xref: /dragonfly/sys/kern/usched_bsd4.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.15 2006/06/20 18:44:32 dillon Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/ipl.h>
41 #include <machine/cpu.h>
42 #include <machine/smp.h>
43 
44 #include <sys/thread2.h>
45 #include <sys/spinlock2.h>
46 
47 /*
48  * Priorities.  Note that with 32 run queues per scheduler each queue
49  * represents four priority levels.
50  */
51 
52 #define MAXPRI			128
53 #define PRIMASK			(MAXPRI - 1)
54 #define PRIBASE_REALTIME	0
55 #define PRIBASE_NORMAL		MAXPRI
56 #define PRIBASE_IDLE		(MAXPRI * 2)
57 #define PRIBASE_THREAD		(MAXPRI * 3)
58 #define PRIBASE_NULL		(MAXPRI * 4)
59 
60 #define NQS	32			/* 32 run queues. */
61 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
62 #define PPQMASK	(PPQ - 1)
63 
64 /*
65  * NICEPPQ	- number of nice units per priority queue
66  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
67  *
68  * ESTCPUPPQ	- number of estcpu units per priority queue
69  * ESTCPUMAX	- number of estcpu units
70  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
71  *		  100% cpu.
72  */
73 #define NICEPPQ		2
74 #define ESTCPURAMP	4
75 #define ESTCPUPPQ	512
76 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
77 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
78 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
79 
80 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
81 
82 TAILQ_HEAD(rq, lwp);
83 
84 #define lwp_priority	lwp_usdata.bsd4.priority
85 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
86 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
87 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
88 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
89 
90 static void bsd4_acquire_curproc(struct lwp *lp);
91 static void bsd4_release_curproc(struct lwp *lp);
92 static void bsd4_select_curproc(globaldata_t gd);
93 static void bsd4_setrunqueue(struct lwp *lp);
94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
95 				sysclock_t cpstamp);
96 static void bsd4_recalculate_estcpu(struct lwp *lp);
97 static void bsd4_resetpriority(struct lwp *lp);
98 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
100 
101 #ifdef SMP
102 static void need_user_resched_remote(void *dummy);
103 #endif
104 static struct lwp *chooseproc_locked(struct lwp *chklp);
105 static void bsd4_remrunqueue_locked(struct lwp *lp);
106 static void bsd4_setrunqueue_locked(struct lwp *lp);
107 
108 struct usched usched_bsd4 = {
109 	{ NULL },
110 	"bsd4", "Original DragonFly Scheduler",
111 	NULL,			/* default registration */
112 	NULL,			/* default deregistration */
113 	bsd4_acquire_curproc,
114 	bsd4_release_curproc,
115 	bsd4_setrunqueue,
116 	bsd4_schedulerclock,
117 	bsd4_recalculate_estcpu,
118 	bsd4_resetpriority,
119 	bsd4_forking,
120 	bsd4_exiting,
121 	NULL			/* setcpumask not supported */
122 };
123 
124 struct usched_bsd4_pcpu {
125 	struct thread helper_thread;
126 	short	rrcount;
127 	short	upri;
128 	struct lwp *uschedcp;
129 };
130 
131 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
132 
133 /*
134  * We have NQS (32) run queues per scheduling class.  For the normal
135  * class, there are 128 priorities scaled onto these 32 queues.  New
136  * processes are added to the last entry in each queue, and processes
137  * are selected for running by taking them from the head and maintaining
138  * a simple FIFO arrangement.  Realtime and Idle priority processes have
139  * and explicit 0-31 priority which maps directly onto their class queue
140  * index.  When a queue has something in it, the corresponding bit is
141  * set in the queuebits variable, allowing a single read to determine
142  * the state of all 32 queues and then a ffs() to find the first busy
143  * queue.
144  */
145 static struct rq bsd4_queues[NQS];
146 static struct rq bsd4_rtqueues[NQS];
147 static struct rq bsd4_idqueues[NQS];
148 static u_int32_t bsd4_queuebits;
149 static u_int32_t bsd4_rtqueuebits;
150 static u_int32_t bsd4_idqueuebits;
151 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
152 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
153 static int	 bsd4_runqcount;
154 #ifdef SMP
155 static volatile int bsd4_scancpu;
156 #endif
157 static struct spinlock bsd4_spin;
158 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
159 
160 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, "");
161 #ifdef INVARIANTS
162 static int usched_nonoptimal;
163 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
164         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
165 static int usched_optimal;
166 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
167         &usched_optimal, 0, "acquire_curproc() was optimal");
168 #endif
169 static int usched_debug = -1;
170 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, "");
171 #ifdef SMP
172 static int remote_resched_nonaffinity;
173 static int remote_resched_affinity;
174 static int choose_affinity;
175 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
176         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
177 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
178         &remote_resched_affinity, 0, "Number of remote rescheds");
179 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
180         &choose_affinity, 0, "chooseproc() was smart");
181 #endif
182 
183 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
184 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
185         &usched_bsd4_rrinterval, 0, "");
186 static int usched_bsd4_decay = ESTCPUINCR / 2;
187 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
188         &usched_bsd4_decay, 0, "");
189 
190 /*
191  * Initialize the run queues at boot time.
