  The decay factor determines how
1023 		 * quickly lwp_estcpu collapses to its realtime calculation.
1024 		 * A slower collapse gives us a more accurate number but
1025 		 * can cause a cpu hog to eat too much cpu before the
1026 		 * scheduler decides to downgrade it.
1027 		 *
1028 		 * NOTE: p_nice is accounted for in bsd4_resetpriority(),
1029 		 *	 and not here, but we must still ensure that a
1030 		 *	 cpu-bound nice -20 process does not completely
1031 		 *	 override a cpu-bound nice +20 process.
1032 		 *
1033 		 * NOTE: We must use ESTCPULIM() here to deal with any
1034 		 *	 overshoot.
1035 		 */
1036 		decay_factor = usched_bsd4_decay;
1037 		if (decay_factor < 1)
1038 			decay_factor = 1;
1039 		if (decay_factor > 1024)
1040 			decay_factor = 1024;
1041 
1042 		lp->lwp_estcpu = ESTCPULIM(
1043 			(lp->lwp_estcpu * decay_factor + estcpu) /
1044 			(decay_factor + 1));
1045 
1046 		if (usched_bsd4_debug == lp->lwp_proc->p_pid)
1047 			kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
1048 		bsd4_resetpriority(lp);
1049 		lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
1050 		lp->lwp_cpticks = 0;
1051 	}
1052 }
1053 
1054 /*
1055  * Compute the priority of a process when running in user mode.
1056  * Arrange to reschedule if the resulting priority is better
1057  * than that of the current process.
1058  *
1059  * This routine may be called with any process.
1060  *
1061  * This routine is called by fork1() for initial setup with the process
1062  * of the run queue, and also may be called normally with the process on or
1063  * off the run queue.
1064  *
1065  * MPSAFE
1066  */
1067 static void
1068 bsd4_resetpriority(struct lwp *lp)
1069 {
1070 	bsd4_pcpu_t dd;
1071 	int newpriority;
1072 	u_short newrqtype;
1073 	int reschedcpu;
1074 	int checkpri;
1075 	int estcpu;
1076 
1077 	/*
1078 	 * Calculate the new priority and queue type
1079 	 */
1080 	crit_enter();
1081 	spin_lock(&bsd4_spin);
1082 
1083 	newrqtype = lp->lwp_rtprio.type;
1084 
1085 	switch(newrqtype) {
1086 	case RTP_PRIO_REALTIME:
1087 	case RTP_PRIO_FIFO:
1088 		newpriority = PRIBASE_REALTIME +
1089 			     (lp->lwp_rtprio.prio & PRIMASK);
1090 		break;
1091 	case RTP_PRIO_NORMAL:
1092 		/*
1093 		 * Detune estcpu based on batchiness.  lwp_batch ranges
1094 		 * from 0 to  BATCHMAX.  Limit estcpu for the sake of
1095 		 * the priority calculation to between 50% and 100%.
1096 		 */
1097 		estcpu = lp->lwp_estcpu * (lp->lwp_batch + BATCHMAX) /
1098 			 (BATCHMAX * 2);
1099 
1100 		/*
1101 		 * p_nice piece		Adds (0-40) * 2		0-80
1102 		 * estcpu		Adds 16384  * 4 / 512   0-128
1103 		 */
1104 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1105 		newpriority += estcpu * PPQ / ESTCPUPPQ;
1106 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1107 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1108 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1109 		break;
1110 	case RTP_PRIO_IDLE:
1111 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1112 		break;
1113 	case RTP_PRIO_THREAD:
1114 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1115 		break;
1116 	default:
1117 		panic("Bad RTP_PRIO %d", newrqtype);
1118 		/* NOT REACHED */
1119 	}
1120 
1121 	/*
1122 	 * The newpriority incorporates the queue type so do a simple masked
1123 	 * check to determine if the process has moved to another queue.  If
1124 	 * it has, and it is currently on a run queue, then move it.
1125 	 *
1126 	 * td_upri has normal sense (higher values are more desireable), so
1127 	 * negate it.
1128 	 */
1129 	lp->lwp_thread->td_upri = -(newpriority & ~PPQMASK);
1130 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1131 		lp->lwp_priority = newpriority;
1132 		if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1133 			bsd4_remrunqueue_locked(lp);
1134 			lp->lwp_rqtype = newrqtype;
1135 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1136 			bsd4_setrunqueue_locked(lp);
1137 			checkpri = 1;
1138 		} else {
1139 			lp->lwp_rqtype = newrqtype;
1140 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1141 			checkpri = 0;
1142 		}
1143 		reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
1144 	} else {
1145 		lp->lwp_priority = newpriority;
1146 		reschedcpu = -1;
1147 		checkpri = 1;
1148 	}
1149 
1150 	/*
1151 	 * Determine if we need to reschedule the target cpu.  This only
1152 	 * occurs if the LWP is already on a scheduler queue, which means
1153 	 * that idle cpu notification has already occured.  At most we
1154 	 * need only issue a need_user_resched() on the appropriate cpu.
