xref: /dragonfly/sys/kern/usched_bsd4.c (revision 81c11cd3)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
42 
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 #include <sys/mplock2.h>
46 
47 /*
48  * Priorities.  Note that with 32 run queues per scheduler each queue
49  * represents four priority levels.
50  */
51 
52 #define MAXPRI			128
53 #define PRIMASK			(MAXPRI - 1)
54 #define PRIBASE_REALTIME	0
55 #define PRIBASE_NORMAL		MAXPRI
56 #define PRIBASE_IDLE		(MAXPRI * 2)
57 #define PRIBASE_THREAD		(MAXPRI * 3)
58 #define PRIBASE_NULL		(MAXPRI * 4)
59 
60 #define NQS	32			/* 32 run queues. */
61 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
62 #define PPQMASK	(PPQ - 1)
63 
64 /*
65  * NICEPPQ	- number of nice units per priority queue
66  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
67  *
68  * ESTCPUPPQ	- number of estcpu units per priority queue
69  * ESTCPUMAX	- number of estcpu units
70  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
71  *		  100% cpu.
72  */
73 #define NICEPPQ		2
74 #define ESTCPURAMP	4
75 #define ESTCPUPPQ	512
76 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
77 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
78 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
79 
80 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
81 
82 TAILQ_HEAD(rq, lwp);
83 
84 #define lwp_priority	lwp_usdata.bsd4.priority
85 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
86 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
87 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
88 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
89 
90 static void bsd4_acquire_curproc(struct lwp *lp);
91 static void bsd4_release_curproc(struct lwp *lp);
92 static void bsd4_select_curproc(globaldata_t gd);
93 static void bsd4_setrunqueue(struct lwp *lp);
94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
95 				sysclock_t cpstamp);
96 static void bsd4_recalculate_estcpu(struct lwp *lp);
97 static void bsd4_resetpriority(struct lwp *lp);
98 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
100 static void bsd4_yield(struct lwp *lp);
101 
102 #ifdef SMP
103 static void need_user_resched_remote(void *dummy);
104 #endif
105 static struct lwp *chooseproc_locked(struct lwp *chklp);
106 static void bsd4_remrunqueue_locked(struct lwp *lp);
107 static void bsd4_setrunqueue_locked(struct lwp *lp);
108 
109 struct usched usched_bsd4 = {
110 	{ NULL },
111 	"bsd4", "Original DragonFly Scheduler",
112 	NULL,			/* default registration */
113 	NULL,			/* default deregistration */
114 	bsd4_acquire_curproc,
115 	bsd4_release_curproc,
116 	bsd4_setrunqueue,
117 	bsd4_schedulerclock,
118 	bsd4_recalculate_estcpu,
119 	bsd4_resetpriority,
120 	bsd4_forking,
121 	bsd4_exiting,
122 	NULL,			/* setcpumask not supported */
123 	bsd4_yield
124 };
125 
126 struct usched_bsd4_pcpu {
127 	struct thread helper_thread;
128 	short	rrcount;
129 	short	upri;
130 	struct lwp *uschedcp;
131 };
132 
133 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
134 
135 /*
136  * We have NQS (32) run queues per scheduling class.  For the normal
137  * class, there are 128 priorities scaled onto these 32 queues.  New
138  * processes are added to the last entry in each queue, and processes
139  * are selected for running by taking them from the head and maintaining
140  * a simple FIFO arrangement.  Realtime and Idle priority processes have
141  * and explicit 0-31 priority which maps directly onto their class queue
142  * index.  When a queue has something in it, the corresponding bit is
143  * set in the queuebits variable, allowing a single read to determine
144  * the state of all 32 queues and then a ffs() to find the first busy
145  * queue.
146  */
147 static struct rq bsd4_queues[NQS];
148 static struct rq bsd4_rtqueues[NQS];
149 static struct rq bsd4_idqueues[NQS];
150 static u_int32_t bsd4_queuebits;
151 static u_int32_t bsd4_rtqueuebits;
152 static u_int32_t bsd4_idqueuebits;
153 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
154 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
155 static int	 bsd4_runqcount;
156 #ifdef SMP
157 static volatile int bsd4_scancpu;
158 #endif
159 static struct spinlock bsd4_spin;
160 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
161 
162 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0,
163     "Number of run queues");
164 #ifdef INVARIANTS
165 static int usched_nonoptimal;
166 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
167         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
168 static int usched_optimal;
169 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
170         &usched_optimal, 0, "acquire_curproc() was optimal");
171 #endif
172 static int usched_debug = -1;
173 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0,
174     "Print debug information for this pid");
175 #ifdef SMP
176 static int remote_resched_nonaffinity;
177 static int remote_resched_affinity;
178 static int choose_affinity;
179 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
180         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
181 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
182         &remote_resched_affinity, 0, "Number of remote rescheds");
183 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
184         &choose_affinity, 0, "chooseproc() was smart");
185 #endif
186 
187 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
188 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
189         &usched_bsd4_rrinterval, 0, "");
190 static int usched_bsd4_decay = ESTCPUINCR / 2;
191 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
192         &usched_bsd4_decay, 0, "");
193 
194 /*
195  * Initialize the run queues at boot time.
