xref: /dragonfly/sys/kern/usched_bsd4.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
42 
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 #include <sys/mplock2.h>
46 
47 /*
48  * Priorities.  Note that with 32 run queues per scheduler each queue
49  * represents four priority levels.
50  */
51 
52 #define MAXPRI			128
53 #define PRIMASK			(MAXPRI - 1)
54 #define PRIBASE_REALTIME	0
55 #define PRIBASE_NORMAL		MAXPRI
56 #define PRIBASE_IDLE		(MAXPRI * 2)
57 #define PRIBASE_THREAD		(MAXPRI * 3)
58 #define PRIBASE_NULL		(MAXPRI * 4)
59 
60 #define NQS	32			/* 32 run queues. */
61 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
62 #define PPQMASK	(PPQ - 1)
63 
64 /*
65  * NICEPPQ	- number of nice units per priority queue
66  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
67  *
68  * ESTCPUPPQ	- number of estcpu units per priority queue
69  * ESTCPUMAX	- number of estcpu units
70  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
71  *		  100% cpu.
72  */
73 #define NICEPPQ		2
74 #define ESTCPURAMP	4
75 #define ESTCPUPPQ	512
76 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
77 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
78 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
79 
80 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
81 
82 TAILQ_HEAD(rq, lwp);
83 
84 #define lwp_priority	lwp_usdata.bsd4.priority
85 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
86 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
87 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
88 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
89 
90 static void bsd4_acquire_curproc(struct lwp *lp);
91 static void bsd4_release_curproc(struct lwp *lp);
92 static void bsd4_select_curproc(globaldata_t gd);
93 static void bsd4_setrunqueue(struct lwp *lp);
94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
95 				sysclock_t cpstamp);
96 static void bsd4_recalculate_estcpu(struct lwp *lp);
97 static void bsd4_resetpriority(struct lwp *lp);
98 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
100 static void bsd4_yield(struct lwp *lp);
101 
102 #ifdef SMP
103 static void need_user_resched_remote(void *dummy);
104 #endif
105 static struct lwp *chooseproc_locked(struct lwp *chklp);
106 static void bsd4_remrunqueue_locked(struct lwp *lp);
107 static void bsd4_setrunqueue_locked(struct lwp *lp);
108 
109 struct usched usched_bsd4 = {
110 	{ NULL },
111 	"bsd4", "Original DragonFly Scheduler",
112 	NULL,			/* default registration */
113 	NULL,			/* default deregistration */
114 	bsd4_acquire_curproc,
115 	bsd4_release_curproc,
116 	bsd4_setrunqueue,
117 	bsd4_schedulerclock,
118 	bsd4_recalculate_estcpu,
119 	bsd4_resetpriority,
120 	bsd4_forking,
121 	bsd4_exiting,
122 	NULL,			/* setcpumask not supported */
123 	bsd4_yield
124 };
125 
126 struct usched_bsd4_pcpu {
127 	struct thread helper_thread;
128 	short	rrcount;
129 	short	upri;
130 	struct lwp *uschedcp;
131 };
132 
133 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
134 
135 /*
136  * We have NQS (32) run queues per scheduling class.  For the normal
137  * class, there are 128 priorities scaled onto these 32 queues.  New
138  * processes are added to the last entry in each queue, and processes
139  * are selected for running by taking them from the head and maintaining
140  * a simple FIFO arrangement.  Realtime and Idle priority processes have
141  * and explicit 0-31 priority which maps directly onto their class queue
142  * index.  When a queue has something in it, the corresponding bit is
143  * set in the queuebits variable, allowing a single read to determine
144  * the state of all 32 queues and then a ffs() to find the first busy
145  * queue.
146  */
147 static struct rq bsd4_queues[NQS];
148 static struct rq bsd4_rtqueues[NQS];
149 static struct rq bsd4_idqueues[NQS];
150 static u_int32_t bsd4_queuebits;
151 static u_int32_t bsd4_rtqueuebits;
152 static u_int32_t bsd4_idqueuebits;
153 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
154 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
155 static int	 bsd4_runqcount;
156 #ifdef SMP
157 static volatile int bsd4_scancpu;
158 #endif
159 static struct spinlock bsd4_spin;
160 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
161 
162 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, "");
163 #ifdef INVARIANTS
164 static int usched_nonoptimal;
165 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
166         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
167 static int usched_optimal;
168 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
169         &usched_optimal, 0, "acquire_curproc() was optimal");
170 #endif
171 static int usched_debug = -1;
172 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, "");
173 #ifdef SMP
174 static int remote_resched_nonaffinity;
175 static int remote_resched_affinity;
176 static int choose_affinity;
177 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
178         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
179 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
180         &remote_resched_affinity, 0, "Number of remote rescheds");
181 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
182         &choose_affinity, 0, "chooseproc() was smart");
183 #endif
184 
185 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
186 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
187         &usched_bsd4_rrinterval, 0, "");
188 static int usched_bsd4_decay = ESTCPUINCR / 2;
189 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
190         &usched_bsd4_decay, 0, "");
191 
192 /*
193  * Initialize the run queues at boot time.