1155 	 *
1156 	 * The LWP may be owned by a CPU different from the current one,
1157 	 * in which case dd->uschedcp may be modified without an MP lock
1158 	 * or a spinlock held.  The worst that happens is that the code
1159 	 * below causes a spurious need_user_resched() on the target CPU
1160 	 * and dd->pri to be wrong for a short period of time, both of
1161 	 * which are harmless.
1162 	 *
1163 	 * If checkpri is 0 we are adjusting the priority of the current
1164 	 * process, possibly higher (less desireable), so ignore the upri
1165 	 * check which will fail in that case.
1166 	 */
1167 	if (reschedcpu >= 0) {
1168 		dd = &bsd4_pcpu[reschedcpu];
1169 		if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) &&
1170 		    (checkpri == 0 ||
1171 		     (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK))) {
1172 			if (reschedcpu == mycpu->gd_cpuid) {
1173 				spin_unlock(&bsd4_spin);
1174 				need_user_resched();
1175 			} else {
1176 				spin_unlock(&bsd4_spin);
1177 				atomic_clear_cpumask(&bsd4_rdyprocmask,
1178 						     CPUMASK(reschedcpu));
1179 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
1180 					       bsd4_need_user_resched_remote,
1181 					       NULL);
1182 			}
1183 		} else {
1184 			spin_unlock(&bsd4_spin);
1185 		}
1186 	} else {
1187 		spin_unlock(&bsd4_spin);
1188 	}
1189 	crit_exit();
1190 }
1191 
1192 /*
1193  * MPSAFE
1194  */
1195 static
1196 void
1197 bsd4_yield(struct lwp *lp)
1198 {
1199 #if 0
1200 	/* FUTURE (or something similar) */
1201 	switch(lp->lwp_rqtype) {
1202 	case RTP_PRIO_NORMAL:
1203 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
1204 		break;
1205 	default:
1206 		break;
1207 	}
1208 #endif
1209         need_user_resched();
1210 }
1211 
1212 /*
1213  * Called from fork1() when a new child process is being created.
1214  *
1215  * Give the child process an initial estcpu that is more batch then
1216  * its parent and dock the parent for the fork (but do not
1217  * reschedule the parent).   This comprises the main part of our batch
1218  * detection heuristic for both parallel forking and sequential execs.
1219  *
1220  * XXX lwp should be "spawning" instead of "forking"
1221  *
1222  * MPSAFE
1223  */
1224 static void
1225 bsd4_forking(struct lwp *plp, struct lwp *lp)
1226 {
1227 	/*
1228 	 * Put the child 4 queue slots (out of 32) higher than the parent
1229 	 * (less desireable than the parent).
1230 	 */
1231 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1232 
1233 	/*
1234 	 * The batch status of children always starts out centerline
1235 	 * and will inch-up or inch-down as appropriate.  It takes roughly
1236 	 * ~15 seconds of >50% cpu to hit the limit.
1237 	 */
1238 	lp->lwp_batch = BATCHMAX / 2;
1239 
1240 	/*
1241 	 * Dock the parent a cost for the fork, protecting us from fork
1242 	 * bombs.  If the parent is forking quickly make the child more
1243 	 * batchy.
1244 	 */
1245 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1246 }
1247 
1248 /*
1249  * Called when a lwp is being removed from this scheduler, typically
1250  * during lwp_exit().
1251  */
1252 static void
1253 bsd4_exiting(struct lwp *lp, struct proc *child_proc)
1254 {
1255 }
1256 
1257 static void
1258 bsd4_uload_update(struct lwp *lp)
1259 {
1260 }
1261 
1262 /*
1263  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1264  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1265  * has a better or equal priority then the process that would otherwise be
1266  * chosen, NULL is returned.
1267  *
1268  * Until we fix the RUNQ code the chklp test has to be strict or we may
1269  * bounce between processes trying to acquire the current process designation.
1270  *
1271  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
1272  *	    left intact through the entire routine.