196  */
197 static void
198 rqinit(void *dummy)
199 {
200 	int i;
201 
202 	spin_init(&bsd4_spin);
203 	for (i = 0; i < NQS; i++) {
204 		TAILQ_INIT(&bsd4_queues[i]);
205 		TAILQ_INIT(&bsd4_rtqueues[i]);
206 		TAILQ_INIT(&bsd4_idqueues[i]);
207 	}
208 	atomic_clear_cpumask(&bsd4_curprocmask, 1);
209 }
210 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
211 
212 /*
213  * BSD4_ACQUIRE_CURPROC
214  *
215  * This function is called when the kernel intends to return to userland.
216  * It is responsible for making the thread the current designated userland
217  * thread for this cpu, blocking if necessary.
218  *
219  * The kernel has already depressed our LWKT priority so we must not switch
220  * until we have either assigned or disposed of the thread.
221  *
222  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
223  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
224  * occur, this function is called only under very controlled circumstances.
225  *
226  * MPSAFE
227  */
228 static void
229 bsd4_acquire_curproc(struct lwp *lp)
230 {
231 	globaldata_t gd;
232 	bsd4_pcpu_t dd;
233 	struct lwp *olp;
234 
235 	crit_enter();
236 	bsd4_recalculate_estcpu(lp);
237 
238 	/*
239 	 * If a reschedule was requested give another thread the
240 	 * driver's seat.
241 	 */
242 	if (user_resched_wanted()) {
243 		clear_user_resched();
244 		bsd4_release_curproc(lp);
245 	}
246 
247 	/*
248 	 * Loop until we are the current user thread
249 	 */
250 	do {
251 		/*
252 		 * Reload after a switch or setrunqueue/switch possibly
253 		 * moved us to another cpu.
254 		 */
255 		/*clear_lwkt_resched();*/
256 		gd = mycpu;
257 		dd = &bsd4_pcpu[gd->gd_cpuid];
258 
259 		/*
260 		 * Become the currently scheduled user thread for this cpu
261 		 * if we can do so trivially.
262 		 *
263 		 * We can steal another thread's current thread designation
264 		 * on this cpu since if we are running that other thread
265 		 * must not be, so we can safely deschedule it.
266 		 */
267 		if (dd->uschedcp == lp) {
268 			/*
269 			 * We are already the current lwp (hot path).
270 			 */
271 			dd->upri = lp->lwp_priority;
272 		} else if (dd->uschedcp == NULL) {
273 			/*
274 			 * We can trivially become the current lwp.
275 			 */
276 			atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
277 			dd->uschedcp = lp;
278 			dd->upri = lp->lwp_priority;
279 		} else if (dd->upri > lp->lwp_priority) {
280 			/*
281 			 * We can steal the current lwp designation from the
282 			 * olp that was previously assigned to this cpu.
283 			 */
284 			olp = dd->uschedcp;
285 			dd->uschedcp = lp;
286 			dd->upri = lp->lwp_priority;
287 			lwkt_deschedule(olp->lwp_thread);
288 			bsd4_setrunqueue(olp);
289 		} else {
290 			/*
291 			 * We cannot become the current lwp, place the lp
292 			 * on the bsd4 run-queue and deschedule ourselves.
293 			 */
294 			lwkt_deschedule(lp->lwp_thread);
295 			bsd4_setrunqueue(lp);
296 			lwkt_switch();
297 		}
298 
299 		/*
300 		 * Other threads at our current user priority have already
301 		 * put in their bids, but we must run any kernel threads
302 		 * at higher priorities, and we could lose our bid to
303 		 * another thread trying to return to user mode in the
304 		 * process.
305 		 *
306 		 * If we lose our bid we will be descheduled and put on
307 		 * the run queue.  When we are reactivated we will have
308 		 * another chance.
309 		 */
310 		if (lwkt_resched_wanted() ||
311 		    lp->lwp_thread->td_fairq_accum < 0) {
312 			lwkt_switch();
313 		}
314 	} while (dd->uschedcp != lp);
315 
316 	crit_exit();
317 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
318 }
319 
320 /*
321  * BSD4_RELEASE_CURPROC
322  *
323  * This routine detaches the current thread from the userland scheduler,
324  * usually because the thread needs to run or block in the kernel (at
325  * kernel priority) for a while.
326  *
327  * This routine is also responsible for selecting a new thread to
328  * make the current thread.
329  *
330  * NOTE: This implementation differs from the dummy example in that
331  * bsd4_select_curproc() is able to select the current process, whereas
332  * dummy_select_curproc() is not able to select the current process.
333  * This means we have to NULL out uschedcp.
334  *
335  * Additionally, note that we may already be on a run queue if releasing
336  * via the lwkt_switch() in bsd4_setrunqueue().