194  */
195 static void
196 rqinit(void *dummy)
197 {
198 	int i;
199 
200 	spin_init(&bsd4_spin);
201 	for (i = 0; i < NQS; i++) {
202 		TAILQ_INIT(&bsd4_queues[i]);
203 		TAILQ_INIT(&bsd4_rtqueues[i]);
204 		TAILQ_INIT(&bsd4_idqueues[i]);
205 	}
206 	atomic_clear_int(&bsd4_curprocmask, 1);
207 }
208 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
209 
210 /*
211  * BSD4_ACQUIRE_CURPROC
212  *
213  * This function is called when the kernel intends to return to userland.
214  * It is responsible for making the thread the current designated userland
215  * thread for this cpu, blocking if necessary.
216  *
217  * The kernel has already depressed our LWKT priority so we must not switch
218  * until we have either assigned or disposed of the thread.
219  *
220  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
221  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
222  * occur, this function is called only under very controlled circumstances.
223  *
224  * MPSAFE
225  */
226 static void
227 bsd4_acquire_curproc(struct lwp *lp)
228 {
229 	globaldata_t gd;
230 	bsd4_pcpu_t dd;
231 	struct lwp *olp;
232 
233 	crit_enter();
234 	bsd4_recalculate_estcpu(lp);
235 
236 	/*
237 	 * If a reschedule was requested give another thread the
238 	 * driver's seat.
239 	 */
240 	if (user_resched_wanted()) {
241 		clear_user_resched();
242 		bsd4_release_curproc(lp);
243 	}
244 
245 	/*
246 	 * Loop until we are the current user thread
247 	 */
248 	do {
249 		/*
250 		 * Reload after a switch or setrunqueue/switch possibly
251 		 * moved us to another cpu.
252 		 */
253 		clear_lwkt_resched();
254 		gd = mycpu;
255 		dd = &bsd4_pcpu[gd->gd_cpuid];
256 
257 		/*
258 		 * Become the currently scheduled user thread for this cpu
259 		 * if we can do so trivially.
260 		 *
261 		 * We can steal another thread's current thread designation
262 		 * on this cpu since if we are running that other thread
263 		 * must not be, so we can safely deschedule it.
264 		 */
265 		if (dd->uschedcp == lp) {
266 			dd->upri = lp->lwp_priority;
267 		} else if (dd->uschedcp == NULL) {
268 			atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
269 			dd->uschedcp = lp;
270 			dd->upri = lp->lwp_priority;
271 		} else if (dd->upri > lp->lwp_priority) {
272 			olp = dd->uschedcp;
273 			dd->uschedcp = lp;
274 			dd->upri = lp->lwp_priority;
275 			lwkt_deschedule(olp->lwp_thread);
276 			bsd4_setrunqueue(olp);
277 		} else {
278 			lwkt_deschedule(lp->lwp_thread);
279 			bsd4_setrunqueue(lp);
280 			lwkt_switch();
281 		}
282 
283 		/*
284 		 * Other threads at our current user priority have already
285 		 * put in their bids, but we must run any kernel threads
286 		 * at higher priorities, and we could lose our bid to
287 		 * another thread trying to return to user mode in the
288 		 * process.
289 		 *
290 		 * If we lose our bid we will be descheduled and put on
291 		 * the run queue.  When we are reactivated we will have
292 		 * another chance.
293 		 */
294 		if (lwkt_check_resched(lp->lwp_thread) > 1) {
295 			lwkt_switch();
296 			continue;
297 		}
298 	} while (dd->uschedcp != lp);
299 
300 	crit_exit();
301 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
302 }
303 
304 /*
305  * BSD4_RELEASE_CURPROC
306  *
307  * This routine detaches the current thread from the userland scheduler,
308  * usually because the thread needs to run or block in the kernel (at
309  * kernel priority) for a while.
310  *
311  * This routine is also responsible for selecting a new thread to
312  * make the current thread.
313  *
314  * NOTE: This implementation differs from the dummy example in that
315  * bsd4_select_curproc() is able to select the current process, whereas
316  * dummy_select_curproc() is not able to select the current process.
317  * This means we have to NULL out uschedcp.
318  *
319  * Additionally, note that we may already be on a run queue if releasing
320  * via the lwkt_switch() in bsd4_setrunqueue().
321  *
322  * WARNING!  The MP lock may be in an unsynchronized state due to the
323  * way get_mplock() works and the fact that this function may be called
324  * from a passive release during a lwkt_switch().   try_mplock() will deal
325  * with this for us but you should be aware that td_mpcount may not be
326  * useable.