1273  */
1274 static
1275 struct lwp *
1276 bsd4_chooseproc_locked(struct lwp *chklp)
1277 {
1278 	struct lwp *lp;
1279 	struct rq *q;
1280 	u_int32_t *which, *which2;
1281 	u_int32_t pri;
1282 	u_int32_t rtqbits;
1283 	u_int32_t tsqbits;
1284 	u_int32_t idqbits;
1285 	cpumask_t cpumask;
1286 
1287 	rtqbits = bsd4_rtqueuebits;
1288 	tsqbits = bsd4_queuebits;
1289 	idqbits = bsd4_idqueuebits;
1290 	cpumask = mycpu->gd_cpumask;
1291 
1292 
1293 again:
1294 	if (rtqbits) {
1295 		pri = bsfl(rtqbits);
1296 		q = &bsd4_rtqueues[pri];
1297 		which = &bsd4_rtqueuebits;
1298 		which2 = &rtqbits;
1299 	} else if (tsqbits) {
1300 		pri = bsfl(tsqbits);
1301 		q = &bsd4_queues[pri];
1302 		which = &bsd4_queuebits;
1303 		which2 = &tsqbits;
1304 	} else if (idqbits) {
1305 		pri = bsfl(idqbits);
1306 		q = &bsd4_idqueues[pri];
1307 		which = &bsd4_idqueuebits;
1308 		which2 = &idqbits;
1309 	} else {
1310 		return NULL;
1311 	}
1312 	lp = TAILQ_FIRST(q);
1313 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1314 
1315 	while ((lp->lwp_cpumask & cpumask) == 0) {
1316 		lp = TAILQ_NEXT(lp, lwp_procq);
1317 		if (lp == NULL) {
1318 			*which2 &= ~(1 << pri);
1319 			goto again;
1320 		}
1321 	}
1322 
1323 	/*
1324 	 * If the passed lwp <chklp> is reasonably close to the selected
1325 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1326 	 *
1327 	 * Note that we must error on the side of <chklp> to avoid bouncing
1328 	 * between threads in the acquire code.
1329 	 */
1330 	if (chklp) {
1331 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1332 			return(NULL);
1333 	}
1334 
1335 	/*
1336 	 * If the chosen lwp does not reside on this cpu spend a few
1337 	 * cycles looking for a better candidate at the same priority level.
1338 	 * This is a fallback check, setrunqueue() tries to wakeup the
1339 	 * correct cpu and is our front-line affinity.
1340 	 */
1341 	if (lp->lwp_thread->td_gd != mycpu &&
1342 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
1343 	) {
1344 		if (chklp->lwp_thread->td_gd == mycpu) {
1345 			lp = chklp;
1346 		}
1347 	}
1348 
1349 	KTR_COND_LOG(usched_chooseproc,
1350 	    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1351 	    lp->lwp_proc->p_pid,
1352 	    lp->lwp_thread->td_gd->gd_cpuid,
1353 	    mycpu->gd_cpuid);
1354 
1355 	TAILQ_REMOVE(q, lp, lwp_procq);
1356 	--bsd4_runqcount;
1357 	if (TAILQ_EMPTY(q))
1358 		*which &= ~(1 << pri);
1359 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1360 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1361 
1362 	return lp;
1363 }
1364 
1365 /*
1366  * chooseproc() - with a cache coherence heuristic. Try to pull a process that
1367  * has its home on the current CPU> If the process doesn't have its home here
1368  * and is a batchy one (see batcy_looser_pri_test), we can wait for a
1369  * sched_tick, may be its home will become free and pull it in. Anyway,
1370  * we can't wait more than one tick. If that tick expired, we pull in that
1371  * process, no matter what.
1372  */
1373 static
1374 struct lwp *
1375 bsd4_chooseproc_locked_cache_coherent(struct lwp *chklp)
1376 {
1377 	struct lwp *lp;
1378 	struct rq *q;
1379 	u_int32_t *which, *which2;
1380 	u_int32_t pri;
1381 	u_int32_t checks;
1382 	u_int32_t rtqbits;
1383 	u_int32_t tsqbits;
1384 	u_int32_t idqbits;
1385 	cpumask_t cpumask;
1386 
1387 	struct lwp * min_level_lwp = NULL;
1388 	struct rq *min_q = NULL;
1389 	cpumask_t siblings;
1390 	cpu_node_t* cpunode = NULL;
1391 	u_int32_t min_level = MAXCPU;	/* number of levels < MAXCPU */
1392 	u_int32_t *min_which = NULL;
1393 	u_int32_t min_pri = 0;
1394 	u_int32_t level = 0;
1395 
1396 	rtqbits = bsd4_rtqueuebits;
1397 	tsqbits = bsd4_queuebits;
1398 	idqbits = bsd4_idqueuebits;
1399 	cpumask = mycpu->gd_cpumask;
1400 
1401 	/* Get the mask coresponding to the sysctl configured level */
1402 	cpunode = bsd4_pcpu[mycpu->gd_cpuid].cpunode;
1403 	level = usched_bsd4_stick_to_level;
1404 	while (level) {
1405 		cpunode = cpunode->parent_node;
1406 		level--;
1407 	}
1408 	/* The cpus which can ellect a process */
1409 	siblings = cpunode->members;
1410 	checks = 0;
1411 
1412 again:
1413 	if (rtqbits) {
1414 		pri = bsfl(rtqbits);
1415 		q = &bsd4_rtqueues[pri];
1416 		which = &bsd4_rtqueuebits;
1417 		which2 = &rtqbits;
1418 	} else if (tsqbits) {
1419 		pri = bsfl(tsqbits);
1420 		q = &bsd4_queues[pri];
1421 		which = &bsd4_queuebits;
1422 		which2 = &tsqbits;
1423 	} else if (idqbits) {
1424 		pri = bsfl(idqbits);
1425 		q = &bsd4_idqueues[pri];
1426 		which = &bsd4_idqueuebits;
1427 		which2 = &idqbits;
1428 	} else {
1429 		/*
1430 		 * No more left and we didn't reach the checks limit.