192  */
193 static void
194 rqinit(void *dummy)
195 {
196 	int i;
197 
198 	spin_init(&bsd4_spin);
199 	for (i = 0; i < NQS; i++) {
200 		TAILQ_INIT(&bsd4_queues[i]);
201 		TAILQ_INIT(&bsd4_rtqueues[i]);
202 		TAILQ_INIT(&bsd4_idqueues[i]);
203 	}
204 	atomic_clear_int(&bsd4_curprocmask, 1);
205 }
206 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
207 
208 /*
209  * BSD4_ACQUIRE_CURPROC
210  *
211  * This function is called when the kernel intends to return to userland.
212  * It is responsible for making the thread the current designated userland
213  * thread for this cpu, blocking if necessary.
214  *
215  * We are expected to handle userland reschedule requests here too.
216  *
217  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
218  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
219  * occur, this function is called only under very controlled circumstances.
220  *
221  * Basically we recalculate our estcpu to hopefully give us a more
222  * favorable disposition, setrunqueue, then wait for the curlwp
223  * designation to be handed to us (if the setrunqueue didn't do it).
224  *
225  * MPSAFE
226  */
227 static void
228 bsd4_acquire_curproc(struct lwp *lp)
229 {
230 	globaldata_t gd = mycpu;
231 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
232 
233 	/*
234 	 * Possibly select another thread, or keep the current thread.
235 	 */
236 	if (user_resched_wanted())
237 		bsd4_select_curproc(gd);
238 
239 	/*
240 	 * If uschedcp is still pointing to us, we're done
241 	 */
242 	if (dd->uschedcp == lp)
243 		return;
244 
245 	/*
246 	 * If this cpu has no current thread, and the run queue is
247 	 * empty, we can safely select ourself.
248 	 */
249 	if (dd->uschedcp == NULL && bsd4_runqcount == 0) {
250 		atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
251 		dd->uschedcp = lp;
252 		dd->upri = lp->lwp_priority;
253 		return;
254 	}
255 
256 	/*
257 	 * Adjust estcpu and recalculate our priority, then put us back on
258 	 * the user process scheduler's runq.  Only increment the involuntary
259 	 * context switch count if the setrunqueue call did not immediately
260 	 * schedule us.
261 	 *
262 	 * Loop until we become the currently scheduled process.  Note that
263 	 * calling setrunqueue can cause us to be migrated to another cpu
264 	 * after we switch away.
265 	 */
266 	do {
267 		crit_enter();
268 		bsd4_recalculate_estcpu(lp);
269 		lwkt_deschedule_self(gd->gd_curthread);
270 		bsd4_setrunqueue(lp);
271 		if ((gd->gd_curthread->td_flags & TDF_RUNQ) == 0)
272 			++lp->lwp_stats->p_ru.ru_nivcsw;
273 		lwkt_switch();
274 		crit_exit();
275 		gd = mycpu;
276 		dd = &bsd4_pcpu[gd->gd_cpuid];
277 	} while (dd->uschedcp != lp);
278 	KKASSERT((lp->lwp_proc->p_flag & P_ONRUNQ) == 0);
279 }
280 
281 /*
282  * BSD4_RELEASE_CURPROC
283  *
284  * This routine detaches the current thread from the userland scheduler,
285  * usually because the thread needs to run in the kernel (at kernel priority)
286  * for a while.
287  *
288  * This routine is also responsible for selecting a new thread to
289  * make the current thread.
290  *
291  * NOTE: This implementation differs from the dummy example in that
292  * bsd4_select_curproc() is able to select the current process, whereas
293  * dummy_select_curproc() is not able to select the current process.
294  * This means we have to NULL out uschedcp.
295  *
296  * Additionally, note that we may already be on a run queue if releasing
297  * via the lwkt_switch() in bsd4_setrunqueue().
298  *
299  * WARNING!  The MP lock may be in an unsynchronized state due to the
300  * way get_mplock() works and the fact that this function may be called
301  * from a passive release during a lwkt_switch().   try_mplock() will deal
302  * with this for us but you should be aware that td_mpcount may not be
303  * useable.
304  *
305  * MPSAFE
306  */
307 static void
308 bsd4_release_curproc(struct lwp *lp)
309 {
310 	globaldata_t gd = mycpu;
311 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
312 
313 	if (dd->uschedcp == lp) {
314 		/*
315 		 * Note: we leave ou curprocmask bit set to prevent
316 		 * unnecessary scheduler helper wakeups.
317 		 * bsd4_select_curproc() will clean it up.
318 		 */
319 		KKASSERT((lp->lwp_proc->p_flag & P_ONRUNQ) == 0);
320 		dd->uschedcp = NULL;	/* don't let lp be selected */
321 		bsd4_select_curproc(gd);
322 	}
323 }
324 
325 /*
326  * BSD4_SELECT_CURPROC
327  *
328  * Select a new current process for this cpu.  This satisfies a user
329  * scheduler reschedule request so clear that too.
330  *
331  * This routine is also responsible for equal-priority round-robining,
332  * typically triggered from bsd4_schedulerclock().  In our dummy example
333  * all the 'user' threads are LWKT scheduled all at once and we just
334  * call lwkt_switch().