327  *
328  * MPSAFE
329  */
330 static void
331 bsd4_release_curproc(struct lwp *lp)
332 {
333 	globaldata_t gd = mycpu;
334 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
335 
336 	if (dd->uschedcp == lp) {
337 		crit_enter();
338 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
339 		dd->uschedcp = NULL;	/* don't let lp be selected */
340 		dd->upri = PRIBASE_NULL;
341 		atomic_clear_int(&bsd4_curprocmask, gd->gd_cpumask);
342 		bsd4_select_curproc(gd);
343 		crit_exit();
344 	}
345 }
346 
347 /*
348  * BSD4_SELECT_CURPROC
349  *
350  * Select a new current process for this cpu and clear any pending user
351  * reschedule request.  The cpu currently has no current process.
352  *
353  * This routine is also responsible for equal-priority round-robining,
354  * typically triggered from bsd4_schedulerclock().  In our dummy example
355  * all the 'user' threads are LWKT scheduled all at once and we just
356  * call lwkt_switch().
357  *
358  * The calling process is not on the queue and cannot be selected.
359  *
360  * MPSAFE
361  */
362 static
363 void
364 bsd4_select_curproc(globaldata_t gd)
365 {
366 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
367 	struct lwp *nlp;
368 	int cpuid = gd->gd_cpuid;
369 
370 	crit_enter_gd(gd);
371 
372 	spin_lock_wr(&bsd4_spin);
373 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
374 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
375 		dd->upri = nlp->lwp_priority;
376 		dd->uschedcp = nlp;
377 		spin_unlock_wr(&bsd4_spin);
378 #ifdef SMP
379 		lwkt_acquire(nlp->lwp_thread);
380 #endif
381 		lwkt_schedule(nlp->lwp_thread);
382 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) {
383 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
384 		spin_unlock_wr(&bsd4_spin);
385 		lwkt_schedule(&dd->helper_thread);
386 	} else {
387 		spin_unlock_wr(&bsd4_spin);
388 	}
389 	crit_exit_gd(gd);
390 }
391 
392 /*
393  * BSD4_SETRUNQUEUE
394  *
395  * Place the specified lwp on the user scheduler's run queue.  This routine
396  * must be called with the thread descheduled.  The lwp must be runnable.
397  *
398  * The thread may be the current thread as a special case.
399  *
400  * MPSAFE
401  */
402 static void
403 bsd4_setrunqueue(struct lwp *lp)
404 {
405 	globaldata_t gd;
406 	bsd4_pcpu_t dd;
407 #ifdef SMP
408 	int cpuid;
409 	cpumask_t mask;
410 	cpumask_t tmpmask;
411 #endif
412 
413 	/*
414 	 * First validate the process state relative to the current cpu.
415 	 * We don't need the spinlock for this, just a critical section.
416 	 * We are in control of the process.
417 	 */
418 	crit_enter();
419 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
420 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
421 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
422 	     lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
423 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
424 
425 	/*
426 	 * Note: gd and dd are relative to the target thread's last cpu,
427 	 * NOT our current cpu.
428 	 */
429 	gd = lp->lwp_thread->td_gd;
430 	dd = &bsd4_pcpu[gd->gd_cpuid];
431 
432 	/*
433 	 * This process is not supposed to be scheduled anywhere or assigned
434 	 * as the current process anywhere.  Assert the condition.
435 	 */
436 	KKASSERT(dd->uschedcp != lp);
437 
438 #ifndef SMP
439 	/*
440 	 * If we are not SMP we do not have a scheduler helper to kick
441 	 * and must directly activate the process if none are scheduled.
442 	 *
443 	 * This is really only an issue when bootstrapping init since
444 	 * the caller in all other cases will be a user process, and
445 	 * even if released (dd->uschedcp == NULL), that process will
446 	 * kickstart the scheduler when it returns to user mode from
447 	 * the kernel.
448 	 */
449 	if (dd->uschedcp == NULL) {
450 		atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
451 		dd->uschedcp = lp;
452 		dd->upri = lp->lwp_priority;
453 		lwkt_schedule(lp->lwp_thread);
454 		crit_exit();
455 		return;
456 	}
457 #endif
458 
459 #ifdef SMP
460 	/*
461 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
462 	 * operation when the priority is recalculated, so TDF_MIGRATING
463 	 * may already be set.
464 	 */
465 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
466 		lwkt_giveaway(lp->lwp_thread);
467 #endif
468 
469 	/*
470 	 * We lose control of lp the moment we release the spinlock after
471 	 * having placed lp on the queue.  i.e. another cpu could pick it
472 	 * up and it could exit, or its priority could be further adjusted,
473 	 * or something like that.
474 	 */
475 	spin_lock_wr(&bsd4_spin);
476 	bsd4_setrunqueue_locked(lp);
477 
478 #ifdef SMP
479 	/*
480 	 * Kick the scheduler helper on one of the other cpu's
481 	 * and request a reschedule if appropriate.