1431 		 */
1432 		bsd4_kick_helper(min_level_lwp);
1433 		return NULL;
1434 	}
1435 	lp = TAILQ_FIRST(q);
1436 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1437 
1438 	/*
1439 	 * Limit the number of checks/queue to a configurable value to
1440 	 * minimize the contention (we are in a locked region
1441 	 */
1442 	while (checks < usched_bsd4_queue_checks) {
1443 		if ((lp->lwp_cpumask & cpumask) == 0 ||
1444 		    ((siblings & lp->lwp_thread->td_gd->gd_cpumask) == 0 &&
1445 		      (lp->lwp_rebal_ticks == sched_ticks ||
1446 		       lp->lwp_rebal_ticks == (int)(sched_ticks - 1)) &&
1447 		      bsd4_batchy_looser_pri_test(lp))) {
1448 
1449 			KTR_COND_LOG(usched_chooseproc_cc_not_good,
1450 			    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1451 			    lp->lwp_proc->p_pid,
1452 			    (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1453 			    (unsigned long)siblings,
1454 			    (unsigned long)cpumask);
1455 
1456 			cpunode = bsd4_pcpu[lp->lwp_thread->td_gd->gd_cpuid].cpunode;
1457 			level = 0;
1458 			while (cpunode) {
1459 				if (cpunode->members & cpumask)
1460 					break;
1461 				cpunode = cpunode->parent_node;
1462 				level++;
1463 			}
1464 			if (level < min_level ||
1465 			    (level == min_level && min_level_lwp &&
1466 			     lp->lwp_priority < min_level_lwp->lwp_priority)) {
1467 				bsd4_kick_helper(min_level_lwp);
1468 				min_level_lwp = lp;
1469 				min_level = level;
1470 				min_q = q;
1471 				min_which = which;
1472 				min_pri = pri;
1473 			} else {
1474 				bsd4_kick_helper(lp);
1475 			}
1476 			lp = TAILQ_NEXT(lp, lwp_procq);
1477 			if (lp == NULL) {
1478 				*which2 &= ~(1 << pri);
1479 				goto again;
1480 			}
1481 		} else {
1482 			KTR_COND_LOG(usched_chooseproc_cc_elected,
1483 			    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1484 			    lp->lwp_proc->p_pid,
1485 			    (unsigned long)lp->lwp_thread->td_gd->gd_cpumask,
1486 			    (unsigned long)siblings,
1487 			    (unsigned long)cpumask);
1488 
1489 			goto found;
1490 		}
1491 		++checks;
1492 	}
1493 
1494 	/*
1495 	 * Checks exhausted, we tried to defer too many threads, so schedule
1496 	 * the best of the worst.
1497 	 */
1498 	lp = min_level_lwp;
1499 	q = min_q;
1500 	which = min_which;
1501 	pri = min_pri;
1502 	KASSERT(lp, ("chooseproc: at least the first lp was good"));
1503 
1504 found:
1505 
1506 	/*
1507 	 * If the passed lwp <chklp> is reasonably close to the selected
1508 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1509 	 *
1510 	 * Note that we must error on the side of <chklp> to avoid bouncing
1511 	 * between threads in the acquire code.
1512 	 */
1513 	if (chklp) {
1514 		if (chklp->lwp_priority < lp->lwp_priority + PPQ) {
1515 			bsd4_kick_helper(lp);
1516 			return(NULL);
1517 		}
1518 	}
1519 
1520 	KTR_COND_LOG(usched_chooseproc_cc,
1521 	    lp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1522 	    lp->lwp_proc->p_pid,
1523 	    lp->lwp_thread->td_gd->gd_cpuid,
1524 	    mycpu->gd_cpuid);
1525 
1526 	TAILQ_REMOVE(q, lp, lwp_procq);
1527 	--bsd4_runqcount;
1528 	if (TAILQ_EMPTY(q))
1529 		*which &= ~(1 << pri);
1530 	KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1531 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1532 
1533 	return lp;
1534 }
1535 
1536 /*
1537  * If we aren't willing to schedule a ready process on our cpu, give it's
1538  * target cpu a kick rather than wait for the next tick.