335  *
336  * MPSAFE
337  */
338 static
339 void
340 bsd4_select_curproc(globaldata_t gd)
341 {
342 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
343 	struct lwp *nlp;
344 	int cpuid = gd->gd_cpuid;
345 
346 	crit_enter_gd(gd);
347 	clear_user_resched();	/* This satisfied the reschedule request */
348 	dd->rrcount = 0;	/* Reset the round-robin counter */
349 
350 	spin_lock_wr(&bsd4_spin);
351 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
352 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
353 		dd->upri = nlp->lwp_priority;
354 		dd->uschedcp = nlp;
355 		spin_unlock_wr(&bsd4_spin);
356 #ifdef SMP
357 		lwkt_acquire(nlp->lwp_thread);
358 #endif
359 		lwkt_schedule(nlp->lwp_thread);
360 	} else if (dd->uschedcp) {
361 		dd->upri = dd->uschedcp->lwp_priority;
362 		spin_unlock_wr(&bsd4_spin);
363 		KKASSERT(bsd4_curprocmask & (1 << cpuid));
364 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) {
365 		atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
366 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
367 		dd->uschedcp = NULL;
368 		dd->upri = PRIBASE_NULL;
369 		spin_unlock_wr(&bsd4_spin);
370 		lwkt_schedule(&dd->helper_thread);
371 	} else {
372 		dd->uschedcp = NULL;
373 		dd->upri = PRIBASE_NULL;
374 		atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
375 		spin_unlock_wr(&bsd4_spin);
376 	}
377 	crit_exit_gd(gd);
378 }
379 
380 /*
381  * BSD4_SETRUNQUEUE
382  *
383  * This routine is called to schedule a new user process after a fork.
384  *
385  * The caller may set P_PASSIVE_ACQ in p_flag to indicate that we should
386  * attempt to leave the thread on the current cpu.
387  *
388  * If P_PASSIVE_ACQ is set setrunqueue() will not wakeup potential target
389  * cpus in an attempt to keep the process on the current cpu at least for
390  * a little while to take advantage of locality of reference (e.g. fork/exec
391  * or short fork/exit, and uio_yield()).
392  *
393  * CPU AFFINITY: cpu affinity is handled by attempting to either schedule
394  * or (user level) preempt on the same cpu that a process was previously
395  * scheduled to.  If we cannot do this but we are at enough of a higher
396  * priority then the processes running on other cpus, we will allow the
397  * process to be stolen by another cpu.
398  *
399  * WARNING!  This routine cannot block.  bsd4_acquire_curproc() does
400  * a deschedule/switch interlock and we can be moved to another cpu
401  * the moment we are switched out.  Our LWKT run state is the only
402  * thing preventing the transfer.
403  *
404  * The associated thread must NOT currently be scheduled (but can be the
405  * current process after it has been LWKT descheduled).  It must NOT be on
406  * a bsd4 scheduler queue either.  The purpose of this routine is to put
407  * it on a scheduler queue or make it the current user process and LWKT
408  * schedule it.  It is possible that the thread is in the middle of a LWKT
409  * switchout on another cpu, lwkt_acquire() deals with that case.
410  *
411  * The process must be runnable.
412  *
413  * MPSAFE
414  */
415 static void
416 bsd4_setrunqueue(struct lwp *lp)
417 {
418 	globaldata_t gd;
419 	bsd4_pcpu_t dd;
420 	int cpuid;
421 #ifdef SMP
422 	cpumask_t mask;
423 	cpumask_t tmpmask;
424 #endif
425 
426 	/*
427 	 * First validate the process state relative to the current cpu.
428 	 * We don't need the spinlock for this, just a critical section.
429 	 * We are in control of the process.
430 	 */
431 	crit_enter();
432 	KASSERT(lp->lwp_proc->p_stat == SRUN, ("setrunqueue: proc not SRUN"));
433 	KASSERT((lp->lwp_proc->p_flag & P_ONRUNQ) == 0,
434 	    ("lwp %d/%d already on runq! flag %08x", lp->lwp_proc->p_pid,
435 	     lp->lwp_tid, lp->lwp_proc->p_flag));
436 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
437 
438 	/*
439 	 * Note: gd and dd are relative to the target thread's last cpu,
440 	 * NOT our current cpu.
441 	 */
442 	gd = lp->lwp_thread->td_gd;
443 	dd = &bsd4_pcpu[gd->gd_cpuid];
444 
445 	/*
446 	 * If setrunqueue is being called due to being woken up, verses
447 	 * being called when aquiring the current process, recalculate
448 	 * estcpu.
449 	 *
450 	 * Because recalculate is only called once or twice for long sleeps,
451 	 * not every second forever while the process is sleeping, we have
452 	 * to manually call it to resynchronize p_cpbase on wakeup or it
453 	 * will wrap if the process was sleeping long enough (e.g. ~10 min
454 	 * with the ACPI timer) and really mess up the nticks calculation.
455 	 *
456 	 * NOTE: because P_ONRUNQ is not set, bsd4_recalculate_estcpu()'s
457 	 * calls to resetpriority will just play with the processes priority
458 	 * fields and not mess with any queues, so it is MPSAFE in this
459 	 * context.
460 	 */
461 	if (lp->lwp_slptime && (lp->lwp_thread->td_flags & TDF_RUNNING) == 0) {
462 	    bsd4_recalculate_estcpu(lp);
463 	    lp->lwp_slptime = 0;
464 	}
465 
466 	/*
467 	 * This process is not supposed to be scheduled anywhere or assigned
468 	 * as the current process anywhere.  Assert the condition.