482 	 */
483 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
484 	++bsd4_scancpu;
485 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask &
486 		lp->lwp_cpumask & smp_active_mask;
487 	spin_unlock_wr(&bsd4_spin);
488 
489 	while (mask) {
490 		tmpmask = ~((1 << cpuid) - 1);
491 		if (mask & tmpmask)
492 			cpuid = bsfl(mask & tmpmask);
493 		else
494 			cpuid = bsfl(mask);
495 		gd = globaldata_find(cpuid);
496 		dd = &bsd4_pcpu[cpuid];
497 
498 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
499 			if (gd == mycpu)
500 				need_user_resched_remote(NULL);
501 			else
502 				lwkt_send_ipiq(gd, need_user_resched_remote, NULL);
503 			break;
504 		}
505 		mask &= ~(1 << cpuid);
506 	}
507 #else
508 	/*
509 	 * Request a reschedule if appropriate.
510 	 */
511 	spin_unlock_wr(&bsd4_spin);
512 	if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
513 		need_user_resched();
514 	}
515 #endif
516 	crit_exit();
517 }
518 
519 /*
520  * This routine is called from a systimer IPI.  It MUST be MP-safe and
521  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
522  * each cpu.
523  *
524  * Because this is effectively a 'fast' interrupt, we cannot safely
525  * use spinlocks unless gd_spinlock_rd is NULL and gd_spinlocks_wr is 0,
526  * even if the spinlocks are 'non conflicting'.  This is due to the way
527  * spinlock conflicts against cached read locks are handled.
528  *
529  * MPSAFE
530  */
531 static
532 void
533 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
534 {
535 	globaldata_t gd = mycpu;
536 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
537 
538 	/*
539 	 * Do we need to round-robin?  We round-robin 10 times a second.
540 	 * This should only occur for cpu-bound batch processes.
541 	 */
542 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
543 		dd->rrcount = 0;
544 		need_user_resched();
545 	}
546 
547 	/*
548 	 * As the process accumulates cpu time p_estcpu is bumped and may
549 	 * push the process into another scheduling queue.  It typically
550 	 * takes 4 ticks to bump the queue.
551 	 */
552 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
553 
554 	/*
555 	 * Reducing p_origcpu over time causes more of our estcpu to be
556 	 * returned to the parent when we exit.  This is a small tweak
557 	 * for the batch detection heuristic.
558 	 */
559 	if (lp->lwp_origcpu)
560 		--lp->lwp_origcpu;
561 
562 	/*
563 	 * We can only safely call bsd4_resetpriority(), which uses spinlocks,
564 	 * if we aren't interrupting a thread that is using spinlocks.
565 	 * Otherwise we can deadlock with another cpu waiting for our read
566 	 * spinlocks to clear.
567 	 */
568 	if (gd->gd_spinlock_rd == NULL && gd->gd_spinlocks_wr == 0)
569 		bsd4_resetpriority(lp);
570 	else
571 		need_user_resched();
572 }
573 
574 /*
575  * Called from acquire and from kern_synch's one-second timer (one of the
576  * callout helper threads) with a critical section held.
577  *
578  * Decay p_estcpu based on the number of ticks we haven't been running
579  * and our p_nice.  As the load increases each process observes a larger
580  * number of idle ticks (because other processes are running in them).
581  * This observation leads to a larger correction which tends to make the
582  * system more 'batchy'.
583  *
584  * Note that no recalculation occurs for a process which sleeps and wakes
585  * up in the same tick.  That is, a system doing thousands of context
586  * switches per second will still only do serious estcpu calculations
587  * ESTCPUFREQ times per second.
588  *
589  * MPSAFE
590  */
591 static
592 void
593 bsd4_recalculate_estcpu(struct lwp *lp)
594 {
595 	globaldata_t gd = mycpu;
596 	sysclock_t cpbase;
597 	int loadfac;
598 	int ndecay;
599 	int nticks;
600 	int nleft;
601 
602 	/*
603 	 * We have to subtract periodic to get the last schedclock
604 	 * timeout time, otherwise we would get the upcoming timeout.
605 	 * Keep in mind that a process can migrate between cpus and
606 	 * while the scheduler clock should be very close, boundary
607 	 * conditions could lead to a small negative delta.
608 	 */
609 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
610 
611 	if (lp->lwp_slptime > 1) {
612 		/*
613 		 * Too much time has passed, do a coarse correction.
614 		 */
615 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
616 		bsd4_resetpriority(lp);
617 		lp->lwp_cpbase = cpbase;
618 		lp->lwp_cpticks = 0;
619 	} else if (lp->lwp_cpbase != cpbase) {
620 		/*
621 		 * Adjust estcpu if we are in a different tick.  Don't waste
622 		 * time if we are in the same tick.
623 		 *
624 		 * First calculate the number of ticks in the measurement
625 		 * interval.  The nticks calculation can wind up 0 due to
626 		 * a bug in the handling of lwp_slptime  (as yet not found),
627 		 * so make sure we do not get a divide by 0 panic.