1539  *
1540  * Called with bsd4_spin held.
1541  */
1542 static
1543 void
1544 bsd4_kick_helper(struct lwp *lp)
1545 {
1546 	globaldata_t gd;
1547 	bsd4_pcpu_t dd;
1548 
1549 	if (lp == NULL)
1550 		return;
1551 	gd = lp->lwp_thread->td_gd;
1552 	dd = &bsd4_pcpu[gd->gd_cpuid];
1553 	if ((smp_active_mask & usched_global_cpumask &
1554 	    bsd4_rdyprocmask & gd->gd_cpumask) == 0) {
1555 		return;
1556 	}
1557 	++usched_bsd4_kicks;
1558 	atomic_clear_cpumask(&bsd4_rdyprocmask, gd->gd_cpumask);
1559 	if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
1560 		lwkt_send_ipiq(gd, bsd4_need_user_resched_remote, NULL);
1561 	} else {
1562 		wakeup(&dd->helper_thread);
1563 	}
1564 }
1565 
1566 static
1567 void
1568 bsd4_need_user_resched_remote(void *dummy)
1569 {
1570 	globaldata_t gd = mycpu;
1571 	bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
1572 
1573 	need_user_resched();
1574 
1575 	/* Call wakeup_mycpu to avoid sending IPIs to other CPUs */
1576 	wakeup_mycpu(&dd->helper_thread);
1577 }
1578 
1579 /*
1580  * bsd4_remrunqueue_locked() removes a given process from the run queue
1581  * that it is on, clearing the queue busy bit if it becomes empty.
1582  *
1583  * Note that user process scheduler is different from the LWKT schedule.
1584  * The user process scheduler only manages user processes but it uses LWKT
1585  * underneath, and a user process operating in the kernel will often be
1586  * 'released' from our management.
1587  *
1588  * MPSAFE - bsd4_spin must be held exclusively on call
1589  */
1590 static void
1591 bsd4_remrunqueue_locked(struct lwp *lp)
1592 {
1593 	struct rq *q;
1594 	u_int32_t *which;
1595 	u_int8_t pri;
1596 
1597 	KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1598 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1599 	--bsd4_runqcount;
1600 	KKASSERT(bsd4_runqcount >= 0);
1601 
1602 	pri = lp->lwp_rqindex;
1603 	switch(lp->lwp_rqtype) {
1604 	case RTP_PRIO_NORMAL:
1605 		q = &bsd4_queues[pri];
1606 		which = &bsd4_queuebits;
1607 		break;
1608 	case RTP_PRIO_REALTIME:
1609 	case RTP_PRIO_FIFO:
1610 		q = &bsd4_rtqueues[pri];
1611 		which = &bsd4_rtqueuebits;
1612 		break;
1613 	case RTP_PRIO_IDLE:
1614 		q = &bsd4_idqueues[pri];
1615 		which = &bsd4_idqueuebits;
1616 		break;
1617 	default:
1618 		panic("remrunqueue: invalid rtprio type");
1619 		/* NOT REACHED */
1620 	}
1621 	TAILQ_REMOVE(q, lp, lwp_procq);
1622 	if (TAILQ_EMPTY(q)) {
1623 		KASSERT((*which & (1 << pri)) != 0,
1624 			("remrunqueue: remove from empty queue"));
1625 		*which &= ~(1 << pri);
1626 	}
1627 }
1628 
1629 /*
1630  * bsd4_setrunqueue_locked()
1631  *
1632  * Add a process whos rqtype and rqindex had previously been calculated
1633  * onto the appropriate run queue.   Determine if the addition requires
1634  * a reschedule on a cpu and return the cpuid or -1.
1635  *
1636  * NOTE: Lower priorities are better priorities.