469 	 */
470 	KKASSERT(dd->uschedcp != lp);
471 
472 	/*
473 	 * Check local cpu affinity.  The associated thread is stable at
474 	 * the moment.  Note that we may be checking another cpu here so we
475 	 * have to be careful.  We can only assign uschedcp on OUR cpu.
476 	 *
477 	 * This allows us to avoid actually queueing the process.
478 	 * acquire_curproc() will handle any threads we mistakenly schedule.
479 	 */
480 	cpuid = gd->gd_cpuid;
481 	if (gd == mycpu && (bsd4_curprocmask & (1 << cpuid)) == 0) {
482 		atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
483 		dd->uschedcp = lp;
484 		dd->upri = lp->lwp_priority;
485 		lwkt_schedule(lp->lwp_thread);
486 		crit_exit();
487 		return;
488 	}
489 
490 	/*
491 	 * gd and cpuid may still 'hint' at another cpu.  Even so we have
492 	 * to place this process on the userland scheduler's run queue for
493 	 * action by the target cpu.
494 	 */
495 #ifdef SMP
496 	/*
497 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
498 	 * operation when the priority is recalculated, so TDF_MIGRATING
499 	 * may already be set.
500 	 */
501 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
502 		lwkt_giveaway(lp->lwp_thread);
503 #endif
504 
505 	/*
506 	 * We lose control of lp the moment we release the spinlock after
507 	 * having placed lp on the queue.  i.e. another cpu could pick it
508 	 * up and it could exit, or its priority could be further adjusted,
509 	 * or something like that.
510 	 */
511 	spin_lock_wr(&bsd4_spin);
512 	bsd4_setrunqueue_locked(lp);
513 
514 	/*
515 	 * gd, dd, and cpuid are still our target cpu 'hint', not our current
516 	 * cpu info.
517 	 *
518 	 * We always try to schedule a LWP to its original cpu first.  It
519 	 * is possible for the scheduler helper or setrunqueue to assign
520 	 * the LWP to a different cpu before the one we asked for wakes
521 	 * up.
522 	 *
523 	 * If the LWP has higher priority (lower lwp_priority value) on
524 	 * its target cpu, reschedule on that cpu.
525 	 */
526 	if ((lp->lwp_thread->td_flags & TDF_NORESCHED) == 0) {
527 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
528 			dd->upri = lp->lwp_priority;
529 			spin_unlock_wr(&bsd4_spin);
530 #ifdef SMP
531 			if (gd == mycpu) {
532 				need_user_resched();
533 			} else {
534 				lwkt_send_ipiq(gd, need_user_resched_remote,
535 					       NULL);
536 			}
537 #else
538 			need_user_resched();
539 #endif
540 			crit_exit();
541 			return;
542 		}
543 	}
544 	spin_unlock_wr(&bsd4_spin);
545 
546 #ifdef SMP
547 	/*
548 	 * Otherwise the LWP has a lower priority or we were asked not
549 	 * to reschedule.  Look for an idle cpu whos scheduler helper
550 	 * is ready to accept more work.
551 	 *
552 	 * Look for an idle cpu starting at our rotator (bsd4_scancpu).
553 	 *
554 	 * If no cpus are ready to accept work, just return.
555 	 *
556 	 * XXX P_PASSIVE_ACQ
557 	 */
558 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask & mycpu->gd_other_cpus &
559 	    lp->lwp_cpumask;
560 	if (mask) {
561 		cpuid = bsd4_scancpu;
562 		if (++cpuid == ncpus)
563 			cpuid = 0;
564 		tmpmask = ~((1 << cpuid) - 1);
565 		if (mask & tmpmask)
566 			cpuid = bsfl(mask & tmpmask);
567 		else
568 			cpuid = bsfl(mask);
569 		atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
570 		bsd4_scancpu = cpuid;
571 		lwkt_schedule(&bsd4_pcpu[cpuid].helper_thread);
572 	}
573 #endif
574 	crit_exit();
575 }
576 
577 /*
578  * This routine is called from a systimer IPI.  It MUST be MP-safe and
579  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
580  * each cpu.
581  *
582  * Because this is effectively a 'fast' interrupt, we cannot safely
583  * use spinlocks unless gd_spinlock_rd is NULL and gd_spinlocks_wr is 0,
584  * even if the spinlocks are 'non conflicting'.  This is due to the way
585  * spinlock conflicts against cached read locks are handled.
586  *
587  * MPSAFE
588  */
589 static
590 void
591 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
592 {
593 	globaldata_t gd = mycpu;
594 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
595 
596 	/*
597 	 * Do we need to round-robin?  We round-robin 10 times a second.
598 	 * This should only occur for cpu-bound batch processes.
599 	 */
600 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
601 		dd->rrcount = 0;
602 		need_user_resched();
603 	}
604 
605 	/*
606 	 * As the process accumulates cpu time p_estcpu is bumped and may
607 	 * push the process into another scheduling queue.  It typically
608 	 * takes 4 ticks to bump the queue.