628 		 */
629 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
630 		if (nticks <= 0)
631 			nticks = 1;
632 		updatepcpu(lp, lp->lwp_cpticks, nticks);
633 
634 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
635 			nleft = 0;
636 		if (usched_debug == lp->lwp_proc->p_pid) {
637 			kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
638 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
639 				lp->lwp_cpticks, nticks, nleft);
640 		}
641 
642 		/*
643 		 * Calculate a decay value based on ticks remaining scaled
644 		 * down by the instantanious load and p_nice.
645 		 */
646 		if ((loadfac = bsd4_runqcount) < 2)
647 			loadfac = 2;
648 		ndecay = nleft * usched_bsd4_decay * 2 *
649 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
650 
651 		/*
652 		 * Adjust p_estcpu.  Handle a border case where batch jobs
653 		 * can get stalled long enough to decay to zero when they
654 		 * shouldn't.
655 		 */
656 		if (lp->lwp_estcpu > ndecay * 2)
657 			lp->lwp_estcpu -= ndecay;
658 		else
659 			lp->lwp_estcpu >>= 1;
660 
661 		if (usched_debug == lp->lwp_proc->p_pid)
662 			kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
663 		bsd4_resetpriority(lp);
664 		lp->lwp_cpbase = cpbase;
665 		lp->lwp_cpticks = 0;
666 	}
667 }
668 
669 /*
670  * Compute the priority of a process when running in user mode.
671  * Arrange to reschedule if the resulting priority is better
672  * than that of the current process.
673  *
674  * This routine may be called with any process.
675  *
676  * This routine is called by fork1() for initial setup with the process
677  * of the run queue, and also may be called normally with the process on or
678  * off the run queue.
679  *
680  * MPSAFE
681  */
682 static void
683 bsd4_resetpriority(struct lwp *lp)
684 {
685 	bsd4_pcpu_t dd;
686 	int newpriority;
687 	u_short newrqtype;
688 	int reschedcpu;
689 
690 	/*
691 	 * Calculate the new priority and queue type
692 	 */
693 	crit_enter();
694 	spin_lock_wr(&bsd4_spin);
695 
696 	newrqtype = lp->lwp_rtprio.type;
697 
698 	switch(newrqtype) {
699 	case RTP_PRIO_REALTIME:
700 	case RTP_PRIO_FIFO:
701 		newpriority = PRIBASE_REALTIME +
702 			     (lp->lwp_rtprio.prio & PRIMASK);
703 		break;
704 	case RTP_PRIO_NORMAL:
705 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
706 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
707 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
708 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
709 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
710 		break;
711 	case RTP_PRIO_IDLE:
712 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
713 		break;
714 	case RTP_PRIO_THREAD:
715 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
716 		break;
717 	default:
718 		panic("Bad RTP_PRIO %d", newrqtype);
719 		/* NOT REACHED */
720 	}
721 
722 	/*
723 	 * The newpriority incorporates the queue type so do a simple masked
724 	 * check to determine if the process has moved to another queue.  If
725 	 * it has, and it is currently on a run queue, then move it.
726 	 */
727 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
728 		lp->lwp_priority = newpriority;
729 		if (lp->lwp_flag & LWP_ONRUNQ) {
730 			bsd4_remrunqueue_locked(lp);
731 			lp->lwp_rqtype = newrqtype;
732 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
733 			bsd4_setrunqueue_locked(lp);
734 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
735 		} else {
736 			lp->lwp_rqtype = newrqtype;
737 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
738 			reschedcpu = -1;
739 		}
740 	} else {
741 		lp->lwp_priority = newpriority;
742 		reschedcpu = -1;
743 	}
744 	spin_unlock_wr(&bsd4_spin);
745 
746 	/*
747 	 * Determine if we need to reschedule the target cpu.  This only
748 	 * occurs if the LWP is already on a scheduler queue, which means
749 	 * that idle cpu notification has already occured.  At most we
750 	 * need only issue a need_user_resched() on the appropriate cpu.
751 	 *
752 	 * The LWP may be owned by a CPU different from the current one,
753 	 * in which case dd->uschedcp may be modified without an MP lock
754 	 * or a spinlock held.  The worst that happens is that the code
755 	 * below causes a spurious need_user_resched() on the target CPU
756 	 * and dd->pri to be wrong for a short period of time, both of
757 	 * which are harmless.
758 	 */
759 	if (reschedcpu >= 0) {
760 		dd = &bsd4_pcpu[reschedcpu];
761 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
762 			dd->upri = lp->lwp_priority;
763 #ifdef SMP
764 			if (reschedcpu == mycpu->gd_cpuid) {
765 				need_user_resched();
766 			} else {
767 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
768 					       need_user_resched_remote, NULL);
769 			}
770 #else
771 			need_user_resched();
772 #endif
773 		}
774 	}
775 	crit_exit();
776 }
777 
778 /*
779  * MPSAFE
780  */
781 static
782 void
783 bsd4_yield(struct lwp *lp)
784 {
785 #if 0
786 	/* FUTURE (or something similar) */
787 	switch(lp->lwp_rqtype) {
788 	case RTP_PRIO_NORMAL:
789 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
790 		break;
791 	default:
792 		break;
793 	}
794 #endif
795         need_user_resched();
796 }
797 
798 /*
799  * Called from fork1() when a new child process is being created.