337  *
338  * MPSAFE
339  */
340 static void
341 bsd4_release_curproc(struct lwp *lp)
342 {
343 	globaldata_t gd = mycpu;
344 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
345 
346 	if (dd->uschedcp == lp) {
347 		crit_enter();
348 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
349 		dd->uschedcp = NULL;	/* don't let lp be selected */
350 		dd->upri = PRIBASE_NULL;
351 		atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
352 		bsd4_select_curproc(gd);
353 		crit_exit();
354 	}
355 }
356 
357 /*
358  * BSD4_SELECT_CURPROC
359  *
360  * Select a new current process for this cpu and clear any pending user
361  * reschedule request.  The cpu currently has no current process.
362  *
363  * This routine is also responsible for equal-priority round-robining,
364  * typically triggered from bsd4_schedulerclock().  In our dummy example
365  * all the 'user' threads are LWKT scheduled all at once and we just
366  * call lwkt_switch().
367  *
368  * The calling process is not on the queue and cannot be selected.
369  *
370  * MPSAFE
371  */
372 static
373 void
374 bsd4_select_curproc(globaldata_t gd)
375 {
376 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
377 	struct lwp *nlp;
378 	int cpuid = gd->gd_cpuid;
379 
380 	crit_enter_gd(gd);
381 
382 	spin_lock(&bsd4_spin);
383 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
384 		atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid));
385 		dd->upri = nlp->lwp_priority;
386 		dd->uschedcp = nlp;
387 		spin_unlock(&bsd4_spin);
388 #ifdef SMP
389 		lwkt_acquire(nlp->lwp_thread);
390 #endif
391 		lwkt_schedule(nlp->lwp_thread);
392 	} else {
393 		spin_unlock(&bsd4_spin);
394 	}
395 #if 0
396 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) {
397 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
398 		spin_unlock(&bsd4_spin);
399 		lwkt_schedule(&dd->helper_thread);
400 	} else {
401 		spin_unlock(&bsd4_spin);
402 	}
403 #endif
404 	crit_exit_gd(gd);
405 }
406 
407 /*
408  * BSD4_SETRUNQUEUE
409  *
410  * Place the specified lwp on the user scheduler's run queue.  This routine
411  * must be called with the thread descheduled.  The lwp must be runnable.
412  *
413  * The thread may be the current thread as a special case.
414  *
415  * MPSAFE
416  */
417 static void
418 bsd4_setrunqueue(struct lwp *lp)
419 {
420 	globaldata_t gd;
421 	bsd4_pcpu_t dd;
422 #ifdef SMP
423 	int cpuid;
424 	cpumask_t mask;
425 	cpumask_t tmpmask;
426 #endif
427 
428 	/*
429 	 * First validate the process state relative to the current cpu.
430 	 * We don't need the spinlock for this, just a critical section.
431 	 * We are in control of the process.
432 	 */
433 	crit_enter();
434 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
435 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
436 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
437 	     lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
438 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
439 
440 	/*
441 	 * Note: gd and dd are relative to the target thread's last cpu,
442 	 * NOT our current cpu.
443 	 */
444 	gd = lp->lwp_thread->td_gd;
445 	dd = &bsd4_pcpu[gd->gd_cpuid];
446 
447 	/*
448 	 * This process is not supposed to be scheduled anywhere or assigned
449 	 * as the current process anywhere.  Assert the condition.
450 	 */
451 	KKASSERT(dd->uschedcp != lp);
452 
453 #ifndef SMP
454 	/*
455 	 * If we are not SMP we do not have a scheduler helper to kick
456 	 * and must directly activate the process if none are scheduled.
457 	 *
458 	 * This is really only an issue when bootstrapping init since
459 	 * the caller in all other cases will be a user process, and
460 	 * even if released (dd->uschedcp == NULL), that process will
461 	 * kickstart the scheduler when it returns to user mode from
462 	 * the kernel.
463 	 */
464 	if (dd->uschedcp == NULL) {
465 		atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
466 		dd->uschedcp = lp;
467 		dd->upri = lp->lwp_priority;
468 		lwkt_schedule(lp->lwp_thread);
469 		crit_exit();
470 		return;
471 	}
472 #endif
473 
474 #ifdef SMP
475 	/*
476 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
477 	 * operation when the priority is recalculated, so TDF_MIGRATING
478 	 * may already be set.
479 	 */
480 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
481 		lwkt_giveaway(lp->lwp_thread);
482 #endif
483 
484 	/*
485 	 * We lose control of lp the moment we release the spinlock after
486 	 * having placed lp on the queue.  i.e. another cpu could pick it
487 	 * up and it could exit, or its priority could be further adjusted,
488 	 * or something like that.
489 	 */
490 	spin_lock(&bsd4_spin);
491 	bsd4_setrunqueue_locked(lp);
492 
493 #ifdef SMP
494 	/*
495 	 * Kick the scheduler helper on one of the other cpu's
496 	 * and request a reschedule if appropriate.
497 	 *
498 	 * NOTE: We check all cpus whos rdyprocmask is set.  First we
499 	 *	 look for cpus without designated lps, then we look for
500 	 *	 cpus with designated lps with a worse priority than our
501 	 *	 process.