609 	 */
610 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
611 
612 	/*
613 	 * Reducing p_origcpu over time causes more of our estcpu to be
614 	 * returned to the parent when we exit.  This is a small tweak
615 	 * for the batch detection heuristic.
616 	 */
617 	if (lp->lwp_origcpu)
618 		--lp->lwp_origcpu;
619 
620 	/*
621 	 * We can only safely call bsd4_resetpriority(), which uses spinlocks,
622 	 * if we aren't interrupting a thread that is using spinlocks.
623 	 * Otherwise we can deadlock with another cpu waiting for our read
624 	 * spinlocks to clear.
625 	 */
626 	if (gd->gd_spinlock_rd == NULL && gd->gd_spinlocks_wr == 0)
627 		bsd4_resetpriority(lp);
628 	else
629 		need_user_resched();
630 }
631 
632 /*
633  * Called from acquire and from kern_synch's one-second timer (one of the
634  * callout helper threads) with a critical section held.
635  *
636  * Decay p_estcpu based on the number of ticks we haven't been running
637  * and our p_nice.  As the load increases each process observes a larger
638  * number of idle ticks (because other processes are running in them).
639  * This observation leads to a larger correction which tends to make the
640  * system more 'batchy'.
641  *
642  * Note that no recalculation occurs for a process which sleeps and wakes
643  * up in the same tick.  That is, a system doing thousands of context
644  * switches per second will still only do serious estcpu calculations
645  * ESTCPUFREQ times per second.
646  *
647  * MPSAFE
648  */
649 static
650 void
651 bsd4_recalculate_estcpu(struct lwp *lp)
652 {
653 	globaldata_t gd = mycpu;
654 	sysclock_t cpbase;
655 	int loadfac;
656 	int ndecay;
657 	int nticks;
658 	int nleft;
659 
660 	/*
661 	 * We have to subtract periodic to get the last schedclock
662 	 * timeout time, otherwise we would get the upcoming timeout.
663 	 * Keep in mind that a process can migrate between cpus and
664 	 * while the scheduler clock should be very close, boundary
665 	 * conditions could lead to a small negative delta.
666 	 */
667 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
668 
669 	if (lp->lwp_slptime > 1) {
670 		/*
671 		 * Too much time has passed, do a coarse correction.
672 		 */
673 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
674 		bsd4_resetpriority(lp);
675 		lp->lwp_cpbase = cpbase;
676 		lp->lwp_cpticks = 0;
677 	} else if (lp->lwp_cpbase != cpbase) {
678 		/*
679 		 * Adjust estcpu if we are in a different tick.  Don't waste
680 		 * time if we are in the same tick.
681 		 *
682 		 * First calculate the number of ticks in the measurement
683 		 * interval.  The nticks calculation can wind up 0 due to
684 		 * a bug in the handling of lwp_slptime  (as yet not found),
685 		 * so make sure we do not get a divide by 0 panic.
686 		 */
687 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
688 		if (nticks <= 0)
689 			nticks = 1;
690 		updatepcpu(lp, lp->lwp_cpticks, nticks);
691 
692 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
693 			nleft = 0;
694 		if (usched_debug == lp->lwp_proc->p_pid) {
695 			printf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
696 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
697 				lp->lwp_cpticks, nticks, nleft);
698 		}
699 
700 		/*
701 		 * Calculate a decay value based on ticks remaining scaled
702 		 * down by the instantanious load and p_nice.
703 		 */
704 		if ((loadfac = bsd4_runqcount) < 2)
705 			loadfac = 2;
706 		ndecay = nleft * usched_bsd4_decay * 2 *
707 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
708 
709 		/*
710 		 * Adjust p_estcpu.  Handle a border case where batch jobs
711 		 * can get stalled long enough to decay to zero when they
712 		 * shouldn't.
713 		 */
714 		if (lp->lwp_estcpu > ndecay * 2)
715 			lp->lwp_estcpu -= ndecay;
716 		else
717 			lp->lwp_estcpu >>= 1;
718 
719 		if (usched_debug == lp->lwp_proc->p_pid)
720 			printf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
721 		bsd4_resetpriority(lp);
722 		lp->lwp_cpbase = cpbase;
723 		lp->lwp_cpticks = 0;
724 	}
725 }
726 
727 /*
728  * Compute the priority of a process when running in user mode.
729  * Arrange to reschedule if the resulting priority is better
730  * than that of the current process.
731  *
732  * This routine may be called with any process.
733  *
734  * This routine is called by fork1() for initial setup with the process
735  * of the run queue, and also may be called normally with the process on or
736  * off the run queue.
737  *
738  * MPSAFE
739  */
740 static void
741 bsd4_resetpriority(struct lwp *lp)
742 {
743 	bsd4_pcpu_t dd;
744 	int newpriority;
745 	u_short newrqtype;
746 	int reschedcpu;
747 
748 	/*
749 	 * Calculate the new priority and queue type
750 	 */
751 	crit_enter();
752 	spin_lock_wr(&bsd4_spin);
753 
754 	newrqtype = lp->lwp_rtprio.type;
755 
756 	switch(newrqtype) {
757 	case RTP_PRIO_REALTIME:
758 	case RTP_PRIO_FIFO:
759 		newpriority = PRIBASE_REALTIME +
760 			     (lp->lwp_rtprio.prio & PRIMASK);
761 		break;
762 	case RTP_PRIO_NORMAL:
763 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
764 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
765 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
766 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
767 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
768 		break;
769 	case RTP_PRIO_IDLE:
770 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
771 		break;
772 	case RTP_PRIO_THREAD:
773 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
774 		break;
775 	default:
776 		panic("Bad RTP_PRIO %d", newrqtype);
777 		/* NOT REACHED */
778 	}
779 
780 	/*
781 	 * The newpriority incorporates the queue type so do a simple masked
782 	 * check to determine if the process has moved to another queue.  If
783 	 * it has, and it is currently on a run queue, then move it.