800  *
801  * Give the child process an initial estcpu that is more batch then
802  * its parent and dock the parent for the fork (but do not
803  * reschedule the parent).   This comprises the main part of our batch
804  * detection heuristic for both parallel forking and sequential execs.
805  *
806  * Interactive processes will decay the boosted estcpu quickly while batch
807  * processes will tend to compound it.
808  * XXX lwp should be "spawning" instead of "forking"
809  *
810  * MPSAFE
811  */
812 static void
813 bsd4_forking(struct lwp *plp, struct lwp *lp)
814 {
815 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
816 	lp->lwp_origcpu = lp->lwp_estcpu;
817 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
818 }
819 
820 /*
821  * Called when the parent reaps a child.   Propogate cpu use by the child
822  * back to the parent.
823  *
824  * MPSAFE
825  */
826 static void
827 bsd4_exiting(struct lwp *plp, struct lwp *lp)
828 {
829 	int delta;
830 
831 	if (plp->lwp_proc->p_pid != 1) {
832 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
833 		if (delta > 0)
834 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
835 	}
836 }
837 
838 
839 /*
840  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
841  * it selects a user process and returns it.  If chklp is non-NULL and chklp
842  * has a better or equal priority then the process that would otherwise be
843  * chosen, NULL is returned.
844  *
845  * Until we fix the RUNQ code the chklp test has to be strict or we may
846  * bounce between processes trying to acquire the current process designation.
847  *
848  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
849  *	    left intact through the entire routine.
850  */
851 static
852 struct lwp *
853 chooseproc_locked(struct lwp *chklp)
854 {
855 	struct lwp *lp;
856 	struct rq *q;
857 	u_int32_t *which, *which2;
858 	u_int32_t pri;
859 	u_int32_t rtqbits;
860 	u_int32_t tsqbits;
861 	u_int32_t idqbits;
862 	cpumask_t cpumask;
863 
864 	rtqbits = bsd4_rtqueuebits;
865 	tsqbits = bsd4_queuebits;
866 	idqbits = bsd4_idqueuebits;
867 	cpumask = mycpu->gd_cpumask;
868 
869 #ifdef SMP
870 again:
871 #endif
872 	if (rtqbits) {
873 		pri = bsfl(rtqbits);
874 		q = &bsd4_rtqueues[pri];
875 		which = &bsd4_rtqueuebits;
876 		which2 = &rtqbits;
877 	} else if (tsqbits) {
878 		pri = bsfl(tsqbits);
879 		q = &bsd4_queues[pri];
880 		which = &bsd4_queuebits;
881 		which2 = &tsqbits;
882 	} else if (idqbits) {
883 		pri = bsfl(idqbits);
884 		q = &bsd4_idqueues[pri];
885 		which = &bsd4_idqueuebits;
886 		which2 = &idqbits;
887 	} else {
888 		return NULL;
889 	}
890 	lp = TAILQ_FIRST(q);
891 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
892 
893 #ifdef SMP
894 	while ((lp->lwp_cpumask & cpumask) == 0) {
895 		lp = TAILQ_NEXT(lp, lwp_procq);
896 		if (lp == NULL) {
897 			*which2 &= ~(1 << pri);
898 			goto again;
899 		}
900 	}
901 #endif
902 
903 	/*
904 	 * If the passed lwp <chklp> is reasonably close to the selected
905 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
906 	 *
907 	 * Note that we must error on the side of <chklp> to avoid bouncing
908 	 * between threads in the acquire code.
909 	 */
910 	if (chklp) {
911 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
912 			return(NULL);
913 	}
914 
915 #ifdef SMP
916 	/*
917 	 * If the chosen lwp does not reside on this cpu spend a few
918 	 * cycles looking for a better candidate at the same priority level.
919 	 * This is a fallback check, setrunqueue() tries to wakeup the
920 	 * correct cpu and is our front-line affinity.
921 	 */
922 	if (lp->lwp_thread->td_gd != mycpu &&
923 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
924 	) {
925 		if (chklp->lwp_thread->td_gd == mycpu) {
926 			++choose_affinity;
927 			lp = chklp;
928 		}
929 	}
930 #endif
931 
932 	TAILQ_REMOVE(q, lp, lwp_procq);
933 	--bsd4_runqcount;
934 	if (TAILQ_EMPTY(q))
935 		*which &= ~(1 << pri);
936 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
937 	lp->lwp_flag &= ~LWP_ONRUNQ;
938 	return lp;
939 }
940 
941 #ifdef SMP
942 
943 /*
944  * Called via an ipi message to reschedule on another cpu.  If no
945  * user thread is active on the target cpu we wake the scheduler
946  * helper thread up to help schedule one.