1637  *
1638  * MPSAFE - bsd4_spin must be held exclusively on call
1639  */
1640 static void
1641 bsd4_setrunqueue_locked(struct lwp *lp)
1642 {
1643 	struct rq *q;
1644 	u_int32_t *which;
1645 	int pri;
1646 
1647 	KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1648 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1649 	++bsd4_runqcount;
1650 
1651 	pri = lp->lwp_rqindex;
1652 
1653 	switch(lp->lwp_rqtype) {
1654 	case RTP_PRIO_NORMAL:
1655 		q = &bsd4_queues[pri];
1656 		which = &bsd4_queuebits;
1657 		break;
1658 	case RTP_PRIO_REALTIME:
1659 	case RTP_PRIO_FIFO:
1660 		q = &bsd4_rtqueues[pri];
1661 		which = &bsd4_rtqueuebits;
1662 		break;
1663 	case RTP_PRIO_IDLE:
1664 		q = &bsd4_idqueues[pri];
1665 		which = &bsd4_idqueuebits;
1666 		break;
1667 	default:
1668 		panic("remrunqueue: invalid rtprio type");
1669 		/* NOT REACHED */
1670 	}
1671 
1672 	/*
1673 	 * Add to the correct queue and set the appropriate bit.  If no
1674 	 * lower priority (i.e. better) processes are in the queue then
1675 	 * we want a reschedule, calculate the best cpu for the job.
1676 	 *
1677 	 * Always run reschedules on the LWPs original cpu.
1678 	 */
1679 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1680 	*which |= 1 << pri;
1681 }
1682 
1683 /*
1684  * For SMP systems a user scheduler helper thread is created for each
1685  * cpu and is used to allow one cpu to wakeup another for the purposes of
1686  * scheduling userland threads from setrunqueue().
1687  *
1688  * UP systems do not need the helper since there is only one cpu.
1689  *
1690  * We can't use the idle thread for this because we might block.
1691  * Additionally, doing things this way allows us to HLT idle cpus
1692  * on MP systems.
1693  *
1694  * MPSAFE
1695  */
1696 static void
1697 sched_thread(void *dummy)
1698 {
1699     globaldata_t gd;
1700     bsd4_pcpu_t  dd;
1701     bsd4_pcpu_t  tmpdd;
1702     struct lwp *nlp;
1703     cpumask_t mask;
1704     int cpuid;
1705     cpumask_t tmpmask;
1706     int tmpid;
1707 
1708     gd = mycpu;
1709     cpuid = gd->gd_cpuid;	/* doesn't change */
1710     mask = gd->gd_cpumask;	/* doesn't change */
1711     dd = &bsd4_pcpu[cpuid];
1712 
1713     /*
1714      * Since we are woken up only when no user processes are scheduled
1715      * on a cpu, we can run at an ultra low priority.
1716      */
1717     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1718 
1719     tsleep(&dd->helper_thread, 0, "sched_thread_sleep", 0);
1720 
1721     for (;;) {
1722 	/*
1723 	 * We use the LWKT deschedule-interlock trick to avoid racing
1724 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1725 	 * manual lwkt_switch() call we make below.
1726 	 */
1727 	crit_enter_gd(gd);
1728 	tsleep_interlock(&dd->helper_thread, 0);
1729 	spin_lock(&bsd4_spin);
1730 	atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1731 
1732 	clear_user_resched();	/* This satisfied the reschedule request */
1733 	dd->rrcount = 0;	/* Reset the round-robin counter */
1734 
1735 	if ((bsd4_curprocmask & mask) == 0) {
1736 		/*
1737 		 * No thread is currently scheduled.
1738 		 */
1739 		KKASSERT(dd->uschedcp == NULL);
1740 		if ((nlp = bsd4_chooseproc_locked(NULL)) != NULL) {
1741 			KTR_COND_LOG(usched_sched_thread_no_process,
1742 			    nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1743 			    gd->gd_cpuid,
1744 			    nlp->lwp_proc->p_pid,
1745 			    nlp->lwp_thread->td_gd->gd_cpuid);
1746 
1747 			atomic_set_cpumask(&bsd4_curprocmask, mask);
1748 			dd->upri = nlp->lwp_priority;
1749 			dd->uschedcp = nlp;
1750 			dd->rrcount = 0;	/* reset round robin */
1751 			spin_unlock(&bsd4_spin);
1752 			lwkt_acquire(nlp->lwp_thread);
1753 			lwkt_schedule(nlp->lwp_thread);
1754 		} else {
1755 			spin_unlock(&bsd4_spin);
1756 		}
1757 	} else if (bsd4_runqcount) {
1758 		if ((nlp = bsd4_chooseproc_locked(dd->uschedcp)) != NULL) {
1759 			KTR_COND_LOG(usched_sched_thread_process,
1760 			    nlp->lwp_proc->p_pid == usched_bsd4_pid_debug,
1761 			    gd->gd_cpuid,
1762 			    nlp->lwp_proc->p_pid,
1763 			    nlp->lwp_thread->td_gd->gd_cpuid);
1764 
1765 			dd->upri = nlp->lwp_priority;
1766 			dd->uschedcp = nlp;
1767 			dd->rrcount = 0;	/* reset round robin */
1768 			spin_unlock(&bsd4_spin);
1769 			lwkt_acquire(nlp->lwp_thread);
1770 			lwkt_schedule(nlp->lwp_thread);
1771 		} else {
1772 			/*
1773 			 * CHAINING CONDITION TRAIN
1774 			 *
1775 			 * We could not deal with the scheduler wakeup
1776 			 * request on this cpu, locate a ready scheduler
1777 			 * with no current lp assignment and chain to it.