502 	 */
503 	++bsd4_scancpu;
504 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
505 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
506 	       smp_active_mask;
507 
508 	while (mask) {
509 		tmpmask = ~(CPUMASK(cpuid) - 1);
510 		if (mask & tmpmask)
511 			cpuid = BSFCPUMASK(mask & tmpmask);
512 		else
513 			cpuid = BSFCPUMASK(mask);
514 		gd = globaldata_find(cpuid);
515 		dd = &bsd4_pcpu[cpuid];
516 
517 		if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
518 			goto found;
519 		mask &= ~CPUMASK(cpuid);
520 	}
521 
522 	/*
523 	 * Then cpus which might have a currently running lp
524 	 */
525 	mask = bsd4_curprocmask & bsd4_rdyprocmask &
526 	       lp->lwp_cpumask & smp_active_mask;
527 
528 	while (mask) {
529 		tmpmask = ~(CPUMASK(cpuid) - 1);
530 		if (mask & tmpmask)
531 			cpuid = BSFCPUMASK(mask & tmpmask);
532 		else
533 			cpuid = BSFCPUMASK(mask);
534 		gd = globaldata_find(cpuid);
535 		dd = &bsd4_pcpu[cpuid];
536 
537 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
538 			goto found;
539 		mask &= ~CPUMASK(cpuid);
540 	}
541 
542 	/*
543 	 * If we cannot find a suitable cpu we reload from bsd4_scancpu
544 	 * and round-robin.  Other cpus will pickup as they release their
545 	 * current lwps or become ready.
546 	 *
547 	 * We only kick the target helper thread in this case, we do not
548 	 * set the user resched flag because
549 	 */
550 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
551 	gd = globaldata_find(cpuid);
552 	dd = &bsd4_pcpu[cpuid];
553 found:
554 	if (gd == mycpu) {
555 		spin_unlock(&bsd4_spin);
556 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
557 			need_user_resched();
558 	} else {
559 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
560 		spin_unlock(&bsd4_spin);
561 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
562 			lwkt_send_ipiq(gd, need_user_resched_remote, NULL);
563 		else
564 			lwkt_schedule(&dd->helper_thread);
565 	}
566 #else
567 	/*
568 	 * Request a reschedule if appropriate.
569 	 */
570 	spin_unlock(&bsd4_spin);
571 	if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
572 		need_user_resched();
573 	}
574 #endif
575 	crit_exit();
576 }
577 
578 /*
579  * This routine is called from a systimer IPI.  It MUST be MP-safe and
580  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
581  * each cpu.
582  *
583  * MPSAFE
584  */
585 static
586 void
587 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
588 {
589 	globaldata_t gd = mycpu;
590 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
591 
592 	/*
593 	 * Do we need to round-robin?  We round-robin 10 times a second.
594 	 * This should only occur for cpu-bound batch processes.
595 	 */
596 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
597 		dd->rrcount = 0;
598 		need_user_resched();
599 	}
600 
601 	/*
602 	 * As the process accumulates cpu time p_estcpu is bumped and may
603 	 * push the process into another scheduling queue.  It typically
604 	 * takes 4 ticks to bump the queue.
605 	 */
606 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
607 
608 	/*
609 	 * Reducing p_origcpu over time causes more of our estcpu to be
610 	 * returned to the parent when we exit.  This is a small tweak
611 	 * for the batch detection heuristic.
612 	 */
613 	if (lp->lwp_origcpu)
614 		--lp->lwp_origcpu;
615 
616 	/*
617 	 * Spinlocks also hold a critical section so there should not be
618 	 * any active.
619 	 */
620 	KKASSERT(gd->gd_spinlocks_wr == 0);
621 
622 	bsd4_resetpriority(lp);
623 #if 0
624 	/*
625 	* if we can't call bsd4_resetpriority for some reason we must call
626 	 * need user_resched().
627 	 */
628 	need_user_resched();
629 #endif
630 }
631 
632 /*
633  * Called from acquire and from kern_synch's one-second timer (one of the
634  * callout helper threads) with a critical section held.
635  *
636  * Decay p_estcpu based on the number of ticks we haven't been running
637  * and our p_nice.  As the load increases each process observes a larger
638  * number of idle ticks (because other processes are running in them).
639  * This observation leads to a larger correction which tends to make the
640  * system more 'batchy'.
641  *
642  * Note that no recalculation occurs for a process which sleeps and wakes
643  * up in the same tick.  That is, a system doing thousands of context
644  * switches per second will still only do serious estcpu calculations
645  * ESTCPUFREQ times per second.
646  *
647  * MPSAFE
648  */
649 static
650 void
651 bsd4_recalculate_estcpu(struct lwp *lp)
652 {
653 	globaldata_t gd = mycpu;
654 	sysclock_t cpbase;
655 	int loadfac;
656 	int ndecay;
657 	int nticks;
658 	int nleft;
659 
660 	/*
661 	 * We have to subtract periodic to get the last schedclock
662 	 * timeout time, otherwise we would get the upcoming timeout.
663 	 * Keep in mind that a process can migrate between cpus and
664 	 * while the scheduler clock should be very close, boundary
665 	 * conditions could lead to a small negative delta.
666 	 */
667 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
668 
669 	if (lp->lwp_slptime > 1) {
670 		/*
671 		 * Too much time has passed, do a coarse correction.