784 	 */
785 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
786 		lp->lwp_priority = newpriority;
787 		if (lp->lwp_proc->p_flag & P_ONRUNQ) {
788 			bsd4_remrunqueue_locked(lp);
789 			lp->lwp_rqtype = newrqtype;
790 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
791 			bsd4_setrunqueue_locked(lp);
792 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
793 		} else {
794 			lp->lwp_rqtype = newrqtype;
795 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
796 			reschedcpu = -1;
797 		}
798 	} else {
799 		lp->lwp_priority = newpriority;
800 		reschedcpu = -1;
801 	}
802 	spin_unlock_wr(&bsd4_spin);
803 
804 	/*
805 	 * Determine if we need to reschedule the target cpu.  This only
806 	 * occurs if the LWP is already on a scheduler queue, which means
807 	 * that idle cpu notification has already occured.  At most we
808 	 * need only issue a need_user_resched() on the appropriate cpu.
809 	 */
810 	if (reschedcpu >= 0) {
811 		dd = &bsd4_pcpu[reschedcpu];
812 		KKASSERT(dd->uschedcp != lp);
813 		if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
814 			dd->upri = lp->lwp_priority;
815 #ifdef SMP
816 			if (reschedcpu == mycpu->gd_cpuid) {
817 				need_user_resched();
818 			} else {
819 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
820 					       need_user_resched_remote, NULL);
821 			}
822 #else
823 			need_user_resched();
824 #endif
825 		}
826 	}
827 	crit_exit();
828 }
829 
830 /*
831  * Called from fork1() when a new child process is being created.
832  *
833  * Give the child process an initial estcpu that is more batch then
834  * its parent and dock the parent for the fork (but do not
835  * reschedule the parent).   This comprises the main part of our batch
836  * detection heuristic for both parallel forking and sequential execs.
837  *
838  * Interactive processes will decay the boosted estcpu quickly while batch
839  * processes will tend to compound it.
840  * XXX lwp should be "spawning" instead of "forking"
841  *
842  * MPSAFE
843  */
844 static void
845 bsd4_forking(struct lwp *plp, struct lwp *lp)
846 {
847 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
848 	lp->lwp_origcpu = lp->lwp_estcpu;
849 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
850 }
851 
852 /*
853  * Called when the parent reaps a child.   Propogate cpu use by the child
854  * back to the parent.
855  *
856  * MPSAFE
857  */
858 static void
859 bsd4_exiting(struct lwp *plp, struct lwp *lp)
860 {
861 	int delta;
862 
863 	if (plp->lwp_proc->p_pid != 1) {
864 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
865 		if (delta > 0)
866 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
867 	}
868 }
869 
870 
871 /*
872  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
873  * it selects a user process and returns it.  If chklp is non-NULL and chklp
874  * has a better or equal priority then the process that would otherwise be
875  * chosen, NULL is returned.
876  *
877  * Until we fix the RUNQ code the chklp test has to be strict or we may
878  * bounce between processes trying to acquire the current process designation.
879  *
880  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
881  *	    left intact through the entire routine.
882  */
883 static
884 struct lwp *
885 chooseproc_locked(struct lwp *chklp)
886 {
887 	struct lwp *lp;
888 	struct rq *q;
889 	u_int32_t *which, *which2;
890 	u_int32_t pri;
891 	u_int32_t rtqbits;
892 	u_int32_t tsqbits;
893 	u_int32_t idqbits;
894 	cpumask_t cpumask;
895 
896 	rtqbits = bsd4_rtqueuebits;
897 	tsqbits = bsd4_queuebits;
898 	idqbits = bsd4_idqueuebits;
899 	cpumask = mycpu->gd_cpumask;
900 
901 #ifdef SMP
902 again:
903 #endif
904 	if (rtqbits) {
905 		pri = bsfl(rtqbits);
906 		q = &bsd4_rtqueues[pri];
907 		which = &bsd4_rtqueuebits;
908 		which2 = &rtqbits;
909 	} else if (tsqbits) {
910 		pri = bsfl(tsqbits);
911 		q = &bsd4_queues[pri];
912 		which = &bsd4_queuebits;
913 		which2 = &tsqbits;
914 	} else if (idqbits) {
915 		pri = bsfl(idqbits);
916 		q = &bsd4_idqueues[pri];
917 		which = &bsd4_idqueuebits;
918 		which2 = &idqbits;
919 	} else {
920 		return NULL;
921 	}
922 	lp = TAILQ_FIRST(q);
923 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
924 
925 #ifdef SMP
926 	while ((lp->lwp_cpumask & cpumask) == 0) {
927 		lp = TAILQ_NEXT(lp, lwp_procq);
928 		if (lp == NULL) {
929 			*which2 &= ~(1 << pri);
930 			goto again;
931 		}
932 	}
933 #endif
934 
935 	/*
936 	 * If the passed lwp <chklp> is reasonably close to the selected
937 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
938 	 *
939 	 * Note that we must error on the side of <chklp> to avoid bouncing
940 	 * between threads in the acquire code.