947  *
948  * MPSAFE
949  */
950 static
951 void
952 need_user_resched_remote(void *dummy)
953 {
954 	globaldata_t gd = mycpu;
955 	bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
956 
957 	if (dd->uschedcp == NULL && (bsd4_rdyprocmask & gd->gd_cpumask)) {
958 		atomic_clear_int(&bsd4_rdyprocmask, gd->gd_cpumask);
959 		lwkt_schedule(&dd->helper_thread);
960 	} else {
961 		need_user_resched();
962 	}
963 }
964 
965 #endif
966 
967 /*
968  * bsd4_remrunqueue_locked() removes a given process from the run queue
969  * that it is on, clearing the queue busy bit if it becomes empty.
970  *
971  * Note that user process scheduler is different from the LWKT schedule.
972  * The user process scheduler only manages user processes but it uses LWKT
973  * underneath, and a user process operating in the kernel will often be
974  * 'released' from our management.
975  *
976  * MPSAFE - bsd4_spin must be held exclusively on call
977  */
978 static void
979 bsd4_remrunqueue_locked(struct lwp *lp)
980 {
981 	struct rq *q;
982 	u_int32_t *which;
983 	u_int8_t pri;
984 
985 	KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
986 	lp->lwp_flag &= ~LWP_ONRUNQ;
987 	--bsd4_runqcount;
988 	KKASSERT(bsd4_runqcount >= 0);
989 
990 	pri = lp->lwp_rqindex;
991 	switch(lp->lwp_rqtype) {
992 	case RTP_PRIO_NORMAL:
993 		q = &bsd4_queues[pri];
994 		which = &bsd4_queuebits;
995 		break;
996 	case RTP_PRIO_REALTIME:
997 	case RTP_PRIO_FIFO:
998 		q = &bsd4_rtqueues[pri];
999 		which = &bsd4_rtqueuebits;
1000 		break;
1001 	case RTP_PRIO_IDLE:
1002 		q = &bsd4_idqueues[pri];
1003 		which = &bsd4_idqueuebits;
1004 		break;
1005 	default:
1006 		panic("remrunqueue: invalid rtprio type");
1007 		/* NOT REACHED */
1008 	}
1009 	TAILQ_REMOVE(q, lp, lwp_procq);
1010 	if (TAILQ_EMPTY(q)) {
1011 		KASSERT((*which & (1 << pri)) != 0,
1012 			("remrunqueue: remove from empty queue"));
1013 		*which &= ~(1 << pri);
1014 	}
1015 }
1016 
1017 /*
1018  * bsd4_setrunqueue_locked()
1019  *
1020  * Add a process whos rqtype and rqindex had previously been calculated
1021  * onto the appropriate run queue.   Determine if the addition requires
1022  * a reschedule on a cpu and return the cpuid or -1.
1023  *
1024  * NOTE: Lower priorities are better priorities.
1025  *
1026  * MPSAFE - bsd4_spin must be held exclusively on call
1027  */
1028 static void
1029 bsd4_setrunqueue_locked(struct lwp *lp)
1030 {
1031 	struct rq *q;
1032 	u_int32_t *which;
1033 	int pri;
1034 
1035 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1036 	lp->lwp_flag |= LWP_ONRUNQ;
1037 	++bsd4_runqcount;
1038 
1039 	pri = lp->lwp_rqindex;
1040 
1041 	switch(lp->lwp_rqtype) {
1042 	case RTP_PRIO_NORMAL:
1043 		q = &bsd4_queues[pri];
1044 		which = &bsd4_queuebits;
1045 		break;
1046 	case RTP_PRIO_REALTIME:
1047 	case RTP_PRIO_FIFO:
1048 		q = &bsd4_rtqueues[pri];
1049 		which = &bsd4_rtqueuebits;
1050 		break;
1051 	case RTP_PRIO_IDLE:
1052 		q = &bsd4_idqueues[pri];
1053 		which = &bsd4_idqueuebits;
1054 		break;
1055 	default:
1056 		panic("remrunqueue: invalid rtprio type");
1057 		/* NOT REACHED */
1058 	}
1059 
1060 	/*
1061 	 * Add to the correct queue and set the appropriate bit.  If no
1062 	 * lower priority (i.e. better) processes are in the queue then
1063 	 * we want a reschedule, calculate the best cpu for the job.
1064 	 *
1065 	 * Always run reschedules on the LWPs original cpu.
1066 	 */
1067 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1068 	*which |= 1 << pri;
1069 }
1070 
1071 #ifdef SMP
1072 
1073 /*
1074  * For SMP systems a user scheduler helper thread is created for each
1075  * cpu and is used to allow one cpu to wakeup another for the purposes of
1076  * scheduling userland threads from setrunqueue().  UP systems do not
1077  * need the helper since there is only one cpu.  We can't use the idle
1078  * thread for this because we need to hold the MP lock.  Additionally,
1079  * doing things this way allows us to HLT idle cpus on MP systems.