672 		 */
673 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
674 		bsd4_resetpriority(lp);
675 		lp->lwp_cpbase = cpbase;
676 		lp->lwp_cpticks = 0;
677 	} else if (lp->lwp_cpbase != cpbase) {
678 		/*
679 		 * Adjust estcpu if we are in a different tick.  Don't waste
680 		 * time if we are in the same tick.
681 		 *
682 		 * First calculate the number of ticks in the measurement
683 		 * interval.  The nticks calculation can wind up 0 due to
684 		 * a bug in the handling of lwp_slptime  (as yet not found),
685 		 * so make sure we do not get a divide by 0 panic.
686 		 */
687 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
688 		if (nticks <= 0)
689 			nticks = 1;
690 		updatepcpu(lp, lp->lwp_cpticks, nticks);
691 
692 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
693 			nleft = 0;
694 		if (usched_debug == lp->lwp_proc->p_pid) {
695 			kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
696 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
697 				lp->lwp_cpticks, nticks, nleft);
698 		}
699 
700 		/*
701 		 * Calculate a decay value based on ticks remaining scaled
702 		 * down by the instantanious load and p_nice.
703 		 */
704 		if ((loadfac = bsd4_runqcount) < 2)
705 			loadfac = 2;
706 		ndecay = nleft * usched_bsd4_decay * 2 *
707 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
708 
709 		/*
710 		 * Adjust p_estcpu.  Handle a border case where batch jobs
711 		 * can get stalled long enough to decay to zero when they
712 		 * shouldn't.
713 		 */
714 		if (lp->lwp_estcpu > ndecay * 2)
715 			lp->lwp_estcpu -= ndecay;
716 		else
717 			lp->lwp_estcpu >>= 1;
718 
719 		if (usched_debug == lp->lwp_proc->p_pid)
720 			kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
721 		bsd4_resetpriority(lp);
722 		lp->lwp_cpbase = cpbase;
723 		lp->lwp_cpticks = 0;
724 	}
725 }
726 
727 /*
728  * Compute the priority of a process when running in user mode.
729  * Arrange to reschedule if the resulting priority is better
730  * than that of the current process.
731  *
732  * This routine may be called with any process.
733  *
734  * This routine is called by fork1() for initial setup with the process
735  * of the run queue, and also may be called normally with the process on or
736  * off the run queue.
737  *
738  * MPSAFE
739  */
740 static void
741 bsd4_resetpriority(struct lwp *lp)
742 {
743 	bsd4_pcpu_t dd;
744 	int newpriority;
745 	u_short newrqtype;
746 	int reschedcpu;
747 
748 	/*
749 	 * Calculate the new priority and queue type
750 	 */
751 	crit_enter();
752 	spin_lock(&bsd4_spin);
753 
754 	newrqtype = lp->lwp_rtprio.type;
755 
756 	switch(newrqtype) {
757 	case RTP_PRIO_REALTIME:
758 	case RTP_PRIO_FIFO:
759 		newpriority = PRIBASE_REALTIME +
760 			     (lp->lwp_rtprio.prio & PRIMASK);
761 		break;
762 	case RTP_PRIO_NORMAL:
763 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
764 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
765 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
766 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
767 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
768 		break;
769 	case RTP_PRIO_IDLE:
770 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
771 		break;
772 	case RTP_PRIO_THREAD:
773 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
774 		break;
775 	default:
776 		panic("Bad RTP_PRIO %d", newrqtype);
777 		/* NOT REACHED */
778 	}
779 
780 	/*
781 	 * The newpriority incorporates the queue type so do a simple masked
782 	 * check to determine if the process has moved to another queue.  If
783 	 * it has, and it is currently on a run queue, then move it.
784 	 */
785 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
786 		lp->lwp_priority = newpriority;
787 		if (lp->lwp_flag & LWP_ONRUNQ) {
788 			bsd4_remrunqueue_locked(lp);
789 			lp->lwp_rqtype = newrqtype;
790 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
791 			bsd4_setrunqueue_locked(lp);
792 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
793 		} else {
794 			lp->lwp_rqtype = newrqtype;
795 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
796 			reschedcpu = -1;
797 		}
798 	} else {
799 		lp->lwp_priority = newpriority;
800 		reschedcpu = -1;
801 	}
802 
803 	/*
804 	 * Determine if we need to reschedule the target cpu.  This only
805 	 * occurs if the LWP is already on a scheduler queue, which means
806 	 * that idle cpu notification has already occured.  At most we
807 	 * need only issue a need_user_resched() on the appropriate cpu.
808 	 *
809 	 * The LWP may be owned by a CPU different from the current one,
810 	 * in which case dd->uschedcp may be modified without an MP lock
811 	 * or a spinlock held.  The worst that happens is that the code
812 	 * below causes a spurious need_user_resched() on the target CPU
813 	 * and dd->pri to be wrong for a short period of time, both of
814 	 * which are harmless.