1778 			 *
1779 			 * This ensures that a wakeup race which fails due
1780 			 * to priority test does not leave other unscheduled
1781 			 * cpus idle when the runqueue is not empty.
1782 			 */
1783 			tmpmask = ~bsd4_curprocmask &
1784 				  bsd4_rdyprocmask & smp_active_mask;
1785 			if (tmpmask) {
1786 				tmpid = BSFCPUMASK(tmpmask);
1787 				tmpdd = &bsd4_pcpu[tmpid];
1788 				atomic_clear_cpumask(&bsd4_rdyprocmask,
1789 						     CPUMASK(tmpid));
1790 				spin_unlock(&bsd4_spin);
1791 				wakeup(&tmpdd->helper_thread);
1792 			} else {
1793 				spin_unlock(&bsd4_spin);
1794 			}
1795 
1796 			KTR_LOG(usched_sched_thread_no_process_found,
1797 				gd->gd_cpuid, (unsigned long)tmpmask);
1798 		}
1799 	} else {
1800 		/*
1801 		 * The runq is empty.
1802 		 */
1803 		spin_unlock(&bsd4_spin);
1804 	}
1805 
1806 	/*
1807 	 * We're descheduled unless someone scheduled us.  Switch away.
1808 	 * Exiting the critical section will cause splz() to be called
1809 	 * for us if interrupts and such are pending.
1810 	 */
1811 	crit_exit_gd(gd);
1812 	tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
1813     }
1814 }
1815 
1816 /* sysctl stick_to_level parameter */
1817 static int
1818 sysctl_usched_bsd4_stick_to_level(SYSCTL_HANDLER_ARGS)
1819 {
1820 	int error, new_val;
1821 
1822 	new_val = usched_bsd4_stick_to_level;
1823 
1824 	error = sysctl_handle_int(oidp, &new_val, 0, req);
1825         if (error != 0 || req->newptr == NULL)
1826 		return (error);
1827 	if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
1828 		return (EINVAL);
1829 	usched_bsd4_stick_to_level = new_val;
1830 	return (0);
1831 }
1832 
1833 /*
1834  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1835  * been cleared by rqinit() and we should not mess with it further.
1836  */
1837 static void
1838 sched_thread_cpu_init(void)
1839 {
1840 	int i;
1841 	int cpuid;
1842 	int smt_not_supported = 0;
1843 	int cache_coherent_not_supported = 0;
1844 
1845 	if (bootverbose)
1846 		kprintf("Start scheduler helpers on cpus:\n");
1847 
1848 	sysctl_ctx_init(&usched_bsd4_sysctl_ctx);
1849 	usched_bsd4_sysctl_tree =
1850 		SYSCTL_ADD_NODE(&usched_bsd4_sysctl_ctx,
1851 				SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
1852 				"usched_bsd4", CTLFLAG_RD, 0, "");
1853 
1854 	for (i = 0; i < ncpus; ++i) {
1855 		bsd4_pcpu_t dd = &bsd4_pcpu[i];
1856 		cpumask_t mask = CPUMASK(i);
1857 
1858 		if ((mask & smp_active_mask) == 0)
1859 		    continue;
1860 
1861 		dd->cpunode = get_cpu_node_by_cpuid(i);
1862 
1863 		if (dd->cpunode == NULL) {
1864 			smt_not_supported = 1;
1865 			cache_coherent_not_supported = 1;
1866 			if (bootverbose)
1867 				kprintf ("\tcpu%d - WARNING: No CPU NODE "
1868 					 "found for cpu\n", i);
1869 		} else {
1870 			switch (dd->cpunode->type) {
1871 			case THREAD_LEVEL:
1872 				if (bootverbose)
1873 					kprintf ("\tcpu%d - HyperThreading "
1874 						 "available. Core siblings: ",
1875 						 i);
1876 				break;
1877 			case CORE_LEVEL:
1878 				smt_not_supported = 1;
1879 
1880 				if (bootverbose)
1881 					kprintf ("\tcpu%d - No HT available, "
1882 						 "multi-core/physical "
1883 						 "cpu. Physical siblings: ",
1884 						 i);
1885 				break;
1886 			case CHIP_LEVEL:
1887 				smt_not_supported = 1;
1888 
1889 				if (bootverbose)
1890 					kprintf ("\tcpu%d - No HT available, "
1891 						 "single-core/physical cpu. "
1892 						 "Package Siblings: ",
1893 						 i);
1894 				break;
1895 			default:
1896 				/* Let's go for safe defaults here */
1897 				smt_not_supported = 1;
1898 				cache_coherent_not_supported = 1;
1899 				if (bootverbose)
1900 					kprintf ("\tcpu%d - Unknown cpunode->"
1901 						 "type=%u. Siblings: ",
1902 						 i,
1903 						 (u_int)dd->cpunode->type);
1904 				break;
1905 			}
1906 
1907 			if (bootverbose) {
1908 				if (dd->cpunode->parent_node != NULL) {
1909 					CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
1910 						kprintf("cpu%d ", cpuid);
1911 					kprintf("\n");
1912 				} else {
1913 					kprintf(" no siblings\n");
1914 				}
1915 			}
1916 		}
1917 
1918 		lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1919 			    0, i, "usched %d", i);
1920 
1921 		/*
1922 		 * Allow user scheduling on the target cpu.  cpu #0 has already
1923 		 * been enabled in rqinit().