941 	 */
942 	if (chklp) {
943 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
944 			return(NULL);
945 	}
946 
947 #ifdef SMP
948 	/*
949 	 * If the chosen lwp does not reside on this cpu spend a few
950 	 * cycles looking for a better candidate at the same priority level.
951 	 * This is a fallback check, setrunqueue() tries to wakeup the
952 	 * correct cpu and is our front-line affinity.
953 	 */
954 	if (lp->lwp_thread->td_gd != mycpu &&
955 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
956 	) {
957 		if (chklp->lwp_thread->td_gd == mycpu) {
958 			++choose_affinity;
959 			lp = chklp;
960 		}
961 	}
962 #endif
963 
964 	TAILQ_REMOVE(q, lp, lwp_procq);
965 	--bsd4_runqcount;
966 	if (TAILQ_EMPTY(q))
967 		*which &= ~(1 << pri);
968 	KASSERT((lp->lwp_proc->p_flag & P_ONRUNQ) != 0, ("not on runq6!"));
969 	lp->lwp_proc->p_flag &= ~P_ONRUNQ;
970 	return lp;
971 }
972 
973 #ifdef SMP
974 /*
975  * Called via an ipi message to reschedule on another cpu.
976  *
977  * MPSAFE
978  */
979 static
980 void
981 need_user_resched_remote(void *dummy)
982 {
983 	need_user_resched();
984 }
985 
986 #endif
987 
988 
989 /*
990  * bsd4_remrunqueue_locked() removes a given process from the run queue
991  * that it is on, clearing the queue busy bit if it becomes empty.
992  *
993  * Note that user process scheduler is different from the LWKT schedule.
994  * The user process scheduler only manages user processes but it uses LWKT
995  * underneath, and a user process operating in the kernel will often be
996  * 'released' from our management.
997  *
998  * MPSAFE - bsd4_spin must be held exclusively on call
999  */
1000 static void
1001 bsd4_remrunqueue_locked(struct lwp *lp)
1002 {
1003 	struct rq *q;
1004 	u_int32_t *which;
1005 	u_int8_t pri;
1006 
1007 	KKASSERT(lp->lwp_proc->p_flag & P_ONRUNQ);
1008 	lp->lwp_proc->p_flag &= ~P_ONRUNQ;
1009 	--bsd4_runqcount;
1010 	KKASSERT(bsd4_runqcount >= 0);
1011 
1012 	pri = lp->lwp_rqindex;
1013 	switch(lp->lwp_rqtype) {
1014 	case RTP_PRIO_NORMAL:
1015 		q = &bsd4_queues[pri];
1016 		which = &bsd4_queuebits;
1017 		break;
1018 	case RTP_PRIO_REALTIME:
1019 	case RTP_PRIO_FIFO:
1020 		q = &bsd4_rtqueues[pri];
1021 		which = &bsd4_rtqueuebits;
1022 		break;
1023 	case RTP_PRIO_IDLE:
1024 		q = &bsd4_idqueues[pri];
1025 		which = &bsd4_idqueuebits;
1026 		break;
1027 	default:
1028 		panic("remrunqueue: invalid rtprio type");
1029 		/* NOT REACHED */
1030 	}
1031 	TAILQ_REMOVE(q, lp, lwp_procq);
1032 	if (TAILQ_EMPTY(q)) {
1033 		KASSERT((*which & (1 << pri)) != 0,
1034 			("remrunqueue: remove from empty queue"));
1035 		*which &= ~(1 << pri);
1036 	}
1037 }
1038 
1039 /*
1040  * bsd4_setrunqueue_locked()
1041  *
1042  * Add a process whos rqtype and rqindex had previously been calculated
1043  * onto the appropriate run queue.   Determine if the addition requires
1044  * a reschedule on a cpu and return the cpuid or -1.
1045  *
1046  * NOTE: Lower priorities are better priorities.
1047  *
1048  * MPSAFE - bsd4_spin must be held exclusively on call
1049  */
1050 static void
1051 bsd4_setrunqueue_locked(struct lwp *lp)
1052 {
1053 	struct rq *q;
1054 	u_int32_t *which;
1055 	int pri;
1056 
1057 	KKASSERT((lp->lwp_proc->p_flag & P_ONRUNQ) == 0);
1058 	lp->lwp_proc->p_flag |= P_ONRUNQ;
1059 	++bsd4_runqcount;
1060 
1061 	pri = lp->lwp_rqindex;
1062 
1063 	switch(lp->lwp_rqtype) {
1064 	case RTP_PRIO_NORMAL:
1065 		q = &bsd4_queues[pri];
1066 		which = &bsd4_queuebits;
1067 		break;
1068 	case RTP_PRIO_REALTIME:
1069 	case RTP_PRIO_FIFO:
1070 		q = &bsd4_rtqueues[pri];
1071 		which = &bsd4_rtqueuebits;
1072 		break;
1073 	case RTP_PRIO_IDLE:
1074 		q = &bsd4_idqueues[pri];
1075 		which = &bsd4_idqueuebits;
1076 		break;
1077 	default:
1078 		panic("remrunqueue: invalid rtprio type");
1079 		/* NOT REACHED */
1080 	}
1081 
1082 	/*
1083 	 * Add to the correct queue and set the appropriate bit.  If no
1084 	 * lower priority (i.e. better) processes are in the queue then
1085 	 * we want a reschedule, calculate the best cpu for the job.