815 	 */
816 	if (reschedcpu >= 0) {
817 		dd = &bsd4_pcpu[reschedcpu];
818 		if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) &&
819 		    (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
820 #ifdef SMP
821 			if (reschedcpu == mycpu->gd_cpuid) {
822 				spin_unlock(&bsd4_spin);
823 				need_user_resched();
824 			} else {
825 				spin_unlock(&bsd4_spin);
826 				atomic_clear_cpumask(&bsd4_rdyprocmask,
827 						     CPUMASK(reschedcpu));
828 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
829 					       need_user_resched_remote, NULL);
830 			}
831 #else
832 			spin_unlock(&bsd4_spin);
833 			need_user_resched();
834 #endif
835 		} else {
836 			spin_unlock(&bsd4_spin);
837 		}
838 	} else {
839 		spin_unlock(&bsd4_spin);
840 	}
841 	crit_exit();
842 }
843 
844 /*
845  * MPSAFE
846  */
847 static
848 void
849 bsd4_yield(struct lwp *lp)
850 {
851 #if 0
852 	/* FUTURE (or something similar) */
853 	switch(lp->lwp_rqtype) {
854 	case RTP_PRIO_NORMAL:
855 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
856 		break;
857 	default:
858 		break;
859 	}
860 #endif
861         need_user_resched();
862 }
863 
864 /*
865  * Called from fork1() when a new child process is being created.
866  *
867  * Give the child process an initial estcpu that is more batch then
868  * its parent and dock the parent for the fork (but do not
869  * reschedule the parent).   This comprises the main part of our batch
870  * detection heuristic for both parallel forking and sequential execs.
871  *
872  * Interactive processes will decay the boosted estcpu quickly while batch
873  * processes will tend to compound it.
874  * XXX lwp should be "spawning" instead of "forking"
875  *
876  * MPSAFE
877  */
878 static void
879 bsd4_forking(struct lwp *plp, struct lwp *lp)
880 {
881 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
882 	lp->lwp_origcpu = lp->lwp_estcpu;
883 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
884 }
885 
886 /*
887  * Called when the parent reaps a child.   Propogate cpu use by the child
888  * back to the parent.
889  *
890  * MPSAFE
891  */
892 static void
893 bsd4_exiting(struct lwp *plp, struct lwp *lp)
894 {
895 	int delta;
896 
897 	if (plp->lwp_proc->p_pid != 1) {
898 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
899 		if (delta > 0)
900 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
901 	}
902 }
903 
904 
905 /*
906  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
907  * it selects a user process and returns it.  If chklp is non-NULL and chklp
908  * has a better or equal priority then the process that would otherwise be
909  * chosen, NULL is returned.
910  *
911  * Until we fix the RUNQ code the chklp test has to be strict or we may
912  * bounce between processes trying to acquire the current process designation.
913  *
914  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
915  *	    left intact through the entire routine.
916  */
917 static
918 struct lwp *
919 chooseproc_locked(struct lwp *chklp)
920 {
921 	struct lwp *lp;
922 	struct rq *q;
923 	u_int32_t *which, *which2;
924 	u_int32_t pri;
925 	u_int32_t rtqbits;
926 	u_int32_t tsqbits;
927 	u_int32_t idqbits;
928 	cpumask_t cpumask;
929 
930 	rtqbits = bsd4_rtqueuebits;
931 	tsqbits = bsd4_queuebits;
932 	idqbits = bsd4_idqueuebits;
933 	cpumask = mycpu->gd_cpumask;
934 
935 #ifdef SMP
936 again:
937 #endif
938 	if (rtqbits) {
939 		pri = bsfl(rtqbits);
940 		q = &bsd4_rtqueues[pri];
941 		which = &bsd4_rtqueuebits;
942 		which2 = &rtqbits;
943 	} else if (tsqbits) {
944 		pri = bsfl(tsqbits);
945 		q = &bsd4_queues[pri];
946 		which = &bsd4_queuebits;
947 		which2 = &tsqbits;
948 	} else if (idqbits) {
949 		pri = bsfl(idqbits);
950 		q = &bsd4_idqueues[pri];
951 		which = &bsd4_idqueuebits;
952 		which2 = &idqbits;
953 	} else {
954 		return NULL;
955 	}
956 	lp = TAILQ_FIRST(q);
957 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
958 
959 #ifdef SMP
960 	while ((lp->lwp_cpumask & cpumask) == 0) {
961 		lp = TAILQ_NEXT(lp, lwp_procq);
962 		if (lp == NULL) {
963 			*which2 &= ~(1 << pri);
964 			goto again;
965 		}
966 	}
967 #endif
968 
969 	/*
970 	 * If the passed lwp <chklp> is reasonably close to the selected
971 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
972 	 *
973 	 * Note that we must error on the side of <chklp> to avoid bouncing
974 	 * between threads in the acquire code.
975 	 */
976 	if (chklp) {
977 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
978 			return(NULL);
979 	}
980 
981 #ifdef SMP
982 	/*
983 	 * If the chosen lwp does not reside on this cpu spend a few
984 	 * cycles looking for a better candidate at the same priority level.
985 	 * This is a fallback check, setrunqueue() tries to wakeup the
986 	 * correct cpu and is our front-line affinity.