1080  *
1081  * MPSAFE
1082  */
1083 static void
1084 sched_thread(void *dummy)
1085 {
1086     globaldata_t gd;
1087     bsd4_pcpu_t  dd;
1088     struct lwp *nlp;
1089     cpumask_t cpumask;
1090     int cpuid;
1091 #if 0
1092     cpumask_t tmpmask;
1093     int tmpid;
1094 #endif
1095 
1096     gd = mycpu;
1097     cpuid = gd->gd_cpuid;	/* doesn't change */
1098     cpumask = gd->gd_cpumask;	/* doesn't change */
1099     dd = &bsd4_pcpu[cpuid];
1100 
1101     /*
1102      * The scheduler thread does not need to hold the MP lock.  Since we
1103      * are woken up only when no user processes are scheduled on a cpu, we
1104      * can run at an ultra low priority.
1105      */
1106     rel_mplock();
1107     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1108 
1109     for (;;) {
1110 	/*
1111 	 * We use the LWKT deschedule-interlock trick to avoid racing
1112 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1113 	 * manual lwkt_switch() call we make below.
1114 	 */
1115 	crit_enter_gd(gd);
1116 	lwkt_deschedule_self(gd->gd_curthread);
1117 	spin_lock_wr(&bsd4_spin);
1118 	atomic_set_int(&bsd4_rdyprocmask, cpumask);
1119 
1120 	clear_user_resched();	/* This satisfied the reschedule request */
1121 	dd->rrcount = 0;	/* Reset the round-robin counter */
1122 
1123 	if ((bsd4_curprocmask & cpumask) == 0) {
1124 		/*
1125 		 * No thread is currently scheduled.
1126 		 */
1127 		KKASSERT(dd->uschedcp == NULL);
1128 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1129 			atomic_set_int(&bsd4_curprocmask, cpumask);
1130 			dd->upri = nlp->lwp_priority;
1131 			dd->uschedcp = nlp;
1132 			spin_unlock_wr(&bsd4_spin);
1133 			lwkt_acquire(nlp->lwp_thread);
1134 			lwkt_schedule(nlp->lwp_thread);
1135 		} else {
1136 			spin_unlock_wr(&bsd4_spin);
1137 		}
1138 #if 0
1139 	/*
1140 	 * Disabled for now, this can create an infinite loop.
1141 	 */
1142 	} else if (bsd4_runqcount) {
1143 		/*
1144 		 * Someone scheduled us but raced.  In order to not lose
1145 		 * track of the fact that there may be a LWP ready to go,
1146 		 * forward the request to another cpu if available.
1147 		 *
1148 		 * Rotate through cpus starting with cpuid + 1.  Since cpuid
1149 		 * is already masked out by gd_other_cpus, just use ~cpumask.
1150 		 */
1151 		tmpmask = bsd4_rdyprocmask & mycpu->gd_other_cpus &
1152 			  ~bsd4_curprocmask;
1153 		if (tmpmask) {
1154 			if (tmpmask & ~(cpumask - 1))
1155 				tmpid = bsfl(tmpmask & ~(cpumask - 1));
1156 			else
1157 				tmpid = bsfl(tmpmask);
1158 			bsd4_scancpu = tmpid;
1159 			atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid);
1160 			spin_unlock_wr(&bsd4_spin);
1161 			lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread);
1162 		} else {
1163 			spin_unlock_wr(&bsd4_spin);
1164 		}
1165 #endif
1166 	} else {
1167 		/*
1168 		 * The runq is empty.
1169 		 */
1170 		spin_unlock_wr(&bsd4_spin);
1171 	}
1172 	crit_exit_gd(gd);
1173 	lwkt_switch();
1174     }
1175 }
1176 
1177 /*
1178  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1179  * been cleared by rqinit() and we should not mess with it further.
1180  */
1181 static void
1182 sched_thread_cpu_init(void)
1183 {
1184     int i;
1185 
1186     if (bootverbose)
1187 	kprintf("start scheduler helpers on cpus:");
1188 
1189     for (i = 0; i < ncpus; ++i) {
1190 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1191 	cpumask_t mask = 1 << i;
1192 
1193 	if ((mask & smp_active_mask) == 0)
1194 	    continue;
1195 
1196 	if (bootverbose)
1197 	    kprintf(" %d", i);
1198 
1199 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1200 		    TDF_STOPREQ, i, "usched %d", i);
1201 
1202 	/*
1203 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1204 	 * been enabled in rqinit().
1205 	 */
1206 	if (i)
1207 	    atomic_clear_int(&bsd4_curprocmask, mask);
1208 	atomic_set_int(&bsd4_rdyprocmask, mask);
1209 	dd->upri = PRIBASE_NULL;
1210     }
1211     if (bootverbose)
1212 	kprintf("\n");
1213 }
1214 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1215 	sched_thread_cpu_init, NULL)
1216 
1217 #endif
1218 
1219