1086 	 *
1087 	 * Always run reschedules on the LWPs original cpu.
1088 	 */
1089 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1090 	*which |= 1 << pri;
1091 }
1092 
1093 #ifdef SMP
1094 
1095 /*
1096  * For SMP systems a user scheduler helper thread is created for each
1097  * cpu and is used to allow one cpu to wakeup another for the purposes of
1098  * scheduling userland threads from setrunqueue().  UP systems do not
1099  * need the helper since there is only one cpu.  We can't use the idle
1100  * thread for this because we need to hold the MP lock.  Additionally,
1101  * doing things this way allows us to HLT idle cpus on MP systems.
1102  *
1103  * MPSAFE
1104  */
1105 static void
1106 sched_thread(void *dummy)
1107 {
1108     globaldata_t gd;
1109     bsd4_pcpu_t  dd;
1110     struct lwp *nlp;
1111     cpumask_t cpumask;
1112     cpumask_t tmpmask;
1113     int cpuid;
1114     int tmpid;
1115 
1116     gd = mycpu;
1117     cpuid = gd->gd_cpuid;	/* doesn't change */
1118     cpumask = 1 << cpuid;	/* doesn't change */
1119     dd = &bsd4_pcpu[cpuid];
1120 
1121     /*
1122      * The scheduler thread does not need to hold the MP lock.  Since we
1123      * are woken up only when no user processes are scheduled on a cpu, we
1124      * can run at an ultra low priority.
1125      */
1126     rel_mplock();
1127     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1128 
1129     for (;;) {
1130 	/*
1131 	 * We use the LWKT deschedule-interlock trick to avoid racing
1132 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1133 	 * manual lwkt_switch() call we make below.
1134 	 */
1135 	crit_enter_gd(gd);
1136 	lwkt_deschedule_self(gd->gd_curthread);
1137 	spin_lock_wr(&bsd4_spin);
1138 	atomic_set_int(&bsd4_rdyprocmask, cpumask);
1139 	if ((bsd4_curprocmask & cpumask) == 0) {
1140 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1141 			atomic_set_int(&bsd4_curprocmask, cpumask);
1142 			dd->upri = nlp->lwp_priority;
1143 			dd->uschedcp = nlp;
1144 			spin_unlock_wr(&bsd4_spin);
1145 			lwkt_acquire(nlp->lwp_thread);
1146 			lwkt_schedule(nlp->lwp_thread);
1147 		} else {
1148 			spin_unlock_wr(&bsd4_spin);
1149 		}
1150 	} else {
1151 		/*
1152 		 * Someone scheduled us but raced.  In order to not lose
1153 		 * track of the fact that there may be a LWP ready to go,
1154 		 * forward the request to another cpu if available.
1155 		 *
1156 		 * Rotate through cpus starting with cpuid + 1.  Since cpuid
1157 		 * is already masked out by gd_other_cpus, just use ~cpumask.
1158 		 */
1159 		tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask &
1160 			  mycpu->gd_other_cpus;
1161 		if (tmpmask) {
1162 			if (tmpmask & ~(cpumask - 1))
1163 				tmpid = bsfl(tmpmask & ~(cpumask - 1));
1164 			else
1165 				tmpid = bsfl(tmpmask);
1166 			bsd4_scancpu = tmpid;
1167 			atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid);
1168 			spin_unlock_wr(&bsd4_spin);
1169 			lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread);
1170 		} else {
1171 			spin_unlock_wr(&bsd4_spin);
1172 		}
1173 	}
1174 	crit_exit_gd(gd);
1175 	lwkt_switch();
1176     }
1177 }
1178 
1179 /*
1180  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1181  * been cleared by rqinit() and we should not mess with it further.
1182  */
1183 static void
1184 sched_thread_cpu_init(void)
1185 {
1186     int i;
1187 
1188     if (bootverbose)
1189 	printf("start scheduler helpers on cpus:");
1190 
1191     for (i = 0; i < ncpus; ++i) {
1192 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1193 	cpumask_t mask = 1 << i;
1194 
1195 	if ((mask & smp_active_mask) == 0)
1196 	    continue;
1197 
1198 	if (bootverbose)
1199 	    printf(" %d", i);
1200 
1201 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1202 		    TDF_STOPREQ, i, "usched %d", i);
1203 
1204 	/*
1205 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1206 	 * been enabled in rqinit().
1207 	 */
1208 	if (i)
1209 	    atomic_clear_int(&bsd4_curprocmask, mask);
1210 	atomic_set_int(&bsd4_rdyprocmask, mask);
1211     }
1212     if (bootverbose)
1213 	printf("\n");
1214 }
1215 SYSINIT(uschedtd, SI_SUB_FINISH_SMP, SI_ORDER_ANY, sched_thread_cpu_init, NULL)
1216 
1217 #endif
1218 
1219