987 	 */
988 	if (lp->lwp_thread->td_gd != mycpu &&
989 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
990 	) {
991 		if (chklp->lwp_thread->td_gd == mycpu) {
992 			++choose_affinity;
993 			lp = chklp;
994 		}
995 	}
996 #endif
997 
998 	TAILQ_REMOVE(q, lp, lwp_procq);
999 	--bsd4_runqcount;
1000 	if (TAILQ_EMPTY(q))
1001 		*which &= ~(1 << pri);
1002 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
1003 	lp->lwp_flag &= ~LWP_ONRUNQ;
1004 	return lp;
1005 }
1006 
1007 #ifdef SMP
1008 
1009 static
1010 void
1011 need_user_resched_remote(void *dummy)
1012 {
1013 	globaldata_t gd = mycpu;
1014 	bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
1015 
1016 	need_user_resched();
1017 	lwkt_schedule(&dd->helper_thread);
1018 }
1019 
1020 #endif
1021 
1022 /*
1023  * bsd4_remrunqueue_locked() removes a given process from the run queue
1024  * that it is on, clearing the queue busy bit if it becomes empty.
1025  *
1026  * Note that user process scheduler is different from the LWKT schedule.
1027  * The user process scheduler only manages user processes but it uses LWKT
1028  * underneath, and a user process operating in the kernel will often be
1029  * 'released' from our management.
1030  *
1031  * MPSAFE - bsd4_spin must be held exclusively on call
1032  */
1033 static void
1034 bsd4_remrunqueue_locked(struct lwp *lp)
1035 {
1036 	struct rq *q;
1037 	u_int32_t *which;
1038 	u_int8_t pri;
1039 
1040 	KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
1041 	lp->lwp_flag &= ~LWP_ONRUNQ;
1042 	--bsd4_runqcount;
1043 	KKASSERT(bsd4_runqcount >= 0);
1044 
1045 	pri = lp->lwp_rqindex;
1046 	switch(lp->lwp_rqtype) {
1047 	case RTP_PRIO_NORMAL:
1048 		q = &bsd4_queues[pri];
1049 		which = &bsd4_queuebits;
1050 		break;
1051 	case RTP_PRIO_REALTIME:
1052 	case RTP_PRIO_FIFO:
1053 		q = &bsd4_rtqueues[pri];
1054 		which = &bsd4_rtqueuebits;
1055 		break;
1056 	case RTP_PRIO_IDLE:
1057 		q = &bsd4_idqueues[pri];
1058 		which = &bsd4_idqueuebits;
1059 		break;
1060 	default:
1061 		panic("remrunqueue: invalid rtprio type");
1062 		/* NOT REACHED */
1063 	}
1064 	TAILQ_REMOVE(q, lp, lwp_procq);
1065 	if (TAILQ_EMPTY(q)) {
1066 		KASSERT((*which & (1 << pri)) != 0,
1067 			("remrunqueue: remove from empty queue"));
1068 		*which &= ~(1 << pri);
1069 	}
1070 }
1071 
1072 /*
1073  * bsd4_setrunqueue_locked()
1074  *
1075  * Add a process whos rqtype and rqindex had previously been calculated
1076  * onto the appropriate run queue.   Determine if the addition requires
1077  * a reschedule on a cpu and return the cpuid or -1.
1078  *
1079  * NOTE: Lower priorities are better priorities.
1080  *
1081  * MPSAFE - bsd4_spin must be held exclusively on call
1082  */
1083 static void
1084 bsd4_setrunqueue_locked(struct lwp *lp)
1085 {
1086 	struct rq *q;
1087 	u_int32_t *which;
1088 	int pri;
1089 
1090 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1091 	lp->lwp_flag |= LWP_ONRUNQ;
1092 	++bsd4_runqcount;
1093 
1094 	pri = lp->lwp_rqindex;
1095 
1096 	switch(lp->lwp_rqtype) {
1097 	case RTP_PRIO_NORMAL:
1098 		q = &bsd4_queues[pri];
1099 		which = &bsd4_queuebits;
1100 		break;
1101 	case RTP_PRIO_REALTIME:
1102 	case RTP_PRIO_FIFO:
1103 		q = &bsd4_rtqueues[pri];
1104 		which = &bsd4_rtqueuebits;
1105 		break;
1106 	case RTP_PRIO_IDLE:
1107 		q = &bsd4_idqueues[pri];
1108 		which = &bsd4_idqueuebits;
1109 		break;
1110 	default:
1111 		panic("remrunqueue: invalid rtprio type");
1112 		/* NOT REACHED */
1113 	}
1114 
1115 	/*
1116 	 * Add to the correct queue and set the appropriate bit.  If no
1117 	 * lower priority (i.e. better) processes are in the queue then
1118 	 * we want a reschedule, calculate the best cpu for the job.
1119 	 *
1120 	 * Always run reschedules on the LWPs original cpu.
1121 	 */
1122 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1123 	*which |= 1 << pri;
1124 }
1125 
1126 #ifdef SMP
1127 
1128 /*
1129  * For SMP systems a user scheduler helper thread is created for each
1130  * cpu and is used to allow one cpu to wakeup another for the purposes of
1131  * scheduling userland threads from setrunqueue().