1924 		 */
1925 		if (i)
1926 		    atomic_clear_cpumask(&bsd4_curprocmask, mask);
1927 		atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1928 		dd->upri = PRIBASE_NULL;
1929 
1930 	}
1931 
1932 	/* usched_bsd4 sysctl configurable parameters */
1933 
1934 	SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1935 		       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1936 		       OID_AUTO, "rrinterval", CTLFLAG_RW,
1937 		       &usched_bsd4_rrinterval, 0, "");
1938 	SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1939 		       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1940 		       OID_AUTO, "decay", CTLFLAG_RW,
1941 		       &usched_bsd4_decay, 0, "Extra decay when not running");
1942 	SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1943 		       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1944 		       OID_AUTO, "batch_time", CTLFLAG_RW,
1945 		       &usched_bsd4_batch_time, 0, "Min batch counter value");
1946 	SYSCTL_ADD_LONG(&usched_bsd4_sysctl_ctx,
1947 		       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1948 		       OID_AUTO, "kicks", CTLFLAG_RW,
1949 		       &usched_bsd4_kicks, "Number of kickstarts");
1950 
1951 	/* Add enable/disable option for SMT scheduling if supported */
1952 	if (smt_not_supported) {
1953 		usched_bsd4_smt = 0;
1954 		SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
1955 				  SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1956 				  OID_AUTO, "smt", CTLFLAG_RD,
1957 				  "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
1958 	} else {
1959 		usched_bsd4_smt = 1;
1960 		SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1961 			       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1962 			       OID_AUTO, "smt", CTLFLAG_RW,
1963 			       &usched_bsd4_smt, 0, "Enable SMT scheduling");
1964 	}
1965 
1966 	/*
1967 	 * Add enable/disable option for cache coherent scheduling
1968 	 * if supported
1969 	 */
1970 	if (cache_coherent_not_supported) {
1971 		usched_bsd4_cache_coherent = 0;
1972 		SYSCTL_ADD_STRING(&usched_bsd4_sysctl_ctx,
1973 				  SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1974 				  OID_AUTO, "cache_coherent", CTLFLAG_RD,
1975 				  "NOT SUPPORTED", 0,
1976 				  "Cache coherence NOT SUPPORTED");
1977 	} else {
1978 		usched_bsd4_cache_coherent = 1;
1979 		SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1980 			       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1981 			       OID_AUTO, "cache_coherent", CTLFLAG_RW,
1982 			       &usched_bsd4_cache_coherent, 0,
1983 			       "Enable/Disable cache coherent scheduling");
1984 
1985 		SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1986 			       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1987 			       OID_AUTO, "upri_affinity", CTLFLAG_RW,
1988 			       &usched_bsd4_upri_affinity, 1,
1989 			       "Number of PPQs in user priority check");
1990 
1991 		SYSCTL_ADD_INT(&usched_bsd4_sysctl_ctx,
1992 			       SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1993 			       OID_AUTO, "queue_checks", CTLFLAG_RW,
1994 			       &usched_bsd4_queue_checks, 5,
1995 			       "LWPs to check from a queue before giving up");
1996 
1997 		SYSCTL_ADD_PROC(&usched_bsd4_sysctl_ctx,
1998 				SYSCTL_CHILDREN(usched_bsd4_sysctl_tree),
1999 				OID_AUTO, "stick_to_level",
2000 				CTLTYPE_INT | CTLFLAG_RW,
2001 				NULL, sizeof usched_bsd4_stick_to_level,
2002 				sysctl_usched_bsd4_stick_to_level, "I",
2003 				"Stick a process to this level. See sysctl"
2004 				"paremter hw.cpu_topology.level_description");
2005 	}
2006 }
2007 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2008 	sched_thread_cpu_init, NULL)
2009