1132  *
1133  * UP systems do not need the helper since there is only one cpu.
1134  *
1135  * We can't use the idle thread for this because we might block.
1136  * Additionally, doing things this way allows us to HLT idle cpus
1137  * on MP systems.
1138  *
1139  * MPSAFE
1140  */
1141 static void
1142 sched_thread(void *dummy)
1143 {
1144     globaldata_t gd;
1145     bsd4_pcpu_t  dd;
1146     struct lwp *nlp;
1147     cpumask_t mask;
1148     int cpuid;
1149 #ifdef SMP
1150     cpumask_t tmpmask;
1151     int tmpid;
1152 #endif
1153 
1154     gd = mycpu;
1155     cpuid = gd->gd_cpuid;	/* doesn't change */
1156     mask = gd->gd_cpumask;	/* doesn't change */
1157     dd = &bsd4_pcpu[cpuid];
1158 
1159     /*
1160      * Since we are woken up only when no user processes are scheduled
1161      * on a cpu, we can run at an ultra low priority.
1162      */
1163     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1164 
1165     for (;;) {
1166 	/*
1167 	 * We use the LWKT deschedule-interlock trick to avoid racing
1168 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1169 	 * manual lwkt_switch() call we make below.
1170 	 */
1171 	crit_enter_gd(gd);
1172 	lwkt_deschedule_self(gd->gd_curthread);
1173 	spin_lock(&bsd4_spin);
1174 	atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1175 
1176 	clear_user_resched();	/* This satisfied the reschedule request */
1177 	dd->rrcount = 0;	/* Reset the round-robin counter */
1178 
1179 	if ((bsd4_curprocmask & mask) == 0) {
1180 		/*
1181 		 * No thread is currently scheduled.
1182 		 */
1183 		KKASSERT(dd->uschedcp == NULL);
1184 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1185 			atomic_set_cpumask(&bsd4_curprocmask, mask);
1186 			dd->upri = nlp->lwp_priority;
1187 			dd->uschedcp = nlp;
1188 			spin_unlock(&bsd4_spin);
1189 			lwkt_acquire(nlp->lwp_thread);
1190 			lwkt_schedule(nlp->lwp_thread);
1191 		} else {
1192 			spin_unlock(&bsd4_spin);
1193 		}
1194 	} else if (bsd4_runqcount) {
1195 		if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
1196 			dd->upri = nlp->lwp_priority;
1197 			dd->uschedcp = nlp;
1198 			spin_unlock(&bsd4_spin);
1199 			lwkt_acquire(nlp->lwp_thread);
1200 			lwkt_schedule(nlp->lwp_thread);
1201 		} else {
1202 			/*
1203 			 * CHAINING CONDITION TRAIN
1204 			 *
1205 			 * We could not deal with the scheduler wakeup
1206 			 * request on this cpu, locate a ready scheduler
1207 			 * with no current lp assignment and chain to it.
1208 			 *
1209 			 * This ensures that a wakeup race which fails due
1210 			 * to priority test does not leave other unscheduled
1211 			 * cpus idle when the runqueue is not empty.
1212 			 */
1213 			tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask &
1214 				  smp_active_mask;
1215 			if (tmpmask) {
1216 				tmpid = BSFCPUMASK(tmpmask);
1217 				gd = globaldata_find(cpuid);
1218 				dd = &bsd4_pcpu[cpuid];
1219 				atomic_clear_cpumask(&bsd4_rdyprocmask,
1220 						     CPUMASK(tmpid));
1221 				spin_unlock(&bsd4_spin);
1222 				lwkt_schedule(&dd->helper_thread);
1223 			} else {
1224 				spin_unlock(&bsd4_spin);
1225 			}
1226 		}
1227 	} else {
1228 		/*
1229 		 * The runq is empty.
1230 		 */
1231 		spin_unlock(&bsd4_spin);
1232 	}
1233 	crit_exit_gd(gd);
1234 	lwkt_switch();
1235     }
1236 }
1237 
1238 /*
1239  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1240  * been cleared by rqinit() and we should not mess with it further.
1241  */
1242 static void
1243 sched_thread_cpu_init(void)
1244 {
1245     int i;
1246 
1247     if (bootverbose)
1248 	kprintf("start scheduler helpers on cpus:");
1249 
1250     for (i = 0; i < ncpus; ++i) {
1251 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1252 	cpumask_t mask = CPUMASK(i);
1253 
1254 	if ((mask & smp_active_mask) == 0)
1255 	    continue;
1256 
1257 	if (bootverbose)
1258 	    kprintf(" %d", i);
1259 
1260 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1261 		    TDF_STOPREQ, i, "usched %d", i);
1262 
1263 	/*
1264 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1265 	 * been enabled in rqinit().
1266 	 */
1267 	if (i)
1268 	    atomic_clear_cpumask(&bsd4_curprocmask, mask);
1269 	atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1270 	dd->upri = PRIBASE_NULL;
1271     }
1272     if (bootverbose)
1273 	kprintf("\n");
1274 }
1275 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1276 	sched_thread_cpu_init, NULL)
1277 
1278 #endif
1279 
1280